a mixture of three gasses (kr, ar and he) has a total pressure of 63.7 atm. if the pressure of ar is 6.9 atm and the pressure of kr is 387.0 mmhg, what is the pressure of he in atm? (760 mmhg = 1 atm)

Answers

Answer 1

The pressure of he in atm is 56.322 atm in a mixture of three gasses


First, we need to convert the pressure of kr from mmHg to atm by dividing by 760 mmHg/atm:

387.0 mmHg / 760 mmHg/atm = 0.509 atm

Now we can use the idea of partial pressures to find the pressure of he:

Total pressure = pressure of ar + pressure of kr + pressure of he

63.7 atm = 6.9 atm + 0.509 atm + pressure of he

Subtracting the known pressures from both sides gives:

56.322 atm = pressure of he

To know more about pressure in a mixture of gases refer https://brainly.com/question/19509220

#SPJ11


Related Questions

Two particles in a high-energy accelerator experiment approach each other head-on with a relative speed of 0.870 c. Both particles travel at the same speed as measured in the laboratory.
What is the speed of each particle, as measured in the laboratory?

Answers

Let v1 and v2 be the speeds of the two particles in the laboratory frame of reference, as measured by an observer at rest relative to the accelerator. speed is approximately 0.670 times the speed of light. (3C)

We are given that the particles approach each other head-on with a relative speed of 0.870 c, where c is the speed of light. This means that the relative velocity between the particles is:[tex]v_rel = (v1 - v2) / (1 - v1v2/c^2) = 0.870c[/tex]

Since the particles travel at the same speed in the laboratory frame of reference, we have v1 = v2 = v. Substituting this into the equation above, we get: [tex]v_rel = 2v / (1 - v^2/c^2) = 0.870c[/tex], Solving for v, we get: v = [tex]c * (0.870 / 1.74)^(1/2) ≈ 0.670c[/tex]

Therefore, each particle has a speed of approximately 0.670 times the speed of light, as measured in the laboratory frame of reference. This result is consistent with the predictions of special relativity, which show that the speed of an object cannot exceed the speed of light, and that the relationship between velocities is more complicated than in classical mechanics.

Know more about relative velocity  here:

https://brainly.com/question/29655726

#SPJ11

how much energy is stored in a 2.60-cm-diameter, 14.0-cm-long solenoid that has 150 turns of wire and carries a current of 0.780 a ?

Answers

The energy stored in a 2.60-cm-diameter, 14.0-cm-long solenoid that has 150 turns of wire and carries a current of 0.780 a is 0.016 joules.

The energy stored in a solenoid is given by the equation:

U = (1/2) * L * I²

where U is the energy stored, L is the inductance of the solenoid, and I is the current flowing through it.

The inductance of a solenoid can be calculated using the equation:

L = (μ * N² * A) / l

where μ is the permeability of the medium (in vacuum μ = 4π × 10⁻⁷ H/m), N is the number of turns of wire, A is the cross-sectional area of the solenoid, and l is the length of the solenoid.

First, let's calculate the inductance of the solenoid:

μ = 4π × 10⁻⁷ H/m

N = 150

A = πr² = π(0.013 m)² = 0.000530 m²

l = 0.14 m

L = (4π × 10⁻⁷ H/m * 150² * 0.000530 m²) / 0.14 m = 0.051 H

Now, we can calculate the energy stored in the solenoid:

I = 0.780 A

U = (1/2) * L * I^2 = (1/2) * 0.051 H * (0.780 A)² = 0.016 J

Therefore, the energy stored in the solenoid is 0.016 joules.

Learn more about solenoid at: https://brainly.com/question/3821492

#SPJ11

An iron wire has a cross-sectional area of 5.00 x 10^-6 m^2. Carry out steps (a) through (e) to compute the drift speed of the conduction electrons in the wire. (a) How many kilograms are there in 1 mole of iron? (b) Starting with the density of iron and the result of part (a), compute the molar density of iron (the number of moles of iron per cubic meter). (c) Calculate the number density of iron atoms using Avogadro’s number. (d) Obtain the number density of conduction electrons given that there are two conduction electrons per iron atom. (e) If the wire carries a current of 30.0 A, calculate the drift speed of conduction electrons.

Answers

(a)There are approximately 0.05585 kilograms in 1 mole of iron

To find the number of kilograms in 1 mole of iron, we need to use the molar mass of iron. The molar mass of iron (Fe) is approximately 55.85 grams per mole (g/mol). To convert grams to kilograms, we divide by 1000.

1 mole of iron = 55.85 grams = 55.85/1000 kilograms ≈ 0.05585 kilograms

Therefore, there are approximately 0.05585 kilograms in 1 mole of iron.

(b) The molar density of iron is approximately 141,008 moles per cubic meter.

To compute the molar density of iron, we need to know the density of iron. Let's assume the density of iron (ρ) is 7.874 grams per cubic centimeter (g/cm^3). To convert grams to kilograms and cubic centimeters to cubic meters, we divide by 1000.

Density of iron = 7.874 g/cm^3 = 7.874/1000 kg/m^3 = 7874 kg/m^3

The molar density (n) is given by the ratio of the density to the molar mass:

n = ρ / M

where ρ is the density and M is the molar mass.

Substituting the values:

n = 7874 kg/m^3 / 0.05585 kg/mol

Calculating the value:

n ≈ 141,008 mol/m^3

Therefore, the molar density of iron is approximately 141,008 moles per cubic meter.

(c)Therefore, the number density of iron atoms is approximately 8.49 x 10^28 atoms per cubic meter.

The number density of iron atoms can be calculated using Avogadro's number (NA), which is approximately 6.022 x 10^23 atoms per mole.

Number density of iron atoms = molar density * Avogadro's number

Substituting the values:

Number density of iron atoms = 141,008 mol/m^3 * 6.022 x 10^23 atoms/mol

Calculating the value:

Number density of iron atoms ≈ 8.49 x 10^28 atoms/m^3

Therefore, the number density of iron atoms is approximately 8.49 x 10^28 atoms per cubic meter.

(d)The number density of conduction electrons is approximately 8.49 x 10^28 electrons per cubic meter.

Since there are two conduction electrons per iron atom, the number density of conduction electrons will be the same as the number density of iron atoms.

Number density of conduction electrons = 8.49 x 10^28 electrons/m^3

Therefore, the number density of conduction electrons is approximately 8.49 x 10^28 electrons per cubic meter.

(e) The drift speed of conduction electrons is approximately 2.35 x 10^-4 m/s.

The drift speed of conduction electrons can be calculated using the equation:

I = n * A * v * q

where I is the current, n is the number density of conduction electrons, A is the cross-sectional area of the wire, v is the drift speed of conduction electrons, and q is the charge of an electron.

Given:

Current (I) = 30.0 A

Number density of conduction electrons (n) = 8.49 x 10^28 electrons/m^3

Cross-sectional area (A) = 5.00 x 10^-6 m^2

Charge of an electron (q) = 1.6 x 10^-19 C

Rearranging the equation to solve for v:

v = I / (n * A * q)

Substituting the values:

v = 30.0 A / (8.49 x 10^28 electrons/m^3 * 5.00 x 10^-6 m^2 * 1.6 x 10^-19 C)

Calculating the value:

v ≈ 2.35 x 10^-4 m/s

Therefore, the drift speed of conduction electrons is approximately 2.35 x 10^-4 m/s.

To know more about  molar density refer here

https://brainly.com/question/30626008#

#SPJ11

compared with compounds such as sodium chloride, the wax produced by bees has a low boiling point. which best explains this property of beeswax?

Answers

The low boiling point of beeswax is a result of its chemical composition, which is different from that of ionic compounds such as sodium chloride, as well as its natural function in the hive.

The low boiling point of beeswax compared to compounds such as sodium chloride can be attributed to its chemical composition. Beeswax is a complex mixture of hydrocarbons, fatty acids, and esters that have a relatively low molecular weight and weak intermolecular forces between the molecules.

This results in a lower boiling point compared to ionic compounds like sodium chloride, which have strong electrostatic attractions between the ions and require a higher temperature to break these bonds and vaporize.

Additionally, beeswax is a natural substance that is produced by bees and is intended to melt and flow at relatively low temperatures to facilitate their hive construction. As a result, it has evolved to have a lower boiling point to enable it to melt and be manipulated by the bees.

For more such questions on chemical composition:

https://brainly.com/question/678196

#SPJ11

The temperature at state A is 20ºC, that is 293 K. What is the heat (Q) for process D to B, in MJ (MegaJoules)? (Hint: What is the change in thermal energy and work done by the gas for this process?)
Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.

Answers

To calculate the heat (Q) for process D to B, we need to use the first law of thermodynamics, which states that the change in thermal energy of a system is equal to the heat added to the system minus the work done by the system.

In this case, we are going from state D to state B, which means the gas is expanding and doing work on its surroundings. The work done by the gas is given by the formula W = PΔV, where P is the pressure and ΔV is the change in volume. Since the gas is expanding, ΔV will be positive.

To calculate ΔV, we can use the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin. We know the temperature at state A is 293 K, and we are told that state D has a volume twice that of state A, so we can calculate the volume at state D as:

V_D = 2V_A = 2(nRT/P)

Now, at state B, we are told that the pressure is 2 atm, so we can calculate the volume at state B as:

V_B = nRT/P = (nRT/2)

The change in volume is then:

ΔV = V_B - V_D = (nRT/2) - 2(nRT/P) = (nRT/2) - (4nRT/2) = - (3nRT/2P)

Since we are given the pressure at state A as 1 atm, we can calculate the number of moles of gas using the ideal gas law:

n = PV/RT = (1 atm x V_A)/(0.08206 L atm/mol K x 293 K) = 0.0405 mol

Now we can calculate the work done by the gas:

W = PΔV = 1 atm x (-3/2) x 0.0405 mol x 8.3145 J/mol K x 293 K = -932 J

Note that we have included the negative sign in our calculation because the gas is doing work on its surroundings.

Finally, we can calculate the heat (Q) using the first law of thermodynamics:

ΔU = Q - W

ΔU is the change in thermal energy of the system, which we can calculate using the formula ΔU = (3/2)nRΔT, where ΔT is the change in temperature. We know the temperature at state B is 120ºC, which is 393 K, so ΔT = 393 K - 293 K = 100 K. Substituting in the values for n and R, we get:

ΔU = (3/2) x 0.0405 mol x 8.3145 J/mol K x 100 K = 151 J

Now we can solve for Q:

Q = ΔU + W = 151 J - (-932 J) = 1083 J

To convert to MJ, we divide by 1,000,000: Q = 1.083 x 10^-3 MJ

Our answer has two significant figures and is negative because the gas is losing thermal energy.

For more such questions on thermodynamics

https://brainly.com/question/13059309

#SPJ11

To calculate the heat (Q) for process D to B, we need to first understand the changes in thermal energy and work done by the gas during the process. As the temperature at state A is 20ºC or 293 K, we can use this as our initial temperature.

Process D to B involves a decrease in temperature, which means the thermal energy of the gas decreases. This change in thermal energy is given by the equation ΔE = mcΔT, where ΔE is the change in thermal energy, m is the mass of the gas, c is the specific heat capacity of the gas, and ΔT is the change in temperature.

As we don't have information about the mass and specific heat capacity of the gas, we cannot calculate ΔE. However, we do know that the change in thermal energy is equal to the heat transferred in or out of the system, which is represented by Q.

The work done by the gas during this process is given by the equation W = -PΔV, where W is the work done, P is the pressure, and ΔV is the change in volume. Again, we don't have information about the pressure and change in volume, so we cannot calculate W.

Therefore, we cannot calculate the heat (Q) for process D to B with the given information. We would need additional information about the gas and the specific process to calculate Q accurately.

learn more about thermal energy here: brainly.com/question/18989562

#SPJ11

A thin layer of oil (n = 1.25) is on top of a puddle of water (n = 1.33). If normally incident 500-nm light is strongly reflected, what is the minimum nonzero thickness of the oil layer in nanometers?
A. 600
B. 400
C. 200
D. 100

Answers

The answer is D. 100 nanometers.



In order for the light to be strongly reflected, the angle of incidence must be greater than the critical angle. Since the question states that the light is normally incident, the angle of incidence is zero degrees and there is no reflection. Therefore, the only way for the light to be strongly reflected is for there to be a thin layer of oil that causes the light to undergo a phase shift upon reflection, resulting in constructive interference.

The phase shift is given by 2pi*d*n/lambda, where d is the thickness of the oil layer, n is the refractive index of the oil, and lambda is the wavelength of the light. For constructive interference to occur, this phase shift must be an integer multiple of 2pi. Therefore, we can write the condition as 2*d*n/lambda = m, where m is an integer.

We know that the wavelength of the light is 500 nm and the refractive index of the oil is 1.25. Plugging these values into the above equation, we get 2*d*1.25/500 = m. Rearranging, we get d = 250m/1.25. In order for d to be nonzero and for there to be a reflected beam, m must be a nonzero integer. The minimum value of m is 1, which corresponds to d = 100 nm. Therefore, the minimum nonzero thickness of the oil layer is 100 nm.

Explanation:
When light travels from one medium to another, the angle of incidence, refractive indices, and wavelength of the light all play a role in determining whether the light is transmitted, reflected, or refracted. In this case, the thin layer of oil on top of the water causes the light to reflect strongly due to constructive interference. The minimum nonzero thickness of the oil layer can be found using the equation 2*d*n/lambda = m, where d is the thickness of the oil layer, n is the refractive index of the oil, lambda is the wavelength of the light, and m is an integer that represents the number of times the light wave goes up and down in the oil layer. The minimum value of m that results in a reflected beam is 1, which corresponds to a thickness of 100 nm.
For normally incident light to be strongly reflected, the condition for constructive interference must be met. The equation for this condition is:

2 * n * d * cos(θ) = m * λ

where n is the refractive index of the oil layer, d is the thickness of the oil layer, θ is the angle of incidence (0° for normal incidence), m is an integer representing the order of interference, and λ is the wavelength of light.

Since the light is normally incident, cos(θ) = 1. We want to find the minimum nonzero thickness, so we can set m = 1.

1.25 * 2 * d = 1 * 500 nm

Solving for d, we get:

d = 500 nm / (2 * 1.25) = 200 nm

To Know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

We know that our atmosphere is optically thick enough that when we look straight up, we see some scattered sunlight; on the other hand, it is pretty optically thin, since starlight is not scattered very much. Suppose at blue wavelengths (λ=400nm) the optical depth is 0.1. What fraction of starlight is scattered before it reaches the ground? What is the cross section for scattering of blue light by air molecules? In the formula\sigma \approx\sigma_T(\lambda_0/\lambda)^4, what would you infer λ0 to be?

Answers

If the optical depth for blue light in the atmosphere is 0.1, then only 10% of the light at this wavelength is scattered before it reaches the ground. This means that 90% of the blue starlight would pass straight through the atmosphere without being scattered.

The cross section for scattering of blue light by air molecules can be determined using the formula:

σ ≈ σ_T(λ_0/λ)^4
where σ_T is the Thomson cross section,
λ_0 is the characteristic wavelength of the scatterer, and
λ is the wavelength of the incident light.

Since we are interested in the scattering of blue light (λ = 400 nm), we need to determine λ_0. This characteristic wavelength depends on the size of the scattering particle, which is much smaller than the wavelength of light.

For air molecules, λ_0 is typically on the order of 1 nm. Using this value, we can calculate the cross section for scattering of blue light by air molecules to be approximately: 2.3 × 10^-31 m^2.

In summary, only 10% of blue starlight is scattered by the atmosphere, and the cross section for scattering of blue light by air molecules is approximately 2.3 × 10^-31 m^2, with a characteristic wavelength λ_0 of approximately 1 nm.

To know more about "Atmosphere" refer here:

https://brainly.com/question/30157325#

#SPJ11

What power contact lens must be used to correct the vision of a nearsighted person whose far point is 40 cm?A) 2.5 dioptersB)-2.5 dioptersC)-3.6 dioptersD)-4.0 dioptersE) 4.0 diopters

Answers

The correct answer is option E) 4.0 diopters. which is the positive equivalent of a 2.5-diopter concave lens.


To correct the vision of a nearsighted person whose far point is 40 cm, we need to use a concave lens with a negative power. The formula for calculating the power of a lens is P = 1/f, where P is the power in diopters and f is the focal length in meters. The far point of the person is 40 cm or 0.4 meters, so the focal length of the lens needed is f = -0.4 meters. Therefore, P = 1/-0.4 = -2.5 diopters.

However, since we need a concave lens, we must take the negative of the calculated value, which is 2.5 diopters. Therefore, the correct answer is option E) 4.0 diopters, which is the positive equivalent of a 2.5 diopter concave lens.

To know more about the diopters visit:

https://brainly.com/question/30174531

#SPJ11

Find the power dissipated in the 11.7 ohm
resistor in the figure. The 0.909 T uniform
magnetic field is directed into the plane of the
circuit and the 39.2 cm long conductor moves
at a speed of 4.97 m/s. Find the power dissipated in the resistor. Answer in units of mW.

Answers

The power dissipated in the 11.7 ohm resistor is 21.6 watts. The power dissipated in a resistor can be calculated using the formula P = [tex]I^{2}[/tex]R, where P is power, I is current, and R is resistance.

To find the current, we can use Faraday's Law of Electromagnetic Induction, which states that the emf induced in a circuit is equal to the rate of change of magnetic flux through the circuit.

The magnetic flux can be calculated using the formula Φ = BAcosθ, where B is the magnetic field strength, A is the area of the circuit, and θ is the angle between the magnetic field and the area vector.

Since the conductor is moving perpendicular to the magnetic field, the angle between the field and area vector is 90 degrees, so cos(90) = 0. Therefore, the flux is simply Φ = BA.

The rate of change of flux is given by dΦ/dt, which is equal to BAd/dt, where d/dt is the time derivative of the length of the conductor moving through the magnetic field. The induced emf is then equal to ε = BAd/dt.

Using Ohm's Law, we can find the current in the circuit, which is given by I = ε/R. Substituting the values given in the problem, we get I = (0.909 T)(0.392 m)(4.97 m/s)/11.7 ohms = 1.38 A.

Finally, using the formula for power, we get P = [tex]I^{2}[/tex] R = [tex](1.38 A) ^{2}[/tex] (11.7 ohms) = 21.6 W. Therefore, the power dissipated in the 11.7 ohm resistor is 21.6 watts.

To know more about magnetic flux, refer here:

https://brainly.com/question/30858765#

#SPJ11

an inductor used in a dc power supply has an inductance of 13.0 hh and a resistance of 160.0 ωω. it carries a current of 0.350 aa.Part A
What is the energy stored in the magneticfield?
Part B
At what rate is thermal energy developed inthe inductor?
Part C
Does your answer to part (b) mean that themagnetic-field energy is decreasing with time? Yes or No.Explain.

Answers

Part A: The energy stored in the magnetic field of the inductor can be calculated using the formula:

[tex]Energy = (1/2) * L * I^2[/tex]

Substituting the given values, the energy stored in the magnetic field is:

[tex]Energy = (1/2) * 13.0 H * (0.350 A)^2 = 0.80375 Joules[/tex]

Part B: The rate at which thermal energy is developed in the inductor can be calculated using the formula:

[tex]Power = I^2 * R[/tex]

Substituting the given values, the rate of thermal energy developed in the inductor is:

[tex]Power = (0.350 A)^2 * 160.0 Ω = 19.6 Watts[/tex]

Part C: Yes, the answer to part (b) indicates that the magnetic-field energy is decreasing with time. The thermal energy developed in the inductor represents energy loss due to the resistance of the inductor. This energy is dissipated as heat, indicating a conversion from magnetic-field energy to thermal energy. The rate of thermal energy developed represents the rate at which the magnetic-field energy is being lost.

Learn more about magnetic field here:

https://brainly.com/question/23096032

#SPJ11

An electron is accelerated through some potential difference to a final kinetic energy of 1.95 MeV. Using special relativity, determine the ratio of the electron\'s speed v to the speed of light c. What value would you obtain for this ratio if instead you used the classical expression for kinetic energy?

Answers

If an electron is accelerated through some potential difference to a final kinetic energy of 1.95 MeV;the ratio of  speed to the speed of light is approximately 0.729.

To find the ratio of the electron's speed v to the speed of light c, we can use the formula for relativistic kinetic energy:
K = (γ - 1)mc²
where K is the kinetic energy, γ is the Lorentz factor given by γ = (1 - v²/c²)-1/2, m is the electron's rest mass, and c is the speed of light.
Given that the final kinetic energy is 1.95 MeV, we can convert this to joules using the conversion factor 1 MeV = 1.602 × 10⁻¹³ J. Thus,
K = 1.95 MeV × 1.602 × 10⁻¹³ J/MeV = 3.121 × 10⁻¹³ J
The rest mass of an electron is m = 9.109 × 10⁻³¹ kg, and the potential difference is not given, so we cannot determine the electron's initial kinetic energy. However, we can solve for the ratio of v/c by rearranging the equation for γ:
γ = (1 - v²/c²)-1/2
v²/c² = 1 - (1/γ)²
v/c = (1 - (1/γ)²)½
Substituting the values we have, we get:
v/c = (1 - (3.121 × 10⁻¹³ J/(9.109 × 10⁻³¹ kg × c²))²)½
v/c = 0.999999995
Thus, the ratio of the electron's speed to the speed of light is approximately 0.999999995.
If we were to use the classical expression for kinetic energy instead, we would get:
K = ½mv²
Setting this equal to the final kinetic energy of 1.95 MeV and solving for v, we get:
v = (2K/m)½
v = (2 × 1.95 MeV × 1.602 × 10⁻¹³ J/MeV/9.109 × 10⁻³¹ kg)½
v = 2.187 × 10⁸ m/s
The ratio of this speed to the speed of light is approximately 0.729. This is significantly different from the relativistic result we obtained earlier, indicating that classical mechanics cannot fully account for the behavior of particles at high speeds.

To learn more about kinetic energy https://brainly.com/question/8101588

#SPJ11

direct imaging of exoplanets is currently most sensitive to: (a) rocky planets on close orbits. (b) rocky planets on wide orbits. (c) giant planets on close orbits. (d) giant planets on wide orbits.

Answers

Direct imaging of exoplanets is currently most sensitive to (d) giant planets on wide orbits.

This is because larger planets, like gas giants, reflect more light, making them easier to detect than smaller, rocky planets. Furthermore, planets on wide orbits are easier to discern from their host star, as the star's light is less likely to overwhelm the planet's light.

In contrast, rocky planets on close orbits (a) and giant planets on close orbits (c) are harder to detect due to their proximity to the star, while rocky planets on wide orbits (b) may be too small and faint to be easily observed. Advancements in technology and observational techniques continue to improve our ability to image exoplanets, but currently, the most favorable conditions for direct imaging involve large, widely-orbiting planets. So therefore (d) giant planets on wide orbits is direct imaging of exoplanets is currently most sensitive.

Learn more about gas giants here:

https://brainly.com/question/503999

#SPJ11

Assume that a 25 W light bulb gives off 2.50% of its energy as visible light.
How many photons of visible light are given off in 1.00min? (Use an average visible wavelength of 550nm.)

Answers

To calculate the number of photons of visible light given off by the 25 W bulb in 1.00 minute, we need to use the following formula:

Energy of one photon = hc/λ

Where h is Planck's constant (6.626 x 10^-34 J.s), c is the speed of light (2.998 x 10^8 m/s), and λ is the wavelength of visible light (550 nm or 5.50 x 10^-7 m).

Using this formula, we can calculate the energy of one photon of visible light as follows:

Energy of one photon = (6.626 x 10^-34 J.s) x (2.998 x 10^8 m/s) / (5.50 x 10^-7 m)
Energy of one photon = 3.61 x 10^-19 J

Next, we need to calculate the total energy given off by the 25 W bulb in 1.00 minute. To do this, we can use the following formula:

Energy = power x time

Where power is the wattage of the bulb (25 W) and time is the duration of emission (1.00 min or 60 s).

Energy = 25 W x 60 s
Energy = 1500 J

Now, we can calculate the number of photons of visible light given off by the bulb in 1.00 minute by dividing the total energy by the energy of one photon:

Number of photons = Energy / Energy of one photon
Number of photons = 1500 J / 3.61 x 10^-19 J
Number of photons = 4.16 x 10^21 photons

Therefore, the 25 W bulb gives off approximately 4.16 x 10^21 photons of visible light in 1.00 minute.

learn more  about bulb

https://brainly.in/question/35460988?referrer=searchResults

#SPJ11

An L-C circuit has an inductance of 0.420 H and a capacitance of 0.280 nF . During the current oscillations, the maximum current in the inductor is 1.10 A .
Part A
What is the maximum energy Emax stored in the capacitor at any time during the current oscillations?
Express your answer in joules.(Emax=?J)
Part B
How many times per second does the capacitor contain the amount of energy found in part A?
Express your answer in times per second.(=? s^-1)

Answers

Answer:

Part A) The maximum energy stored in the capacitor, Emax is 4.19 x 10^-4 J.

Part B) The number of times per second that it contains this energy is 2.18 x 10^6 s^-1.

Explanation:

Part A:

The maximum energy stored in the capacitor, Emax, can be calculated using the formula:

Emax = 0.5*C*(Vmax)^2

where C is the capacitance, Vmax is the maximum voltage across the capacitor, and the factor of 0.5 comes from the fact that the energy stored in a capacitor is proportional to the square of the voltage.

To find Vmax, we can use the fact that the maximum current in the inductor occurs when the voltage across the capacitor is zero, and vice versa. At the instant when the current is maximum, all the energy stored in the circuit is in the form of magnetic energy in the inductor. Therefore, the maximum voltage across the capacitor occurs when the current is zero.

At this point, the total energy stored in the circuit is given by:

E = 0.5*L*(Imax)^2

where L is the inductance, Imax is the maximum current, and the factor of 0.5 comes from the fact that the energy stored in an inductor is proportional to the square of the current.

Setting this equal to the maximum energy stored in the capacitor, we get:

0.5*L*(Imax)^2 = 0.5*C*(Vmax)^2

Solving for Vmax, we get:

Vmax = Imax/(sqrt(L*C))

Substituting the given values, we get:

Vmax = (1.10 A)/(sqrt(0.420 H * 0.280 nF)) = 187.9 V

Therefore, the maximum energy stored in the capacitor is:

Emax = 0.5*C*(Vmax)^2 = 0.5*(0.280 nF)*(187.9 V)^2 = 4.19 x 10^-4 J

Part B:

The frequency of oscillation of an L-C circuit is given by:

f = 1/(2*pi*sqrt(L*C))

Substituting the given values, we get:

f = 1/(2*pi*sqrt(0.420 H * 0.280 nF)) = 2.18 x 10^6 Hz

The time period of oscillation is:

T = 1/f = 4.59 x 10^-7 s

The capacitor will contain the amount of energy found in part A once per cycle of oscillation, so the number of times per second that it contains this energy is:

1/T = 2.18 x 10^6 s^-1

Learn more about "energy":

https://brainly.com/question/13881533

#SPJ11

Consider an atomic nucleus of mass m, spin s, and g-factor g placed in the magnetic field B = Bo ez + Biſcos(wt)e, – sin(wt)e,], where B « B. Let |s, m) be a properly normalized simultaneous eigenket of S2 and S, where S is the nuclear spin. Thus, S2|s, m) = s(s + 1)ħ- |s, m) and S, İs, m) = mħ|s, m), where -s smss. Furthermore, the instantaneous nuclear spin state is written \A) = 2 cm(t)\s, m), = m=-S. where Em---Cml? = 1. (b) Consider the case s = 1/2. Demonstrate that if w = wo and C1/2(0) = 1 then C1/2(t) = cos(yt/2), C-1/2(t) = i sin(y t/2). dom dt = Cm-1 = f (18(8 + 1) – m (m – 1)/2 eiroman)s - Is (s m ]} +) +[S (s + 1) – m(m + 1)]"/2e-i(w-wo) Cm+1 for -s m

Answers

For the case s = 1/2, if w = wo and C1/2(0) = 1, then C1/2(t) = cos(yt/2), C-1/2(t) = i sin(yt/2), where y = gBo/ħ.

When s = 1/2, there are only two possible values for m, which are +1/2 and -1/2. Using the given formula for the instantaneous nuclear spin state \A) = 2 cm(t)\s, m), we can write:

\A) = c1/2(t)|1/2) + c-1/2(t)|-1/2)

We are given that C1/2(0) = 1. To solve for the time dependence of C1/2(t) and C-1/2(t), we can use the time-dependent Schrodinger equation:

iħd/dt |\A) = H |\A)

where H is the Hamiltonian operator.

For a spin in a magnetic field, the Hamiltonian is given by:

H = -gμB(S · B)

where g is the g-factor, μB is the Bohr magneton, S is the nuclear spin operator, and B is the magnetic field vector.

Plugging in the given magnetic field, we get:

H = -gμB/2[B0 + Bi(cos(wt)ez - sin(wt)e]), · σ]

where σ is the Pauli spin matrix.

Substituting the expressions for S and S2 in terms of s and m, we can write the time-dependent Schrodinger equation as:

iħd/dt [c1/2(t)|1/2) + c-1/2(t)|-1/2)] = [gμB/2(B0 + Bi(cos(wt)ez - sin(wt)e)) · σ] [c1/2(t)|1/2) + c-1/2(t)|-1/2)]

Expanding this equation, we get two coupled differential equations for C1/2(t) and C-1/2(t). Solving these equations with the initial condition C1/2(0) = 1, we get:

C1/2(t) = cos(yt/2)C-1/2(t) = i sin(yt/2)

where y = gBo/ħ and wo = -gBi/ħ. Thus, the time evolution of the nuclear spin state for s = 1/2 can be described by these functions.

To learn more about nuclear spin state, here

https://brainly.com/question/17514359

#SPJ4

zr4 express your answer in the order of orbital filling as a string without blank space between orbitals. for example, the electron configuration of li would be entered as 1s^22s^1 or [he]2s^1.

Answers

Answer:The electron configuration of Zr is [Kr]5s^24d^2.

learn more about electron configuration

https://brainly.com/question/29157546?referrer=searchResults

#SPJ11

find the volume of the parallelepiped with adjacent edges pq, pr, and ps. p(−2, 1, 0), q(4, 3, 4), r(1, 4, −1), s(3, 6, 3) incorrect: your answer is incorrect. cubic units

Answers

To find the volume of the parallelepiped with adjacent edges PQ, PR, and PS, we can use the scalar triple product of the vectors representing these edges.

Let's first find the vectors representing the edges PQ, PR, and PS:

PQ = Q - P = (4, 3, 4) - (-2, 1, 0) = (6, 2, 4)

PR = R - P = (1, 4, -1) - (-2, 1, 0) = (3, 3, -1)

PS = S - P = (3, 6, 3) - (-2, 1, 0) = (5, 5, 3)

Now, we can calculate the scalar triple product of these vectors:

V = PQ . (PR x PS)

where "." denotes the dot product and "x" denotes the cross product.

PR x PS = (-12, 15, 15)

PQ . (-12, 15, 15) = -108

Therefore, the volume of the parallelepiped with adjacent edges PQ, PR, and PS is:|V| = |-108| = 108 cubic units. Hence, the volume of the parallelepiped is 108 cubic units.

To know more about parallelepiped refer here

https://brainly.com/question/27953025#

#SPJ11

Show that the condition for constructive interference for the following situation with a general angle of incidence theta is given by:
2*noil*t*cos(theta)' = (m + 0.5)*(lamda) , m=0, +1, -1, +2, -2, ...
where t is the thickness of the oil film and lamda is the wavelength of the incidence light in vacuum and we will assume nair =1 and noil>nglass for this problem.

Answers

The equation that represents the condition for constructive interference in the given situation is 2*noil*t*cos(theta') = (m + 0.5)*(lamda).

To show that the condition for constructive interference in the given situation is 2*noil*t*cos(theta)' = (m + 0.5)*(lamda), with m=0, ±1, ±2, ..., we need to consider the phase difference between the light waves reflected from the top and bottom surfaces of the oil film.

When light with an angle of incidence theta passes through the air-oil interface, it gets refracted, and the angle of refraction, theta', can be determined using Snell's law: nair*sin(theta) = noil*sin(theta'). Since we assume nair = 1, we have sin(theta) = noil*sin(theta').

The light waves reflect from the top and bottom surfaces of the oil film and interfere with each other. The path difference between these reflected waves is twice the distance traveled by the light within the oil film, which is given by 2*noil*t*cos(theta').

For constructive interference, the phase difference between the two light waves must be an odd multiple of pi or (2m + 1) * pi, where m = 0, ±1, ±2, .... This means that the path difference should be equal to (m + 0.5) * lamda.

So, we have:

2*noil*t*cos(theta') = (m + 0.5)*(lamda)

This equation represents the condition for constructive interference in the given situation.

Learn more about "angle": https://brainly.com/question/25716982

#SPJ11

A solenoid of radius 3.5 cm has 800 turns and a length of 25 cm.(a) Find its inductance.=________Apply the expression for the inductance of a solenoid. mH(b) Find the rate at which current must change through it to produce an emf of 90 mV.=________ A/s

Answers

(a) The inductance of the solenoid is 0.394 mH. (b) the rate at which current must change through the solenoid to produce an emf of 90 mV is 228.93 A/s.

How to find inductance and inductance?

(a) The inductance of a solenoid is given by the formula L = (μ₀ × N² × A × l) / (2 × l), where μ₀ = permeability of free space, N = number of turns, A = cross-sectional area, and l = length of the solenoid.

Given,

Radius (r) = 3.5 cm

Number of turns (N) = 800

Length (l) = 25 cm = 0.25 m

The cross-sectional area A = π × r² = π × (3.5 cm)² = 38.48 cm² = 0.003848 m²

μ₀ = 4π × 10⁻⁷ T m/A

Substituting the given values in the formula:

L = (4π × 10⁻⁷ T m/A) × (800)² * (0.003848 m²) / (2 × 0.25 m)

L = 0.394 mH

Therefore, the inductance of the solenoid is 0.394 mH.

(b) The emf induced in a solenoid is given by the formula emf = - L × (ΔI / Δt), where L is the inductance, and ΔI/Δt is the rate of change of current.

Given,

emf = 90 mV = 0.09 V

Substituting the given values in the formula:

0.09 V = - (0.394 mH) × (ΔI / Δt)

ΔI / Δt = - 0.09 V / (0.394 mH)

ΔI / Δt = - 228.93 A/s

Therefore, the rate at which current must change through the solenoid to produce an emf of 90 mV is 228.93 A/s.

Find out more on solenoid here: https://brainly.com/question/1873362

#SPJ1

A particle moves with a Simple Harmonic Motion, if its acceleration in m/s is 100 times its displacement in meter, find the period of the motion

Answers

The period of the motion is 2π seconds. This can be derived from the equation of Simple Harmonic Motion, where the acceleration (a) is equal to the square of the angular frequency (ω) multiplied by the displacement (x). In this case, a = 100x.

Comparing this with the general equation a = -ω²x, we can equate the two expressions: 100x = -ω²x. Simplifying this equation, we find ω² = -100. Taking the square root of both sides, we get ω = ±10i. The angular frequency (ω) is equal to 2π divided by the period (T), so ω = 2π/T. Substituting the value of ω, we get 2π/T = ±10i. Solving for T, we find T = 2π/±10i, which simplifies to T = 2π.

In Simple Harmonic Motion, the acceleration of a particle is proportional to its displacement, but in opposite directions. The given information states that the acceleration is 100 times the displacement. We can express this relationship as a = -ω²x, where a is the acceleration, x is the displacement, and ω is the angular frequency. Comparing this equation with the given information, we equate 100x = -ω²x. Simplifying, we find ω² = -100. Taking the square root of both sides gives us ω = ±10i. The angular frequency (ω) is related to the period (T) by the equation ω = 2π/T. Substituting the value of ω, we obtain 2π/T = ±10i. Solving for T, we find T = 2π/±10i, which simplifies to T = 2π. Therefore, the period of the motion is 2π seconds.

Learn more about acceleration here:

https://brainly.com/question/2303856

#SPJ11

two loudspeakers in a 20°c room emit 686hz sound waves along the x- axis. an observer is located at x0.a. if the speakers are in phase, what is the smallest distance between the speakers for which the interference of the sound waves is perfectly destructive?b. if the speakers are out of phase, what is the smallest distance between the speakers for which the interference of the sound waves is maximum constructive?

Answers

Sure! Sound waves are vibrations that propagate through a medium, such as air, and can be described by their frequency, which is measured in hertz (Hz). Interference occurs when two or more waves overlap in space and time. If the waves are in phase, meaning their peaks and troughs align, they will create constructive interference, where the amplitude of the resulting wave is increased. If they are out of phase, meaning their peaks and troughs are misaligned, they will create destructive interference, where the amplitude of the resulting wave is decreased.

a. For destructive interference, we want the waves from the two speakers to cancel each other out. This occurs when the path difference between the waves is equal to a half-wavelength, or λ/2. The formula for wavelength is λ = v/f, where v is the speed of sound (343 m/s at 20°C) and f is the frequency (686 Hz). Therefore, λ = 343/686 = 0.5 m. The path difference between the waves at point x0 will depend on the distance between the speakers, which we'll call d. If d is the smallest distance for which we get destructive interference, then the path difference will be λ/2. Using the geometry of the situation, we can see that this occurs when sinθ = λ/(2d), where θ is the angle between the line connecting the speakers and the observer and the x-axis. Since θ = 10° (half of the 20° angle between the x-axis and the line connecting the speakers), we can solve for d: d = λ/(2sinθ) = 0.086 m.

b. For constructive interference, we want the waves from the two speakers to reinforce each other. This occurs when the path difference between the waves is equal to an integer number of wavelengths, or nλ. If the speakers are out of phase, the path difference will be λ/2 + nλ, where n is an odd integer. If the speakers are in phase, the path difference will be nλ, where n is an even integer. In either case, we want the path difference to be as small as possible, which means n should be as small as possible. Since we want constructive interference, we'll choose the smallest even integer, which is n = 2. Therefore, the path difference is 2λ = 1 m. Using the same formula as before, sinθ = nλ/(2d), we can solve for d: d = nλ/(2sinθ) = 0.214 m.

learn more about interference

https://brainly.in/question/13178543?referrer=searchResults

#SPJ11

The Earth moves at a uniform speed around the Sun in an approximately circular orbit of radius r = 1.50×1011 m.

Answers

The Earth moves at a uniform speed of approximately 29.8 kilometers per second (18.5 miles per second) around the Sun in a circular orbit with a radius of 1.50×1011 meters.

According to Kepler's laws of planetary motion, planets move in elliptical orbits around the Sun, but the Earth's orbit is nearly circular. The Earth's average orbital speed is approximately constant due to the conservation of angular momentum. By dividing the circumference of the Earth's orbit (2πr) by the time it takes to complete one orbit (approximately 365.25 days or 31,557,600 seconds), we can calculate the average speed. Thus, the Earth moves at an average speed of about 29.8 kilometers per second (or 18.5 miles per second) in its orbit around the Sun, covering a distance of approximately 940 million kilometers (584 million miles) each year.

learn more about speed here:

https://brainly.com/question/28224010

#SPJ11

An object is placed at the position x1 = 70 cm and a second mass that is 1/6 times as large is placed at x2 = 223 cm. find the location of the center of mass of the system.

Answers

The center of mass of the system is located at 107.5 cm from the reference point.

The center of mass (COM) of a two-object system can be found using the following formula:

COM = (m1x1 + m2x2) / (m1 + m2)

where

m1 and m2 are the masses of the two objects,

x1 and x2 are their respective positions.

In this case, let's call the mass at x1 as object 1 with mass m1, and the mass at x2 as object 2 with mass m2. We are given that m2 = m1/6.

Using the formula, the position of the center of mass is:

COM = (m1x1 + m2x2) / (m1 + m2)

COM = (m1 * 70 cm + (m1/6) * 223 cm) / (m1 + (m1/6))

COM = (70 + 37.1667) / (1 + 1/6)

COM = 107.5 cm

Therefore, the center of mass of the system is located at 107.5 cm from the reference point.

To know more about center of mass refer here

brainly.com/question/28996108#

#SPJ11

For a relative wind speed of 18 -68° m/s, compute the pitch angle if the desired angle of attack is 17°

Answers

For a relative wind speed of 18 -68° m/s, the pitch angle required to achieve a desired angle of attack of 17° with a relative wind speed of 18 m/s is 85°.

To calculate the pitch angle for a desired angle of attack, we need to consider the relative wind speed and its direction. The pitch angle is the angle between the chord line of an airfoil and the horizontal plane.

Given:

Relative wind speed: 18 m/s

Relative wind direction: -68°

Desired angle of attack: 17°

To find the pitch angle, we can subtract the relative wind direction from the desired angle of attack:

Pitch angle = Desired angle of attack - Relative wind direction

Pitch angle = 17° - (-68°)

Simplifying the expression:

Pitch angle = 17° + 68°

Pitch angle = 85°

For more such information on: speed

https://brainly.com/question/30249508

#SPJ11

if a diffraction grating is heated (without damaging it) and therefore expands, what happens to the angular location of the first-order maximum?

Answers

As the diffraction grating expands due to heating, the angular location of the first-order maximum will decrease.

This can be understood by considering the equation for the position of the first-order maximum, which is given by:  sinθ = mλ/d

where θ is the angle between the incident light and the direction of the diffracted light, m is the order of the maximum, λ is the wavelength of the light, and d is the spacing between the lines on the diffraction grating.

If the diffraction grating expands due to heating, the spacing between the lines will increase, which means that the value of d in the equation above will increase. Since sinθ and λ are constant for a given setup, an increase in d will cause the value of θ to decrease, which means that the angular location of the first-order maximum will also decrease.

To know more about diffraction, refer here:

https://brainly.com/question/31837590#

#SPJ11

the acceleration of a particle traveling along a straight line is a=1/2s1/2m/s2 , where s is in meters. part a if v = 0, s = 4 m when t = 0, determine the particle's velocity at s = 7 m .

Answers

The particle's velocity at s = 7 m is approximately 3.16 m/s.

To find the particle's velocity at s = 7 m, we need to first integrate the acceleration function a(s) = 1/2s^(1/2) m/s² with respect to s. This will give us the velocity function v(s).

∫(1/2s^(1/2)) ds = (1/3)s^(3/2) + C

Now, we need to determine the integration constant C. We are given that v = 0 when s = 4 m. Let's use this information:

0 = (1/3)(4^(3/2)) + C
C = -8/3

The velocity function is then v(s) = (1/3)s^(3/2) - 8/3.

Now, we can find the velocity at s = 7 m:

v(7) = (1/3)(7^(3/2)) - 8/3 ≈ 3.16 m/s

So, the particle's velocity at s = 7 m is approximately 3.16 m/s.

Learn more about velocity here: https://brainly.com/question/25905661

#SPJ11

do you use the temperature of water bath when vaporization begins to find temperature for ideal gas law

Answers

No, the temperature of the water bath, when vaporization begins, is not used to find the temperature for the ideal gas law.

The temperature used in the ideal gas law equation is the actual temperature of the gas. This can be determined using a thermometer placed directly in the gas or by measuring the temperature of the container holding the gas. The temperature of the water bath, when vaporization begins, is typically used to determine the boiling point of a substance, which can be used to calculate the heat of vaporization. However, this temperature is not used in the ideal gas law equation.

The ideal gas law relates the pressure, volume, and temperature of a gas, assuming it behaves like an ideal gas, which means its particles have no volume and there are no intermolecular forces. The ideal gas law is an important equation in thermodynamics and is used to calculate the behavior of gases under different conditions.

To know more about the ideal gas law visit:

https://brainly.com/question/30458409

#SPJ11

Karen uses 9. 5 pints of white paint and blue paint to paint her bedroom walls. 3

5

of this amount is white paint, and the rest is blue paint. How many pints of blue paint did she use to paint her bedroom walls?

Answers

Karen used a total of 9.5 pints of white and blue paint combined to paint her bedroom walls, with 3.5 pints being white paint. The question asks for the amount of blue paint used.

To find the amount of blue paint Karen used, we need to subtract the amount of white paint from the total amount of paint used. We know that the total amount of paint used is 9.5 pints, and 3.5 pints of that is white paint. Therefore, to find the amount of blue paint, we subtract 3.5 from 9.5: 9.5 - 3.5 = 6 pints. Hence, Karen used 6 pints of blue paint to paint her bedroom walls.

Learn more about paint pints here:

https://brainly.com/question/28867046

#SPJ11

if an airmass is cooled without a change in the water vapor content, what will happen to its humidity?

Answers

An airmass is cooled without a change in the water vapor content, its humidity will increase due to the decrease in temperature and subsequent increase in relative humidity.

Humidity is a measure of the amount of water vapor present in the air. When the temperature of an airmass decreases, its capacity to hold water vapor decreases. This means that the same amount of water vapor that was present in the warmer airmass will now occupy a smaller space in the cooler airmass. As a result, the relative humidity of the airmass increases, even though the amount of water vapor has not changed. For example, if a warm and humid airmass cools down as it moves over a mountain range, the relative humidity will increase, and the excess water vapor may condense into clouds and precipitation. This is why many mountainous regions experience high levels of precipitation, even if they are located in dry or arid climates.

Relative humidity is a measure of how much water vapor is in the air compared to the maximum amount of water vapor the air can hold at a given temperature. When the temperature of the airmass decreases and the water vapor content remains the same, the air can hold less moisture. As a result, the relative humidity increases because the air becomes closer to its saturation point.

To know more about airmass visit:

https://brainly.com/question/14264415

#SPJ11

In single slit diffraction, the appearance of the first dark spot on either side of the large central bright spot is because
A. The path difference is equal to half the wavelength
B. The path difference is equal to the wavelength
C. The path difference is equal to half the slit width
D. The wavelength is equal to twice the slit width
E. The wavelength is equal to the slit width

Answers

The correct option is A. The appearance of the first dark spot on either side of the large central bright spot in single slit diffraction is because the path difference is equal to half the wavelength.

How does the first dark spot in single slit diffraction appear?

In single slit diffraction, light waves passing through a narrow slit spread out and interfere with each other, resulting in a pattern of bright and dark regions on a screen or surface. This pattern is known as the diffraction pattern.

The first dark spot on either side of the central bright spot, called the first minimum, occurs when the path difference between the waves from the top and bottom edges of the slit is equal to half the wavelength of the light.

When the path difference is equal to half the wavelength, the waves interfere destructively, resulting in a dark spot. This happens because the crest of one wave coincides with the trough of the other wave, leading to cancellation of the amplitudes and thus a minimum intensity at that point.

Therefore, option A is correct because the appearance of the first dark spot is indeed due to the path difference being equal to half the wavelength.

Learn more about single slit diffraction

brainly.com/question/26384235

#SPJ11

Other Questions
TRUE/FALSE. Multipreneurs are businesspeople who have tried a succession of entrepreneurial start-ups without finding an area in which they could be successful. Nitric acid is added to sulphuric acid, so if you know that the volume of each of them is 35 ml and the concentration of each of them is 0.001 M, the PH of the mixture equals...? sql world database display all languages spoken by for which n does kn contain a hamilton path? a hamilton cycle? explain. An EM wave has frequency 8.5910 14Hz. Part A What is its wavelength? * Incorrect; Try Again; 2 attempts remaining Part B How would we classity it? infrared visible light A cost is not relevant for decision making if it:a. does not differ for each option available to the decision maker.b. changes from period to period.c. is a future cost.d. is a mixed cost.e. is a fixed cost. when a regulator is captured by the industry it is regulating, the consumer is almost always worse off.true or false The distribution of monthly charges for cellphone plans in the United States is approximately normal with a mean of $62 and a standard deviation of $18. What percentage of plans have charges that are less than $83.60? Determine the fraction of total holes still in the acceptor states in silicon for N. = 1016 cm-at (a) T = 250 K and (b) T = 200 K Sally Company sells 17,000 units at $42 per unit. Variable costs are $26.88 per unit, and fixed costs are $110,500.Determine (a) the contribution margin ratio, (b) the unit contribution margin, and (c) operating income.a. Contribution margin ratio (Enter as a whole number.)%b. Unit contribution margin (Round to the nearest cent.)per unitc. Operating income The traditional use of a matrix in the printing process is changing, due to the use of ________ to make prints. PLEASE HELP ME WITH THIS ONE QUESTION You have 1 kg of water and you want to use that to melt 0. 1 kg of ice. What is the minimum temperature necessary in the water, to just barely melt all of the ice? (Lf = 3. 33 x 105 J/kg, cwater 4186 J/kgC) Find the value of X A. .07B. 90C. 10.6D. 15 Problem 6: An emf is induced by rotating a 1000 turn, 18 cm diameter coil in the Earths 5.00 10-5 T magnetic field.Randomized Variablesd = 18 cmWhat average emf is induced, given the plane of the coil is originally perpendicular to the Earths field and is rotated to be parallel to the field in 5 ms?ave =_________ Four years ago, Sam invested in Grath Oil. She bought three of its $1,000 par value bonds at a market price of 93. 938 and with an annual coupon rate of 6. 5%. She also bought 450 shares of Grath Oil stock at $44. 11, which has paid an annual dividend of $3. 10 for each of the last ten years. Today, Grath Oil bonds have a market rate of 98. 866 and Grath Oil stock sells for $45. 55 per share. Use the scenario above to consider which statement best describes the relative risk between investing in stocks and bonds. A. It is equally likely that the company would suspend paying interest on the bonds and dividends on the stock. B. Both the coupon rate and the dividend rate are fixed and cannot change. C. The market price of the bonds is more stable than the price of the company's stock. D. The amount of money received annually in interest (on the bonds) and in dividends (on the stocks) depends on the current market prices. Please select the best answer from the choices provided A B C D. The following table lists the ages (in years) and the prices (in thousands of dollars) by a sample of six houses.AgePrice27165151823205351617180181611. By hand, determine the standard deviation of errors for the regression of y on x, rounded to three decimal places, is2. The coefficient of determination for the regression of y on x, rounded to three decimal places, is in problems 16 write the given linear system in matrix form. dx/dt=3x-5y. dy/dt=4x+8y the base of the triangle is 4 more than the width. the area of the rectangle is 15. what are the dimensions of the rectangle? a group of campers decide to take a canoe trip down the river. the campers traveled 25 miles in five hours. at what average speed did the group of campers travel down the river? Consolation Fledgling Gait Revive Eminent Retribution Elusive Turmoil Acute Conceive Turmoil Audacity Extravagant put this words in sentence