Answer:
c. War room
Explanation:
correct answer is war room because
It serves as office for the project manager. and also serves as office for project management. It is a regular storage for project files and documents are displayed there showing the progress of the project. Official meeting place for the project team to discuss and work for the project.so thta here correct opion is c. War room
At steady state, a refrigerator whose coefficient of performance is 3 removes energy by heat transfer from a freezer compartment at 0 degrees C at the rate of 6000 kJ/hr and discharges energy by heat transfer to the surroundings, which are at 20 degrees C. a) Determine the power input to the refrigerator and compare with the power input required by a reversible refrigeration cycle operating between reservoirs at these two temperatures. b) If electricity costs 8 cents per kW-hr, determine the actual and minimum theoretical operating costs, each in $/day
Answer:
(A)0.122 kW (B) Actual cost = 1.056 $/day, Theoretical cost = 0.234 $/day
Explanation:
Solution
Given that:
The coefficient of performance is =3
Heat transfer = 6000kJ/hr
Temperature = 20°C
Cost of electricity = 8 cents per kW-hr
Now
The next step is to find the power input to the refrigerator and compare with the power input considered by a reversed refrigeration cycle operating between reservoirs at the two temperatures.
Thus
(A)The coefficient of performance is given below:
COP = Heat transfer from freezer/Power input
3 =6000/P
P =6000/3
P= 2000
P = 2000 kJ/hr = 2000/(60*60) kW
= 2000 (3600)kW
= 0.55 kW
Thus
The ideal coefficient of performance = T_low/(T_high - T_low)
= (0+273)/(20-0)
= 13.65
So,
P ideal = 6000/13.65 = 439.6 kJ/hr
= 439.6/(60*60) kW
= 0.122 kW
(B)For the actual cost we have the following:
Actual cost = 0.55 kW* 0.08 $/kW-hr = $ 0.044 per hour
= 0.044*24 $/day
= 1.056 $/day
For the theoretical cost we have the following:
Theoretical cost = 0.122 kW* 0.08 $/kW-hr = $ 0.00976 per hour
= 0.00976*24 $/day
= 0.234 $/day
How old are you? answer this question plz lol I will mark someone as brainliest
Answer:
100000000000000000000000
For the following peak or rms values of some important sine waves, calculate the corresponding other value:
(a) 117 V rms, a household-power voltage in North America
(b) 33.9 V peak, a somewhat common peak voltage in rectifier circuits
(c) 220 V rms, a household-power voltage in parts of Europe
(d) 220 kV rms, a high-voltage transmission-line voltage in North America
Answer:
A) V_peak ≈ 165 V
B) V_rms ≈ 24 V
C) V_peak ≈ 311 V
D) V_peak ≈ 311 KV
Explanation:
Formula for RMS value is given as;
V_rms = V_peak/√2
Formula for peak value is given as;
V_peak = V_rms x √2
A) At RMS value of 117 V, peak value would be;
V_peak = 117 x √2
V_peak = 165.46 V
V_peak ≈ 165 V
B) At peak value of 33.9 V, RMS value would be;
V_rms = 33.9/√2
V_rms = 23.97 V
V_rms ≈ 24 V
C) At RMS value of 220 V, peak value is;
V_peak = 220 × √2
V_peak = 311.13 V
V_peak ≈ 311 V
D) At RMS value of 220 KV, peak value is;
V_peak = 220 × √2
V_peak = 311.13 KV
V_peak ≈ 311 KV
A ball bearing has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify appropriate minimum and maximum shaft diameters to provide a locational interference fit.
Answer:
A ball bearing has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify.... ... has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify appropriate minimum and maximum shaft diameters to provide a locational interference fit.
Explanation:
Air at 80 °F is to flow through a 72 ft diameter pipe at an average velocity of 34 ft/s . What diameter pipe should be used to move water at 60 °F and average velocity of 71 ft/s if Reynolds number similarity is enforced? The kinematic viscosity of air at 80 °F is 1.69E-4 ft^2/s and the kinematic viscosity of water at 60 °F is 1.21E-5 ft^2/s. Round your answer (in ft) to TWO decimal places.
Answer:
2.47 ft
Explanation:
Given that:
The initial temperature of air = 80°F
Diameter of the pipe = 72 ft
average velocity [tex]v_{air}[/tex] of the air flow through the pipe = 34 ft/s
The objective is to determine the diameter of the pipe to be used to move water at:
At a temperature = 60°F &
An average velocity [tex]v_{water}[/tex] of 71 ft/s
Assuming Reynolds number similarity is enforced;
where :
kinematic viscosity (V_air) of air at 80 °F (V_air) = 1.69 × 10⁻⁴ ft²/s
kinematic viscosity of water at 60 °F (V_water) = 1.21 × 10⁻⁵ ft²/s
The diameter of the pipe can be calculated by using the expression:
[tex]D_{water} = \dfrac{V_{water}}{V_{air}}*\dfrac{v_{air}}{v_{water}}* D_{air}[/tex]
[tex]D_{water} = \dfrac{1.21*10^{-5} \ ft^2/s}{1.69*10^{-4} \ ft^2/s}*\dfrac{34 \ ft/s}{71 \ ft/s}* 72 \ ft[/tex]
[tex]D_{water} =[/tex] 2.4686 ft
[tex]D_{water} =[/tex] 2.47 ft ( to two decimal places)
Thus; diameter pipe to be use to move water at the given temperature and average velocity is 2.47 ft
Answer:
2.47 ft
Explanation:
Given that:
The initial temperature of air = 80°F
Diameter of the pipe = 72 ft
average velocity of the air flow through the pipe = 34 ft/s
The objective is to determine the diameter of the pipe to be used to move water at:
At a temperature = 60°F &
An average velocity of 71 ft/s
Assuming Reynolds number similarity is enforced;
where :
kinematic viscosity (V_air) of air at 80 °F (V_air) = 1.69 × 10⁻⁴ ft²/s
kinematic viscosity of water at 60 °F (V_water) = 1.21 × 10⁻⁵ ft²/s
The diameter of the pipe can be calculated by using the expression:
2.4686 ft
2.47 ft ( to two decimal places)
Thus; diameter pipe to be use to move water at the given temperature and average velocity is 2.47 ft
which of the following tells the computer wha to do
operating system
the ROM
the motherboard
the monitor
13- Convert the following numbers to the indicated bases. List all intermediate steps.
a- (36459080)10 to octal
b- (20960032010 to hexadecimal
c- (2423233303003040)s to base
25 36459080/8= 4557385 0/8 209600320/16=13100020 + 0/16 (2423233303003040)5 (36459080)10 =( 18 (209600320)10=( 1)16 (2423233303003040)5=( )125
Answer:
Following are the conversion to this question:
Explanation:
In point (a):
[tex]\to \frac{36459080}{8} = 4557385 + \ \ \ \ \ \ \ \ \ \frac{0}{8}\\\\\to \frac{4557385}{8} = 569673 + \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{569673}{8} = 71209+ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{71209}{8}=8901+\ \ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{8901}{8}=1112+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{5}{8}\\\\\to \frac{1112}{8}=139+ \ \ \ \ \ \ \ \ \ \ \frac{0}{8}\\\\\to \frac{139}{8}=17+ \ \ \ \ \ \ \ \ \ \ \frac{3}{8}\\\\\to \frac{17}{8}=2+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\[/tex]
[tex]\to \frac{2}{8}=0+ \ \ \ \ \ \ \ \ \ \frac{2}{8}\\\\ \bold{(36459080)_{10}=(213051110)_8}[/tex]
In point (b):
[tex]\to \frac{20960032010}{16} = 13100020+ \ \ \ \ \ \ \ \ \ \frac{0}{16}\\\\\to \frac{13100020}{16} = 818751+ \ \ \ \ \ \ \ \ \ \frac{4}{16}\\\\\to \frac{818751}{16} = 51171+ \ \ \ \ \ \ \ \ \ \frac{15}{16}\\\\\to \frac{51171}{16}=3198+\ \ \ \ \ \ \ \ \ \ \ \frac{3}{16}\\\\\to \frac{3198}{16}=199+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{14}{1}\\\\\to \frac{199}{16}=12+ \ \ \ \ \ \ \ \ \ \ \frac{7}{16}\\\\\to \frac{12}{16}=0+ \ \ \ \ \ \ \ \ \ \ \frac{12}{16}\\\\ \bold{(20960032010)_{10}=(C7E3F40)_{16}}[/tex]
In point (c):
[tex]\to (2423233303003040)_s=(88757078520)_{10}\\\\\to \frac{88757078520}{25}= 3550283140+ \ \ \ \ \ \ \ \ \ \frac{20}{25}\\\\ \to \frac{3550283140}{25}= 142011325+ \ \ \ \ \ \ \ \ \ \frac{15}{25}\\\\\to \frac{142011325}{25}= 5680453+ \ \ \ \ \ \ \ \ \ \frac{0}{25}\\\\\to \frac{5680453}{25}= 227218+ \ \ \ \ \ \ \ \ \ \frac{3}{25}\\\\\to \frac{227218}{25}= 9088+ \ \ \ \ \ \ \ \ \ \frac{18}{25}\\\\\to \frac{9088}{25}= 363+ \ \ \ \ \ \ \ \ \ \frac{13}{25}\\\\[/tex]
[tex]\to \frac{363}{25}= 14+ \ \ \ \ \ \ \ \ \ \frac{13}{25}\\\\\to \frac{14}{25}= 0+ \ \ \ \ \ \ \ \ \ \frac{14}{25}\\\\\bold{(2423233303003040)_s=(EDDI30FK)_{25}}[/tex]
Symbols of Base 25 are as follows:
[tex]0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N, \ and \ O[/tex]
If the resistance reading on a DMM'S meter face is to 22.5 ohms in the range selector switch is set to R X 100 range, what is the actual measure resistance of the circuit?
Answer:
The answer is 2.25 kΩ
Explanation:
Solution
Given that:
The resistance reading on a DMM'S meter face = 22.5 ohms
The range selector switch = R * 100 range,
We now have to find the actual measure resistance of the circuit which is given below:
The actual measured resistance of the circuit is=R * 100
= 22.5 * 100
=2.25 kΩ
Hence the measured resistance of the circuit is 2.25 kΩ