Answer:
24
Step-by-step explanation:
I don't know what to do.
Answer:
13 Compute using the 2 right angles, we know that m<FIG=90* and
F (X) = x² - 2x and 6(x) = 3x+1
A) Find F(g(-4))
B) Find F(g(x)) simply
C) find g^-1 (x)
Part A
g(x) = 3x+1
g(-4) = 3(-4)+1 ... every x replaced with -4
g(-4) = -12+1
g(-4) = -11
Plug this into the f(x) function
f(x) = x^2 - 2x
f( g(-4) ) = (g(-4))^2 - 2( g(-4) )
f( g(-4) ) = (-11)^2 - 2(-11)
f( g(-4) ) = 121 + 22
f( g(-4) ) = 143 is the answer====================================================
Part B
Plug the g(x) function into the f(x) function
f(x) = x^2 - 2x
f( g(x) ) = ( g(x) )^2 - 2( g(x) ) ... replace every x with g(x)
f( g(x) ) = (3x+1)^2 - 2(3x+1)
f( g(x) ) = (9x^2+6x+1) + (-6x-2)
f( g(x) ) = 9x^2+6x+1-6x-2
f( g(x) ) = 9x^2-1 is the answerNote that we can plug x = -4 into this result and we would get
f( g(x) ) = 9x^2-1
f( g(-4) ) = 9(-4)^2-1
f( g(-4) ) = 9(16)-1
f( g(-4) ) = 144-1
f( g(-4) ) = 143 which was the result from part A
====================================================
Part C
Replace g(x) with y. Then swap x and y. Afterward, solve for y to get the inverse.
[tex]g(x) = 3x+1\\\\y = 3x+1\\\\x = 3y+1\\\\3y+1 = x\\\\3y = x-1\\\\y = \frac{1}{3}(x-1)\\\\y = \frac{1}{3}x-\frac{1}{3}\\\\g^{-1}(x) = \frac{1}{3}x-\frac{1}{3}\\\\[/tex]
Which of the following (x,y) pairs is the solution for the system of equations x+2y=4 and -2x+y=7
Answer:
(-2 ,3)
Step-by-step explanation:
Step 1: Rewrite first equation
x = 4 - 2y
-2x + y = 7
Step 2: Substitution
-2(4 - 2y) + y = 7
Step 3: Solve y
-8 + 4y + y = 7
-8 + 5y = 7
5y = 15
y = 3
Step 3: Plug in y to find x
x + 2(3) = 4
x + 6 = 4
x = -2
Evaluate. Write your answer as a fraction or whole number without exponents. 1/10^-3 =
Answer:
1000
Step-by-step explanation:
=> [tex]\frac{1}{10^{-3}}[/tex]
According to the law of exponents, [tex]\frac{1}{a^{-m}} = a^{m}[/tex]
So, it becomes
=> [tex]10^{3}[/tex]
=> 1000
Find the surface area of this composite solid. I Need answer ASAP Will give brainliest
Answer:
B. 120 m²
Step-by-step explanation:
To find the surface area of the composite solid, we would need to calculate the area of each solid (square pyramid and square prism), then subtract the areas of the sides that are not included as surface area. The sides not included as surface area is the side the pyramid and the prism is joint together.
Step 1: find the surface area of the pyramid:
Surface area of pyramid with equal base sides = Base Area (B) + ½ × Perimeter (P) × Slant height (l)
Base area = 4² = 16 m
Perimeter = 4(4) = 16 m
Slant height = 3 m
Total surface area of pyramid = 16 + ½ × 16 × 3
= 16 + 8 × 3 = 16 + 24
= 40 m²
Step 2: find the area of the prism
Area = 2(wl + hl + hw)
Area = 2[(4*4) + (5*4) + (5*4)]
Area = 2[16 + 20 + 20]
Area of prism = 2[56] = 112 m²
Step 3: Find the area of the sides not included
Area of the sides not included = 2 × area of the square base where both solids are joint
Area = 2 × (4²)
Area excluded = 2(16) = 32 m²
Step 4: find the surface area of the composite shape
Surface area of the composite shape = (area of pyramid + area of prism) - excluded areas
= (40m²+112m²) - 32m²
= 152 - 32
Surface area of composite solid = 120 m²
Determine whether the given value is from a discrete or continuous data set. When a car is randomly selected, it is found to have 8 windows. Choose the correct answer below. A. A discrete data set because there are a finite number of possible values. B. A continuous data set because there are infinitely many possible values and those values cannot be counted. C. A continuous data set because there are infinitely many possible values and those values can be counted. D. The data set is neither continuous nor discrete.
Answer:
A discrete data set because there are a finite number of possible values.
Step-by-step explanation:
We are given the following data set below;
When a car is randomly selected, it is found to have 8 windows.
Firstly, as we know that the discrete data is that data that have countable or finite values, and also we can observe at a point value.
On the other hand, the continuous data is that data in which there is a range of values and we can't count or observe each and every value.
So, in our question; as we can observe that we can count all the windows and it is also a finite number which means that the given data set is a discrete data set because there are a finite number of possible values.
Adelphi Company purchased a machine on January 1, 2017, for $60,000. The machine was estimated to have a service life of ten years with an estimated residual value of $5,000. Adelphi sold the machine on January 1, 2021 for $21,000. Adelphi uses the double declining method for depreciation. Using this information, how much is the gain or (loss) for the equipment sale entry made on January 1, 2021. Enter a loss as a negative number.
Answer:
-$3576
Step-by-step explanation:
Depreciation using double declining method=100%/useful life*2
Depreciation using double declining method=100%/10*2=20%
2017 depreciation=$60,000*20%=$12000
2018 depreciation=($60,000-$12000)*20%=$9600
2019 depreciation=($60,000-$12000-$9600 )*20%=$7680
2020 depreciation=($60,000-$12000-$9600-$7680 )*20%=$6144
carrying value in 2021=$60000-$12000-$9600 -$7680-$6144 =$24576
Loss on disposal of machine=$21,000-$24576 =-$3576
If the 2412 leaves are not a random sample, but the researchers treated the 2412 leaves as a random sample, this most likely made the data more:_____________.1. accurate, but not precise2. precise, but not accurate3. neither4. both accurate and precise
Answer:
2. Precise but not accurate
Step-by-step explanation:
In a high precision, low accuracy case study, the measurements are all close to each other (high agreement between the measurements) but not near/or close to the center of the distribution (how close a measurement is to the correct value for that measurement)
Work out the surface area of this sphere.
Give your answer to 1 decimal place.
Answer:
452.4
Step-by-step equation:
surface area of a sphere formula= 4πr²
plug 6 in for r
4π(6)² =452.389 rounded to 452.4
PLS HELP ASAP!!!!........
Answer:
aaaaha pues
Step-by-step explanation:
Answer:
what happened
Step-by-step explanation:
Suppose that you have 9 cards. 5 are green and 4 are yellow. The 5 green cards are numbered 1, 2, 3, 4, and 5. The 4 yellow cards are numbered 1, 2, 3, and 4. The cards are well shuffled. Suppose that you randomly draw two cards, one at a time, and without replacement. • G1 = first card is green • G2 = second card is green a) Draw a tree diagram of the situation. (Enter your answers as fractions.) b) Enter the probability as a fraction. P(G1 AND G2) = c)Enter the probability as a fraction. P(at least one green) = d)Enter the probability as a fraction. P(G2 | G1) = _______.
The probability of picking greens on both occasions will be 5/18.
How to explain the probability?The probability of picking greens cards will be:
= 5/9 × 4/8
= 5/18
The probability of picking at least one green will be:
= 1 - P(both aren't green)
= 1 - (4/9 × 3/8)
= 1 - 1/6.
= 5/6
From the tree diagram, the probability as a fraction of P(G2 | G1) will be:
= 4/8 = 1/2
Learn more about probability on:
brainly.com/question/24756209
#SPJ1
I don't know what to do.
Answer:
104.93 in
Step-by-step explanation:
When we draw out a picture of our triangle, we should see that we need to use sin∅ to solve:
sin23° = 41/x
xsin23° = 41
x = 41/sin23°
x = 104.931
what is the simplest form of this expression 2(w-1) +(-2)(2w+1)
Answer:
-2w - 4
Step-by-step explanation:
What is the simplest form of this expression
2(w - 1) + (-2)(2w + 1) =
= 2w - 2 - 4w - 2
= -2w - 4
Answer: -2w-4
Step-by-step explanation:
subtract 4w of 2w
2w-2-4w-2
subtract 2 of -2
-2w-2-2
final answer
-2w-4
The total area under the standard normal curve to the left of zequalsnegative 1 or to the right of zequals1 is
Answer:
0.3174
Step-by-step explanation:
Z-score:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the area under the normal curve to the left of Z. Subtracting 1 by the pvalue, we find the area under the normal curve to the right of Z.
Left of z = -1
z = -1 has a pvalue of 0.1587
So the area under the standard normal curve to the left of z = -1 is 0.1587
Right of z = 1
z = 1 has a pvalue of 0.8413
1 - 0.8413 = 0.1587
So the area under the standard normal curve to the right of z = 1 is 0.1587
Left of z = -1 or right of z = 1
0.1587 + 0.1587 = 0.3174
The area is 0.3174
please i need this answer right now !!!! Dx
Answer: the answer is d sin30degrees equal 5/x because sin is opposite over hyponuese
Please check my answer! The faculty at a particular school have attended up to an average 4 years of college with a standard deviation of 2 years. Faculty members who are in the lower 10% of the distribution will be offered the opportunity to obtain additional training. A faculty member must have attended less than ___________ years of school to qualify for the training. Round your answer to the year. My answer: 1 – 0.10 = 0.90 0.9 - 0.5 = 0.40 z-score = 1.28 (corresponds with 0.3997) x = (1.28)(2) + 4 = 7 years (rounded)
Answer:
1 year
Step-by-step explanation:
1. Convert 10% into a z-score, using a calculator or whateva
2. Z = -1.281551 ( you can find this by doing the following equation: (x - mean) / (standard deviation)
3. Hence -1.281551 = (x - 4) / 2 or, x = 1.436898, ( rounded to the nearest year ) = 1 year
A lady buys bananas at 3 Rs 5 and sells them at 2 Rs for Rs 5; find her gain percent.
Answer:
50%
Step-by-step explanation:
Cost of 3 bananas= Rs. 5 ⇒ cost of 1 banana= Rs. 5/3
Selling price of 2 bananas= Rs. 5 ⇒ selling price of 1 banana= Rs. 5/2
Gain= Rs. (5/2- 5/3)= Rs. (15/6- 10/6)= Rs. 5/6
Gain %= 5/6÷5/3 × 100%= 50%
Solve the system of equations for the variables: x+2y-z=3 x+y-2z= -1
Answer:
z=0
x= -5
y=4
Step-by-step explanation:
Check the attachment please
Hope this helps :)
Step-by-step explanation:
x + 2y − z = 3
x + y − 2z = -1
There are three variables but only two equations, so this system of equations is undefined. We cannot solve for the variables, but we can eliminate one of them and reduce this to a single equation.
Double the first equation:
2x + 4y − 2z = 6
Subtract the second equation.
(2x + 4y − 2z) − (x + y − 2z) = (6) − (-1)
2x + 4y − 2z − x − y + 2z = 7
x + 3y = 7
Which steps would be used to solve the equation? Check all that apply. 2 and two-thirds + r = 8 Subtract 2 and two-thirds from both sides of the equation. Add 2 and two-thirds to both sides of the equation. 8 minus 2 and two-thirds = 5 and one-third 8 + 2 and two-thirds = 10 and two-thirds Substitute the value for r to check the solution.
Answer:
Subtract 2 and two-thirds from both sides of the equation
8 minus 2 and two-thirds = 5 and one-third
Substitute the value for r to check the solution.
Step-by-step explanation:
2 2/3 + r = 8
Subtract 2 2/3 from each side
2 2/3 + r - 2 2/3 = 8 - 2 2/3
r = 5 1/3
Check the solution
2 2/3 +5 1/3 =8
8 =8
Answer:
1, 3, 5
Step-by-step explanation:
edge
Arrange the functions for which the result is a non-infinite value and the limit exists in ascending order of their limit values as x tends to infinity. Please see picture attached.
Answer:
see attached
Step-by-step explanation:
The limit as x gets large is the ratio of the highest-degree terms. In most cases, the limit can be found by evaluating that ratio. Where an absolute value is involved, the absolute value of the highest-degree term is used.
If the ratio gives x to a positive power, the limit does not exist. If the ratio gives x to a negative power, the limit is zero.
The arrangement of functions according to the given condition
[tex]m(x)=\frac{4x^{2}-6 }{1-4x^{2} }[/tex]
[tex]h(x)=\frac{x^{3} -x^{2} +4}{1-3x^{2} }[/tex]
[tex]k(x)=\frac{5x+1000}{x^{2} }[/tex]
[tex]i(x)=\frac{x-1}{|1-4x| }[/tex]
[tex]g(x)=\frac{|4x-1|}{x-4}[/tex]
[tex]l(x)=\frac{5x^{2} -4}{x^{2} +1}[/tex]
[tex]f(x)=\frac{x^{2} -1000}{x-5}[/tex]
[tex]j(x)=\frac{x^{2}-1 }{|7x-1|}[/tex]
What is limit?A limit is the value that a function approaches as the input approaches some value.
According to the given question
[tex]l(x)=\frac{5x^{2} -4}{x^{2} +1}[/tex]
⇒[tex]\lim_{nx\to \infty} \frac{5x^{2} -1}{x^{2} +1}[/tex]
⇒[tex]\lim_{x \to \infty} \frac{x^{2} }{x^{2} } \frac{5-\frac{1}{x^{2} } }{1+\frac{1}{x^{2} } }[/tex]
= 5 ([tex]\frac{1}{x^{2} } = 0[/tex] ,as x tends to infinity [tex]\frac{1}{x^{2} }[/tex] tends to 0)
[tex]i(x)=\frac{x-1}{|1-4x|}[/tex]
⇒[tex]\lim_{x \to \infty} \frac{x-1}{|1-4x|}[/tex] = [tex]\lim_{x \to \infty} \frac{x}{x} \frac{1-\frac{1}{x} }{|\frac{-1}{4}+\frac{1}{x} | }[/tex] =[tex]\frac{1}{\frac{1}{4} }[/tex] =[tex]\frac{1}{4}[/tex]
As x tends to infinity 1/x tends to 0, and |[tex]\frac{-1}{4}[/tex]| gives 1/4
[tex]f(x)= \frac{x^{2} -1000}{x--5}[/tex]
⇒[tex]\lim_{x \to \infty} \frac{x^{2} -1000}{x-5}[/tex]= [tex]\lim_{x \to \infty} \frac{x^{2} }{x} \frac{1-\frac{1000}{x^{2} } }{1-\frac{5}{x} }[/tex]= [tex]\lim_{x \to \infty} x\frac{1-\frac{1000}{x^{2} } }{1-\frac{5}{x} }[/tex] ⇒ limit doesn't exist.
[tex]m(x)=\frac{4x^{2}-6 }{1-4x^{2} }[/tex]
⇒[tex]\lim_{x\to \infty} \frac{4x^{2} -6}{1-4x^{2} }[/tex]=[tex]\lim_{x\to \infty} \frac{x^{2} }{x^{2} } \frac{4-\frac{6}{x^{2} } }{\frac{1}{x^{2} } -4}[/tex] [tex]= \lim_{n \to \infty} \frac{4}{-4}[/tex] = -1
As x tends to infinity [tex]\frac{1}{x^{2} }[/tex] tends to 0.
[tex]g(x)=\frac{|4x-1|}{x-4}[/tex]
⇒[tex]\lim_{x\to \infty} \frac{|4x-1|}{x-4}[/tex] = [tex]\lim_{x \to \infty} \frac{|x|}{x} \frac{4-\frac{1}{x} }{1 -\frac{4}{x} } }[/tex] = 4
as x tends to infinity 1/x tends to 0
and |x|=x ⇒[tex]\frac{|x|}{x}=1[/tex]
[tex]h(x)=\frac{x^{3}-x^{2} +4 }{1-3x^{3} }[/tex][tex]\lim_{x \to \infty} \frac{x^{3} -x^{2} +4}{1-3x^{3} }[/tex][tex]= \lim_{x \to \infty} \frac{x^{3} }{x^{3} } \frac{1-\frac{1}{x}+\frac{4}{x^{3} } }{\frac{1}{x^{3} -3} }[/tex] = [tex]\frac{1}{-3}[/tex] =[tex]-\frac{1}{3}[/tex]
[tex]k(x)=\frac{5x+1000}{x^{2} }[/tex]
[tex]\lim_{x \to \infty} \frac{5x+1000}{x^{2} }[/tex] = [tex]\lim_{x \to \infty} \frac{x}{x} \frac{5+\frac{1000}{x} }{x}[/tex] =0
As x tends to infinity 1/x tends to 0
[tex]j(x)= \frac{x^{2}-1 }{|7x-1|}[/tex]
[tex]\lim_{x \to \infty} \frac{x^{2}-1 }{|7x-1|}[/tex] = [tex]\lim_{x \to \infty} \frac{x}{|x|}\frac{x-\frac{1}{x} }{|7-\frac{1}{x}| }[/tex] = [tex]\lim_{x \to \infty} 7x[/tex] = limit doesn't exist.
Learn more about limit here:
https://brainly.in/question/5768142
#SPJ2
What number must you add to complete the square?
X^2 + 8x= 11
A. 12
B. 16
c. 8
D. 4
Answer:
16
Step-by-step explanation:
X^2 + 8x= 11
Take the coefficient of x
8
Divide by 2
8/2 =4
Square it
4^2 = 16
Add 16 to each side
Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer. 3 0 -4 2 0 6 -3 0 8
a. The matrix is invertible. The columns of the given matrix span R^3.
b. The matrix is not invertible. If the given matrix is A, the columns of A do not form a linearly independent set.
c. The matrix is invertible. The given matrix has 2 pivot positions.
d. The matrix is not invertible. If the given matrix is A, the equation Ax = 0 has only the trivial solution.
Answer:
b. The matrix is not invertible. If the given matrix is A, the columns of A do not form a linearly independent set.
Step-by-step explanation:
A square matrix is said to be invertible if the product of the matrix and its inverse result into an identity matrix.
3 0 -4
2 0 6
-3 0 8
Since the second column elements are all zero, the determinant of the matrix is zero ad this implies that the inverse of the matrix does not exist(i.e it is not invertible )
A square matrix is said to be invertible if it has an inverse.
The matrix is not invertible. If the given matrix is A, the columns of A do not form a linearly independent set.
The matrix is given as:
[tex]\left[\begin{array}{ccc}3&0&-4\\2&0&6\\-3&0&8\end{array}\right][/tex]
Calculate the determinant
The determinant of the matrix calculate as:
[tex]|A| = 3 \times(0 \times 8- 6 \times 0) - 0(2 \times 8 - 6 \times -3) -4(2 \times 0 - 0 \times -3)[/tex]
[tex]|A| = 3 \times(0) - 0(34) -4(0)[/tex]
[tex]|A| = 0 - 0 -0[/tex]
[tex]|A| = 0[/tex]
When a matrix has its determinant to be 0, then
It is not invertibleIt does not form a linear independent set.Hence, the correct option is (b)
Read more about matrix at:
https://brainly.com/question/19759946
Suppose that the scores of bowlers in particular league follow a normal distribution such that the standard deviation of the population is 6. Find the 95% confidence interval of the mean score for all bowlers in this league, using the accompanying data set of 10 random scores. Round your answers to two decimal places and use ascending order. Score 86 86 93 88 98 107 93 75 89
Answer:
A 95% confidence interval for the population mean score for all bowlers in this league is [86.64, 94.48].
Step-by-step explanation:
Since in the question only 9 random scores are given, so I am performing the calculation using 9 random scores.
We are given that the scores of bowlers in particular league follow a normal distribution such that the standard deviation of the population is 6.
The accompanying data set of 9 random scores in ascending order is given as; 75, 86, 86, 88, 89, 93, 93, 98, 107
Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;
P.Q. = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\bar X[/tex] = sample mean score = [tex]\frac{\sum X}{n}[/tex] = [tex]\frac{815}{9}[/tex] = 90.56
[tex]\sigma[/tex] = population standard deviation = 6
n = sample of random scores = 9
[tex]\mu[/tex] = population mean score for all bowlers
Here for constructing a 95% confidence interval we have used a One-sample z-test statistics because we know about population standard deviation.
So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5% level
of significance are -1.96 & 1.96}
P(-1.96 < [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.96) = 0.95
P( [tex]-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\bar X-\mu}[/tex] < [tex]1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95
P( [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95
95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] , [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ]
= [ [tex]90.56-1.96 \times {\frac{6}{\sqrt{9} } }[/tex] , [tex]90.56+1.96 \times {\frac{6}{\sqrt{9} } }[/tex] ]
= [86.64 , 94.48]
Therefore, a 95% confidence interval for the population mean score for all bowlers in this league is [86.64, 94.48].
Need help with this as soon as possible.
Answer:
after 9 weeks it would become 9*1+10=19 inches
and after w weeks it will be w*1+10 inches tall
hope this helps
Step-by-step explanation:
Answer:
a) 19 inches
b) 10+w inches
Step-by-step explanation:
The equation for this problem is 10 + w. In the first part, w = 9, so the plant is 19 inches tall.
Researchers wanted to know whether it is better to give the diphtheria, tetanus and pertussis (DTaP) vaccine in the thigh or the arm. They collect data on severe reactions to this vaccine in children aged 3 to 6 years old. What would be the best statistical test for them to utilize?
A. One-sample chi-square
B. Linear regression
C. T-test
D. Two-sample chi-square
Answer:
D. Two-sample chi-square
Step-by-step explanation:
A chi-square test is a test used to compare the data that is observed, from the data that is expected.
In a two-sample chi-square test the observed data should be similar to the expected data if the two data samples are from the same distribution.
The hypotheses of the two-sample chi-square test is given as:
H0: The two samples come from a common distribution.
Ha: The two samples do not come from a common distribution
Therefore, in this case, the best statistical test to utilize is the two-sample chi-square test.
(0, 3) and (-2, -1)
Write an equation in slope intercept from of the line that passes through the given points.
Answer:
y = 2x + 3
Step-by-step explanation:
Slope Formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Slope-Intercept Form: y = mx + b
Step 1: Find slope m
m = (-1 - 3)/(-2 - 0)
m = -4/-2
m = 2
y = 2x + b
Step 2: Rewrite equation
y = 2x + 3
*You are given y-intercept (0, 3), so simply add it to your equation.
are the two triangles below similar
Answer:
Hey!
Your answer is YES!
AKA the Last Option on your screen!
Step-by-step explanation:
It is this because...
They both have the angles 105 in it...
And looking at the other angle on the smaller one (25)
50 + 25 = 75 ... 180 - 75 = 105
WE HAVE 105 as an angle on the larger triangle...which makes them SIMILAR but congruent Angles!
It cant be the "corresponding sides" as we do not have the notations (lines intersecting the sides) that let us know that the lines are the same.
Hope this helps!
Please answer this correctly
Answer:
The second question
Step-by-step explanation:
The orca starts at -25 meters. She goes up 25 meters.
up 25 = +25
-25+25=0
Answer:
Option 2
Step-by-step explanation:
The orca swims at the elevation of -25 meters. The orca swims up 25 meters higher than before.
-25 + 25 = 0
Find the product of all positive integer values of $c$ such that $3x^2+7x+c=0$ has two real roots. I will award a lot of points
Answer: 24
Step-by-step explanation:
Let's find one solution:
3x² + 7x + c = 0
a=3 b=7 c=c
First, let's find c so that it has REAL ROOTS.
⇒ Discriminant (b² - 4ac) ≥ 0
7² - 4(3)c ≥ 0
49 - 12c ≥ 0
-12c ≥ -49
[tex]c\leq\dfrac{-49}{-12}\quad \rightarrow c\leq \dfrac{49}{12}[/tex]
Since c must be a positive integer, 1 ≤ c ≤ 4
Example: c = 4
3x² + 7x + 4 = 0
(3x + 4)(x + 1) = 0
x = -4/3, x = -1 Real Roots!
You need to use Quadratic Formula to solve for c = {1, 2, 3}
Valid solutions for c are: {1, 2, 3, 4)
Their product is: 1 x 2 x 3 x 4 = 24
Answer:
$3x^2+7x+c=0$
comparing above equation with ax²+bx+c
a=3
b=7
c=1
using quadratic equation formula
[tex]x = \frac{ - b + - \sqrt{b {}^{2} - 4ac} }{ 2a} [/tex]
x=(-7+-√(7²-4×3×1))/(2×3)
x=(-7+-√13)/6
taking positive
x=(-7+√13)/6=
taking negative
x=(-7-√13)/6=
How do you determine whether the sign of a trigonometric function (sine, cosine, tangent) is positive or negative when dealing with half angles? Explain your reasoning and cite examples. Why do you think the half-angle identities include positive and negative options but the other identities don't seem to have this option built in?
Answer:
This question is about:
sin(A/2) and cos(A/2)
First, how we know when we need to use the positive or negative signs?
Ok, this part is kinda intuitive:
First, you need to know the negative/positve regions for the sine and cosine function.
Cos(x) is positive between 270 and 90, and negative between 90 and 270.
sin(x) is positive between 0 and 180, and negative between 180 and 360.
Then we need to see at the half-angle and see in which region it lies.
If the half-angle is larger than 360°, then you subtract 360° enough times such that the angle lies in the range between (0° and 360°)
and: Tan(A/2) = Sin(A/2)/Cos(A/2)
So using that you can infer the sign of the Tan(A/2)
Now, why these relationships use the two signs?
Well... this is because of the square root in the construction of the relationships.
This happens because:
(-√x)*(-√x) = (-1)*(-1)*(√x*√x) = (√x*√x)
For any value of x.
so both -√x and √x are possible solutions of these type of equations, but for the periodic nature of the sine and cosine functions, we can only select one of them.
So we should include the two possible signs, and we select the correct one based on the reasoning above.