A man stands on a merry-go-round that is rotating at 2.5 rad/s. If the coefficient of static friction between the man’s shoes and the merry-go-round is µs = 0.5, how far from the axis of rotation can he stand without sliding?

Answers

Answer 1

Answer:

0.8 m

Explanation:

Draw a free body diagram.  There are three forces:

Weight force mg pulling down,

Normal force N pushing up,

and friction force Nμ pushing towards the center.

Sum of forces in the y direction:

∑F = ma

N − mg = 0

N = mg

Sum of forces in the centripetal direction:

∑F = ma

Nμ = m v²/r

Substitute and simplify:

mgμ = m v²/r

gμ = v²/r

Write v in terms of ω and solve for r:

gμ = ω²r

r = gμ/ω²

Plug in values:

r = (10 m/s²) (0.5) / (2.5 rad/s)²

r = 0.8 m

Answer 2

The distance (radius) from the axis of rotation which the man can stand without sliding is 0.784 meters.

Given the following data:

Angular speed = 2.5 rad/s.Coefficient of static friction = 0.5

To determine how far (radius) from the axis of rotation can the man stand without sliding:

We would apply Newton's Second Law of Motion, to express the centripetal and force of static friction acting on the man.

[tex]\sum F = \frac{mv^2}{r} - uF_n\\\\\frac{mv^2}{r} = uF_n[/tex]....equation 1.

But, Normal force, [tex]F_n = mg[/tex]  

Substituting the normal force into eqn. 1, we have:

[tex]\frac{mv^2}{r} = umg\\\\\frac{v^2}{r} = ug[/tex]....equation 2.

Also, Linear speed, [tex]v = r\omega[/tex]

Substituting Linear speed into eqn. 2, we have:

[tex]\frac{(r\omega )^2}{r} = ug\\\\r\omega ^2 = ug\\\\r = \frac{ug}{\omega ^2}[/tex]

Substituting the given parameters into the formula, we have;

[tex]r = \frac{0.5 \times 9.8}{2.5^2} \\\\r = \frac{4.9}{6.25}[/tex]

Radius, r = 0.784 meters

Read more: https://brainly.com/question/13754413


Related Questions

Calculate the ideal banking angle in degrees for a gentle turn of 1.88 km radius on a highway with a 136.3 km/hr speed limit, assuming everyone travels at the speed limit.

Answers

Answer:

Ф = 4.4°

Explanation:

given:

radius (r) = 1.88 km

velocity (v) = 136.3 km/hr

required:

banking angle ∡ ?

first:

convert 1.88 km to m = 1.88km * 1000m / 1km

r = 1880 m

convert velocity v = 136.3 km/hr to m/s = 136.3 km/hr * (1000 m/ 3600s)

v = 37.86 m/s

now.. calculate the angle

Ф = inv tan (v² / r * g)            we know that gravity = 9.8 m/s²

Ф = inv tan (37.86² / (1880 * 9.8))

Ф = 4.4°

Given that the velocity of blood pumping through the aorta is about 30 cm/s, what is the total current of the blood passing through the aorta (in grams of blood per second)?

Answers

Answer:

94.248 g/sec

Explanation:

For solving the total current of the blood passing first we have to solve the cross sectional area which is given below:

[tex]A_1 = \pi R^2\\\\A_1 = \pi (1)^2\\\\A_1 = 3.1416 cm^2[/tex]

And, the velocity of blood pumping is 30 cm^2

Now apply the following formula to solve the total current

[tex]Q = \rho A_1V_1\\\\Q = (1)(3.1416)(30)\\\\[/tex]

Q =  94.248 g/sec

Basically we applied the above formula So, that the total current could come

A rod has length 0.900 mm and mass 0.500 kgkg and is pivoted at one end. The rod is not uniform; the center of mass of the rod is not at its center but is 0.500 mm from the pivot. The period of the rod's motion as a pendulum is 1.49 ss. What is the moment of inertia of the rod around the pivot

Answers

Answer:

The moment of inertia is  [tex]I =0.14 \ kg \cdot m^2[/tex]

Explanation:

From the question we are told that

    The length of the rod is  [tex]l = 0.900 \ m[/tex]

     The mass of the rod is  [tex]m = 0.500 \ kg[/tex]

      The distance of the center of mass from the pivot is  [tex]d = 0.500 \ m[/tex]

      The period of the rod's motion is  [tex]T = 1.49 \ s[/tex]

Generally the period of the motion is mathematically represented as

       [tex]T = 2 \pi * \sqrt{\frac{I}{m* g * d} }[/tex]

Where [tex]I[/tex] is the moment of inertia about the pivot so making [tex]I[/tex] the subject of formula

      [tex]I = [\frac{T}{2\pi } ]^2 * m * g * d[/tex]

substituting values

        [tex]I = [\frac{1.49}{2* 3.142 } ]^2 * 0.5 * 9.8 * 0.5[/tex]

       [tex]I =0.14 \ kg \cdot m^2[/tex]

A tightly wound toroid of inner radius 1.2 cm and outer radius 2.4 cm has 960 turns of wire and carries a current of 2.5 A.

Requried:
a. What is the magnetic field at a distance of 0.9 cm from the center?
b. What is the field 1.2 cm from the center?

Answers

Answer:

a

  [tex]B = 0.0533 \ T[/tex]

b

  [tex]B = 0.04 \ T[/tex]

Explanation:

From the question we are told that

   The inner radius is [tex]r = 1.2 \ cm = 0.012 \ m[/tex]

   The  outer radius is  [tex]r_o = 2.4 \ cm = \frac{2.4}{100} = 0.024 \ m[/tex]

    The nu umber of turns is  [tex]N = 960[/tex]

    The current it is carrying is  [tex]I = 2. 5 A[/tex]

Generally the magnetic field is mathematically represented as

      [tex]B = \frac{\mu_o * N* I }{2 * \pi * r }[/tex]

Where  [tex]\mu_o[/tex] is the permeability of free space with a constant value    

            [tex]\mu = 4\pi * 10^{-7} N/A^2[/tex]

And the given distance where the magnetic field is felt is  r =  0.9 cm  =  0.009 m

Now  substituting values

     [tex]B = \frac{ 4\pi * 10^{-7} * 960* 2.5 }{2 * 3.142 * 0.009 }[/tex]

    [tex]B = 0.0533 \ T[/tex]

    Fro the second question the distance of the position considered from the center is  r =  1.2 cm  =  0.012 m

So the  magnetic field is  

        [tex]B = \frac{ 4\pi * 10^{-7} * 960* 2.5 }{2 * 3.142 * 0.012 }[/tex]

        [tex]B = 0.04 \ T[/tex]

The magnetic field at a distance of 0.9 cm from the center of the toroid is 0.053 T.

The magnetic field at a distance of 1.2 cm from the center of the toroid is 0.04 T.

The given parameters;

radius of the toroid, r = 1.2 cm = 0.012 mouter radius of the toroid, R = 2.4 cm = 0.024 mnumber of turns, N = 960 turnscurrent in wire, I = 2.5 A

The magnetic field at a distance of 0.9 cm from the center of the toroid is calculated as follows;

[tex]B = \frac{\mu_o NI}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7})\times (960) \times (2.5)}{2\pi \times 0.009} \\\\B = 0.053 \ T[/tex]

The magnetic field at a distance of 1.2 cm from the center of the toroid is calculated as follows;

[tex]B = \frac{\mu_o NI}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7})\times (960) \times (2.5)}{2\pi \times 0.012} \\\\B = 0.04 \ T[/tex]

Learn more here:https://brainly.com/question/19564329

A cylindrical shell of radius 7.00 cm and length 2.21 m has its charge uniformly distributed on its curved surface. The magnitude of the electric field at a point 15.2 cm radially outward from its axis (measured from the midpoint of the shell) is 36.0 kN/C. (a) Find the net charge on the shell.

Answers

Answer:

The net charge on the shell is 30x10^-9C

Explanation:

Pls see attached file

A positive kaon (K+) has a rest mass of 494 MeV/c² , whereas a proton has a rest mass of 938 MeV/c². If a kaon has a total energy that is equal to the proton rest energy, the speed of the kaon is most nearly:___________.
A. 0.25c
B. 0.40c
C. 0.55c
D. 0.70c
E. 0.85c

Answers

Answer:

0.85c

Explanation:

Rest mass of Kaon [tex]M_{0K}[/tex] = 494 MeV/c²

Rest mass of proton [tex]M_{0P}[/tex]  = 938 MeV/c²

The rest energy is gotten by multiplying the rest mass by the square of the speed of light c²

for the kaon, rest energy [tex]E_{0K}[/tex] = 494c² MeV

for the proton, rest energy [tex]E_{0P}[/tex] = 938c² MeV

Recall that the rest energy, and the total energy are related by..

[tex]E[/tex] = γ[tex]E_{0}[/tex]

which can be written in this case as

[tex]E_{K}[/tex] = γ[tex]E_{0K}[/tex] ...... equ 1

where [tex]E[/tex] = total energy of the kaon, and

[tex]E_{0}[/tex] = rest energy of the kaon

γ = relativistic factor = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex]

where [tex]\beta = \frac{v}{c}[/tex]

But, it is stated that the total energy of the kaon is equal to the rest mass of the proton or its equivalent rest energy, therefore...

[tex]E_{K}[/tex] = [tex]E_{0P}[/tex] ......equ 2

where [tex]E_{K}[/tex] is the total energy of the kaon, and

[tex]E_{0P}[/tex] is the rest energy of the proton.

From [tex]E_{K}[/tex] = [tex]E_{0P}[/tex] = 938c²    

equ 1 becomes

938c² = γ494c²

γ = 938c²/494c² = 1.89

γ = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex] = 1.89

1.89[tex]\sqrt{1 - \beta ^{2} }[/tex] = 1

squaring both sides, we get

3.57( 1 - [tex]\beta^{2}[/tex]) = 1

3.57 - 3.57[tex]\beta^{2}[/tex] = 1

2.57 = 3.57[tex]\beta^{2}[/tex]

[tex]\beta^{2}[/tex] = 2.57/3.57 = 0.72

[tex]\beta = \sqrt{0.72}[/tex] = 0.85

but, [tex]\beta = \frac{v}{c}[/tex]

v/c = 0.85

v = 0.85c

Transverse waves are sent along a 4.50 m long string with a speed of 85.00 m/s. The string is under a tension of 20.00 N. What is the mass of the string (in kg)?

Answers

Answer:

m = 0.0125 kg

Explanation:

Let us apply the formula for the speed of a wave on a string that is under tension:

[tex]v = \sqrt{\frac{F}{\mu} }[/tex]

where F = tension force

μ = mass per unit length

Mass per unit length is given as:

μ  = m / l

where m = mass of the string

l = length of the string

This implies that:

[tex]v = \sqrt{\frac{F}{m/l} }\\ \\v = \sqrt{\frac{F * l}{m} }[/tex]

Let us make mass, m, the subject of the formula:

[tex]v^2 = \frac{F * l}{m}\\\\m = \frac{F * l}{v^2}[/tex]

From the question:

F = 20 N

l = 4.50 m

v = 85 m/s

Therefore:

[tex]m = \frac{20 * 4.5}{85^2}\\\\m = \frac{90}{7225}\\ \\m = 0.0125 kg[/tex]

Two long, parallel wires carry currents in the same direction. If I1 = 10 A, and I2 = 20 A, and they are d = 1.0 m apart, what is the magnetic field at a point P midway between them?

Answers

Answer:

The magnetic field at mid point between two parallel wires is 1.2 x 10⁻⁵ T

Explanation:

Given;

current in the first wire, I₁ = 10 A

current in the second wire, I₂ = 20 A

distance between the two wires, d = 1.0 m

Magnetic field at mid point between two parallel wires is calculated as;

[tex]B = \frac{\mu_o I_1}{2\pi r} + \frac{\mu_o I_2}{2\pi r} \\\\B = \frac{\mu_o }{2\pi r}(I_1 +I_2)[/tex]

where;

r is the midpoint between the wires, = 0.5 m

μ₀ is the permeability of free space, = 4π x 10⁻⁷

[tex]B = \frac{\mu_o }{2\pi r}(I_1 +I_2)\\\\B = \frac{4\pi*10^{-7} }{2\pi *0.5}(10 +20)\\\\B = \frac{4\pi*10^{-7} *30}{2\pi *0.5}\\\\B = 1.2 *10^{-5} \ T[/tex]

Therefore, the magnetic field at mid point between two parallel wires is 1.2 x 10⁻⁵ T

Consider a skateboarder who starts from rest at the top of ramp that is inclined at an angle of 18.0 ∘ to the horizontal.
Assuming that the skateboarder's acceleration is gsin 18.0 ∘, find his speed when he reaches the bottom of the ramp in 3.50 s .

Answers

Answer:

Explanation:

v= u + at

v is final velocity , u is initial velocity . a is acceleration and t is time

Initial velocity u = 0 . Putting the given values in the equation

v = 0 + g sin 18 x 3.5

= 10.6 m /s

For a skateboarder who starts from the rest, the speed when he reaches the bottom of the ramp will be 10.6 m/s.

What are Velocity and Acceleration?

The term "velocity" refers to a vector measurement of the rate and direction of motion. Velocity is the rate of movement in a single direction, to put it simply. Velocity can be used to determine how fast a rocket is heading into space and how fast a car is moving north on a congested motorway.

There are several types of velocity :

Instantaneous velocityAverage VelocityUniform VelocityNon-Uniform Velocity

The pace at which a person's velocity changes is known as acceleration. This implies that an object is accelerating if its velocity is rising or falling. An object that is accelerating won't have a steady change in location every second like an item moving at a constant speed does.

According to the question, the given values are :

Time, t = 3.50 sec

Initial Velocity, u = 0 m/s

Use equation of motion :

v = u+at

v = 0+ g sin 18 × 3.5

v = 10.6 m/s.

So, the final velocity will be 10.6 m/s.

To get more information about Velocity and Acceleration :

https://brainly.com/question/14683118

#SPJ2

A rubber ball is attached to a string and whirled around in a circle. If the string is 1.0 m long (measured from the center of the baseball to the far end of the string) and the ball’s speed is 10 m/s, what is the ball’s centripetal acceleration?

Answers

Centripetal acceleration = (speed squared) / (radius)

Centripetal acceleration = (10 m/s)² / (1.0 m)

Centripetal acceleration = (100 m²/s²) / (1.0 m)

Centripetal acceleration = 100 m/s²

The electric field at the surface of a charged, solid, copper sphere with radius 0.220 mm is 4200 N/CN/C, directed toward the center of the sphere. What is the potential at the center of the sphere, if we take the potential to be zero infinitely far from the sphere?

Answers

Answer:

The potential at the center of the sphere is -924 V

Explanation:

Given;

radius of the sphere, R = 0.22 m

electric field at the surface of the sphere, E = 4200 N/C

Since the electric field is directed towards the center of the sphere, the charge is negative.

The Potential is the same at every point in the sphere, and it is given as;

[tex]V = \frac{1}{4 \pi \epsilon_o} \frac{q}{R}[/tex] -------equation (1)

The electric field on the sphere is also given as;

[tex]E = \frac{1}{4 \pi \epsilon _o} \frac{|q|}{R^2}[/tex]

[tex]|q |= 4 \pi \epsilon _o} R^2E[/tex]

Substitute in the value of q in equation (1)

[tex]V = \frac{1}{4 \pi \epsilon_o} \frac{-(4 \pi \epsilon _o R^2E)}{R} \ \ \ \ q \ is \ negative\ because \ E \ is\ directed \ toward \ the \ center\\\\V = -RE\\\\V = -(0.22* 4200)\\\\V = -924 \ V[/tex]

Therefore, the potential at the center of the sphere is -924 V

A length of organ pipe is closed at one end. If the speed of sound is 344 m/s, what length of pipe (in cm) is needed to obtain a fundamental frequency of 50 Hz

Answers

Answer:

The length = 27.52m

Explanation:

v=f x wavelength

2. A pair of narrow, parallel slits sep by 0.25 mm is illuminated by 546 nm green light. The interference pattern is observed on a screen situated at 1.3 m away from the slits. Calculate the distance from the central maximum to the

Answers

Answer:

for the first interference m = 1   y = 2,839 10-3 m

for the second interference m = 2   y = 5,678 10-3 m

Explanation:

The double slit interference phenomenon, for constructive interference is described by the expression

                d sin θ = m λ

where d is the separation between the slits, λ the wavelength and m an integer that corresponds to the interference we see.

In these experiments in general the observation screen is L >> d, let's use trigonometry to find the angles

           tan θ = y / L

with the angle it is small,

          tan θ = sin θ / cos θ = sin θ

   

we substitute

         sin θ = y / L

         d y / L = m λ

the distance between the central maximum and an interference line is

        y = m λ L / d

let's reduce the magnitudes to the SI system

     λ = 546 nm = 546 10⁻⁹ m

     d = 0.25 mm = 0.25 10⁻³ m

let's substitute the values

      y = m 546 10⁻⁹ 1.3 / 0.25 10⁻³

      y =  m 2,839 10⁻³

the explicit value for a line depends on the value of the integer m, for example

for the first interference m = 1

the distance from the central maximum to the first line is y = 2,839 10-3 m

for the second interference m = 2

the distance from the central maximum to the second line is y = 5,678 10-3 m

6. Two forces of 50 N and 30 N, respectively, are acting on an object. Find the net force (in
N) on the object if
the forces are acting in the same direction
b. the forces are acting in opposite directions.​

Answers

Answer:

same direction = 80 (n)

opposite direction = 20 (n) going one direction

Explanation:

same direction means they are added to each other

and opposite means acting on eachother

What is the change in internal energy of an engine if you put 15 gallon of gasoline into its tank? The energy content of gasoline is 1.5 x 106 J/gallon. All other factors, such as the engine’s temperature, are constant. How many hours the engine can work if the power of the engine’s motor is 600 W? (8 marks)

Answers

Answer:

ΔU = 2.25 x 10⁸ J

t = 104.17 s

Explanation:

The change in internal energy of the engine can be given by the following formula:

ΔU = (Mass of Gasoline)(Energy Content of Gasoline)

ΔU = (1.5 x 10⁶ J/gallon)(15 gallon)

ΔU = 2.25 x 10⁸ J

Now, for the time of operation, we use the following formula of power.

P = W/t = ΔU/t

t = ΔU/P

where,

t = time of operation = ?

ΔU = Change in internal energy = 2.25 x 10⁸ J

P = Power of motor = 600 W

Therefore,

t = (2.25 x 10⁸ J)/(600 W)

t = (375000 s)(1 h/3600 s)

t = 104.17 s

Alternating Current In Europe, the voltage of the alternating current coming through an electrical outlet can be modeled by the function V 230 sin (100t), where tis measured in seconds and Vin volts.What is the frequency of the voltage

Answers

Answer:

[tex]\frac{50}{\pi }[/tex]Hz

Explanation:

In alternating current (AC) circuits, voltage (V) oscillates in a sine wave pattern and has a general equation as a function of time (t) as follows;

V(t) = V sin (ωt + Ф)            -----------------(i)

Where;

V = amplitude value of the voltage

ω = angular frequency = 2 π f        [f = cyclic frequency or simply, frequency]

Ф = phase difference between voltage and current.

Now,

From the question,

V(t) = 230 sin (100t)              ---------------(ii)

By comparing equations (i) and (ii) the following holds;

V = 230

ω = 100

Ф = 0

But;

ω = 2 π f = 100

2 π f = 100             [divide both sides by 2]

π f = 50

f = [tex]\frac{50}{\pi }[/tex]Hz

Therefore, the frequency of the voltage is [tex]\frac{50}{\pi }[/tex]Hz

In a high school swim competition, a student takes 1.6 s to complete 1.5 somersaults. Determine the average angular speed of the diver, in rad/s, during this time interval.

Answers

Answer:

The  angular speed is [tex]w = 5.89 \ rad/s[/tex]

Explanation:

From the question we are told that

    The time taken is  [tex]t = 1.6 s[/tex]

    The number of somersaults  is n  =  1.5

The total angular displacement during the somersault is mathematically represented as

         [tex]\theta = n * 2 * \pi[/tex]

substituting values

        [tex]\theta = 1.5 * 2 * 3.142[/tex]

       [tex]\theta = 9.426 \ rad[/tex]

 The angular speed is mathematically represented as

         [tex]w = \frac{\theta }{t}[/tex]

substituting values

         [tex]w = \frac{9.426}{1.6}[/tex]

          [tex]w = 5.89 \ rad/s[/tex]

     

At what temperature will silver have a resistivity that is two times the resistivity of iron at room temperature? (Assume room temperature is 20° C.)

Answers

Answer:

The temperature of silver at this given resistivity is 2971.1 ⁰C

Explanation:

The resistivity of silver is calculated as follows;

[tex]R_t = R_o[1 + \alpha(T-T_o)]\\\\[/tex]

where;

Rt is the resistivity of silver at the given temperature

Ro is the resistivity of silver at room temperature

α is the temperature coefficient of resistance

To is the room temperature

T is the temperature at which the resistivity of silver will be two times the resistivity of iron at room temperature

[tex]R_t = R_o[1 + \alpha(T-T_o)]\\\\\R_t = 1.59*10^{-8}[1 + 0.0038(T-20)][/tex]

Resistivity of iron at room temperature = 9.71 x 10⁻⁸ ohm.m

When silver's resistivity becomes 2 times the resistivity of iron, we will have the following equations;

[tex]R_t,_{silver} = 2R_o,_{iron}\\\\1.59*10^{-8}[1 + 0.0038(T-20)] =(2 *9.71*10^{-8})\\\\\ \ (divide \ through \ by \ 1.59*10^{-8})\\\\1 + 0.0038(T-20) = 12.214\\\\1 + 0.0038T - 0.076 = 12.214\\\\0.0038T +0.924 = 12.214\\\\0.0038T = 12.214 - 0.924\\\\0.0038T = 11.29\\\\T = \frac{11.29}{0.0038} \\\\T = 2971.1 \ ^0C[/tex]

Therefore, the temperature of silver at this given resistivity is 2971.1 ⁰C

A solid conducting sphere is placed in an external uniform electric field. With regard to the electric field on the sphere's interior, which statement is correct

Answers

Complete question:

A solid conducting sphere is placed in an external uniform electric field. With regard to the electric field on the sphere's interior, which statement is correct?

A. the interior field points in a direction parallel to the exterior field

B. There is no electric field on the interior of the conducting sphere.

C. The interior field points in a direction perpendicular to the exterior field.

D. the interior field points in a direction opposite to the exterior field.

Answer:

B. There is no electric field on the interior of the conducting sphere.

Explanation:

Conductors are said to have free charges that move around easily. When the conductor is now placed in a static electric field, the free charges react to attain electrostatic equilibrium (steady state).

Here, a solid conducting sphere is placed in an external uniform electric field. Until the lines of the electric field are perpendicular to the surface, the free charges will move around the spherical conductor, causing polarization. There would be no electric field in the interior of the spherical conductor because there would be movement of  free charges in the spherical conductor in response to any field until its neutralization.

Option B is correct.

There is no electric field on the interior of the conducting sphere.

An amusement park ride has a vertical cylinder with an inner radius of 3.4 m, which rotates about its vertical axis. Riders stand inside against the carpeted surface and rotate with the cylinder while it accelerates to its full angular velocity. At that point the floor drops away and friction between the riders and the cylinder prevents them from sliding downward. The coefficient of static friction between the riders and the cylinder is 0.87. What minimum angular velocity in radians/second is necessary to assure that the riders will not slide down the wall?

Answers

Answer:

The minimum angular velocity necessary to assure that the riders will not slide down the wall is 1.58 rad/second.

Explanation:

The riders will experience a centripetal force from the cylinder

[tex]F_{C}[/tex] = mrω^2    .... equ 1

where

m is the mass of the rider

r is the inner radius of the cylinder = 3.4 m

ω is the angular speed of of the rider

For the riders not to slide downwards, this centripetal force is balanced by the friction between the riders and the cylinder. The frictional force is given as

[tex]F_{f}[/tex] = μR       ....equ 2

where

μ = coefficient of friction = 0.87

R is the normal force from the rider = mg

where

m is the rider's mass

g is the acceleration due to gravity = 9.81 m/s

substitute mg for R in equ 2, we'll have

[tex]F_{f}[/tex] = μmg     ....equ 3

Equating centripetal force of equ 1 and frictional force of equ 3, we'll get

mrω^2 = μmg

the mass of the rider cancels out, and we are left with

rω^2 = μg

ω^2 = μg/r

ω = [tex]\sqrt{\frac{ug}{r} }[/tex]

ω = [tex]\sqrt{\frac{0.87*9.81}{3.4} }[/tex]

ω = 1.58 rad/second

The minimum angular velocity necessary so that the riders will not slide down the wall is 1.58 rad/s

The riders will experience a  centripetal force from the cylinder

[tex]F = mrw^2[/tex]

where  m is the mass of the rider

r is the inner radius of the cylinder = 3.4 m

ω is the angular speed of the rider

For the riders not to slide downwards, this centripetal force must be balanced by friction. The frictional force is given as

f = μN

where

μ = coefficient of friction = 0.87

N is the normal force = mg

f = μmg  

Equating centripetal force of and frictional force of we'll get

[tex]mrw^2 = umg[/tex]

[tex]rw^2 = ug[/tex]

[tex]w^2 = ug/r[/tex]

[tex]w= \sqrt{ug/r}[/tex]

[tex]w= \sqrt{0.87*9.8/3.4}[/tex]  

ω = 1.58 rad/s is the minimum angular velocity needed to prevent the rider from sliding.

Learn more:

https://brainly.com/question/24638181

A projectile is launched from ground level with an initial speed of 47 m/s at an angle of 0.6 radians above the horizontal. It strikes a target 1.7 seconds later. What is the vertical distance from where the projectile was launched to where it hit the target.

Answers

Answer:

30.67m

Explanation:

Using one of the equations of motion as follows, we can describe the path of the projectile in its horizontal or vertical displacement;

s = ut ± [tex]\frac{1}{2} at^2[/tex]               ------------(i)

Where;

s = horizontal/vertical displacement

u = initial horizontal/vertical component of the velocity

a = acceleration of the projectile

t = time taken for the projectile to reach a certain horizontal or vertical position.

Since the question requires that we find the vertical distance from where the projectile was launched to where it hit the target, equation (i) can be made more specific as follows;

h = vt ± [tex]\frac{1}{2} at^2[/tex]               ------------(ii)

Where;

h = vertical displacement

v = initial vertical component of the velocity = usinθ

a = acceleration due to gravity (since vertical motion is considered)

t = time taken for the projectile to hit the target

From the question;

u = 47m/s, θ = 0.6rads

=> usinθ = 47 sin 0.6

=> usinθ = 47 x 0.5646 = 26.54m/s

t = 1.7s

Take a = -g = -10.0m/s   (since motion is upwards against gravity)

Substitute these values into equation (ii) as follows;

h = vt - [tex]\frac{1}{2} at^2[/tex]

h = 26.54(1.7) - [tex]\frac{1}{2} (10)(1.7)^2[/tex]

h = 45.118 - 14.45

h = 30.67m

Therefore, the vertical distance is 30.67m        

find the value of k for which the given pair of vectors are not equal
2ki +3j​ and 8i + 4kj

Answers

Answer:

5

Explanation:

A guitar string 0.65 m long has a tension of 61 N and a mass per unit length of 3.0 g/m. (i) What is the speed of waves on the string when it is plucked? (ii) What is the string's fundamental frequency of vibration when plucked? (iii) At what other frequencies will this string vibrate?

Answers

Answer:

i

  [tex]v = 142.595 \ m/s[/tex]

ii

  [tex]f = 109.69 \ Hz[/tex]

iii1 )

  [tex]f_2 =219.4 Hz[/tex]

iii2)

   [tex]f_3 =329.1 Hz[/tex]

iii3)

    [tex]f_4 =438.8 Hz[/tex]

Explanation:

From the question we are told that

    The length of the string is  [tex]l = 0.65 \ m[/tex]

     The tension on the string is  [tex]T = 61 \ N[/tex]

     The mass per unit length is  [tex]m = 3.0 \ g/m = 3.0 * \frac{1}{1000} = 3 *10^{-3 } \ kg /m[/tex]

     

The speed of wave on the string is mathematically represented as

       [tex]v = \sqrt{\frac{T}{m} }[/tex]

substituting values

      [tex]v = \sqrt{\frac{61}{3*10^{-3}} }[/tex]

     [tex]v = 142.595 \ m/s[/tex]

generally the  string's  frequency is mathematically represented as

         [tex]f = \frac{nv}{2l}[/tex]

n = 1  given that the frequency we are to find is the fundamental frequency

So

      substituting values

       [tex]f = \frac{142.595 * 1 }{2 * 0.65}[/tex]

       [tex]f = 109.69 \ Hz[/tex]

The  frequencies at which the string would vibrate include

1       [tex]f_2 = 2 * f[/tex]

Here [tex]f_2[/tex] is  know as the second harmonic and the value is  

      [tex]f_2 = 2 * 109.69[/tex]

      [tex]f_2 =219.4 Hz[/tex]

2

[tex]f_3 = 3 * f[/tex]

Here [tex]f_3[/tex] is  know as the third harmonic and the value is  

      [tex]f_3 = 3 * 109.69[/tex]

     [tex]f_3 =329.1 Hz[/tex]

3

     [tex]f_3 = 4 * f[/tex]

Here [tex]f_4[/tex] is  know as the fourth harmonic and the value is  

      [tex]f_3 = 4 * 109.69[/tex]

     [tex]f_4 =438.8 Hz[/tex]

a point charge q is located at the center of a cube with edge length d. whatis the value of the flux over one face of the cube

Answers

Answer:

q/6Eo

Explanation:

See attached file pls

An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled downward and then released, it vibrates vertically. The equation of motion is s = 9 cos(t) + 9 sin(t), t ≥ 0, where s is measured in centimeters and t in seconds. (Take the positive direction to be downward.) (a) Find the velocity and acceleration at time t.

Answers

Answer:

v(t) = s′(t) = −9sin(t)+9cos(t)

a(t) = v′(t) = −9cos(t) −9sin(t)

Explanation:

Given that

s = 9 cos(t) + 9 sin(t), t ≥ 0

Then acceleration and velocity is

v(t) = s′(t) = −9sin(t)+9cos(t)

a(t) = v′(t) = −9cos(t) −9sin(t)

A medieval city has the shape of a square and is protected by walls with length 500 m and height 15 m. You are the commander of an attacking army and the closest you can get to the wall is 100 m. Your plan is to set fire to the city by catapulting heated rocks over the wall (with an initial speed of 80 m/s). At what range of angles should you tell your men to set the catapult? (Assume the path of the rocks is perpendicular to the wall. Round your answers to one decimal place. Use g ≈ 9.8 m/s2. Enter your answer using interval notation. Enter your answer in terms of degrees without using a degree symbol.)

Answers

Answer:

  θ₁ = 85.5º       θ₂ = 12.98º

Explanation:

Let's analyze this projectile launch problem, the catapults are 100 m from the wall 15 m high, the objective is for the walls, let's look for the angles for which the rock stops touching the wall.

Let's write the equations for motion for this point

X axis

          x = v₀ₓ t

          x = v₀ cos θ t

Y axis

         y = [tex]v_{oy}[/tex] t - ½ g t2

         y = v_{o} sin θ t - ½ g t²

let's substitute the values

         100 = 80 cos θ t

           15 = 80 sin θ t - ½ 9.8 t²

we have two equations with two unknowns, so the system can be solved

let's clear the time in the first equation

           t = 100/80 cos θ

         15 = 80 sin θ (10/8 cos θ) - 4.9 (10/8 cos θ)²

         15 = 100  tan θ - 7.656 sec² θ

we can use the trigonometric relationship

         sec² θ = 1- tan² θ

we substitute

       15 = 100 tan θ - 7,656 (1- tan² θ)

       15 = 100 tan θ - 7,656 + 7,656 tan² θ

        7,656 tan² θ + 100 tan θ -22,656=0

let's change variables

       tan θ = u

         

        u² + 13.06 u + 2,959 = 0

let's solve the quadratic equation

       u = [-13.06 ±√(13.06² - 4  2,959)] / 2

       u = [13.06 ± 12.599] / 2

        u₁ = 12.8295

        u₂ = 0.2305

now we can find the angles

         u = tan θ

         θ = tan⁻¹ u

        θ₁ = 85.5º

         θ₂ = 12.98º

Four identical charges particles of charge 1Uc, 2Uc,
3Uc and 4Uc
are placed at x = lm, x=2m,
x=3m and
x=5m. The electric field intensity
at origin is?

Answers

Answer:

17.94 kN/C is the electric field intensity at the origin due to the charges.

Explanation:

From the question, we are told that

The distance of 1 μC from origin = 1 m

The distance of 2 μC from origin = 2 m

The distance of 3 μC from origin = 3 m

The distance of 4 μC from origin = 5 m

Therefore, for us to find the electric field intensity, we'll solve below:

The formula for Electric field intensity = ( k * q ) / ( r * r )

where , r is distance ,

k = 9 * 10^9 ,

and , q is charge .

now ,

electric field intensity at the origin = [ k * 10^(-6) / 1 * 1 ] +[ k * 2 * 10^(-6) / 2 * 2 ] + [ k * 3 * 10^(-6) / 3 * 3 ] + [ k * 4 * 10^(-6) / 5 * 5 ]

=> electric field intensity at the origin = k * 10^(-6) [ 1 + 1/2 + 1/3 + 4/25 ] N/C

=> electric field intensity at the origin = 9 * 10^9 * 10^(-6) * 1.99 N/C

=> electric field intensity at the origin = 17.94 kN/C

A friend throws a heavy ball toward you while you are standing on smooth ice. You can either catch the ball or deflect it back toward your friend. What should you do in order to maximize your speed right after your interaction with the ball?
A. You should catch the ball.
B. You should let the ball go past you without touching it.
C. You should deflect the ball back toward your friend.
D. More information is required to determine how to maximize your speed.
E. It doesn't matter. Your speed is the same regardless of what you do.

Answers

Answer:

C You should deflect the ball back toward your friend.

Explanation:

This is because it would result in a completely inelastic collision, and the final velocity of me would be found using,

with m= mass, V=velocity, i=initial, f=final:

mV(me,i) +mV(ball,i) = [m(me)+m(b)]V(f)

So V(f) would be just the momentum of the ball divided by just MV mass of the ball and it will be higher resulting in inelastic collision

Answer:

A. You should catch the ball.

Explanation:

Catching the ball maximizes your speed by converting most of the momentum of the flying ball into the momentum of you and the ball. Since the ice is smooth, the friction between your feet and the ice is almost negligible, meaning less energy is needed to set your body in motion. Catching the ball means that you and the ball undergoes an inelastic collision, and part of the kinetic energy of the ball is transferred to you, setting you in motion. Deflecting the ball will only give you a relatively small speed compared to catching the ball.

The compressor of an air conditioner draws an electric current of 16.2 A when it starts up. If the start-up time is 1.45 s long, then how much electric charge passes through the circuit during this period

Answers

Answer:

Q = 23.49 C

Explanation:

We have,

Electric current drawn by the air conditioner is 16.2 A

Time, t = 1.45 s

It is required to find the electric charge passes through the circuit during this period. We know that electric current is defined as the electric charge flowing per unit time. So,

[tex]I=\dfrac{q}{t}\\\\q=It\\\\q=16.2\times 1.45\\\\q=23.49\ C[/tex]

So, the charge of 23.49 C is passing through the circuit during this period.

An electron, moving west, enters a magnetic field of a certain strength. Because of this field the electron curves upward. What is the direction of the magnetic field?

Answers

Answer:

Towards the west.

Explanation:

The direction of a magnetic field lines is the direction north end of a compass needle points. The magnetic field exert force on positive charge.

Using the magnetic rule,which indicate that in order to find the direction of magnetic force on a moving charge, the thumb of the right hand point in the direction of force, the index finger in the direction of velocity charge and the middle finger in the direction of magnetic field.

According to the right hand rule, the electron moving moving west which is the thumb, the direction of the electron is west which is the middle finger and it is upward

Other Questions
Fill in the blanks 1. Appeal to reason, appeal to credibility, apply to emotion 2. to make them feel admired if they listen to him, to show them that he is an expert on voting ,to help them understand how taxation works 3. to convince them he is knowledgeable about voters ,to make them feel they are patriotic Americans, to give them reasons for why they should vote SOMEONE PLEASE HELP ME ASAP PLEASE!! A study of an association between which ear is used for cell phone calls and whether the subject is left-handed or right-handed began with a survey e-mailed to 5000 people belonging to an otology online group, and 717 surveys were returned. (Otology relates to the ear and hearing.) What percentage of the 5000 surveys were returned? Does that response rate appear to be low? In general, what is a problem with a very low response rate? Of the 5000 surveys, nothing% were returned. This response rate appears does not appear to be low. 1. A car bought for $20,000. Its value depreciates by 10% each year for 3 years. What is the car's worth after3 years?2. Find the perimeter of a circle whose radius is 3.5cm. (Take pi = 22/7)3. The volume of a cone is 1540cm. If its radius is 7cm, calculate the height of the cone. (Take pi = 22/7)4. What is the coefficient of b in the expression b - 5b +185. Expand (x +2) (9 - x)7. Find x and y in the simultaneous equations. x + y = 4 3x + y = 88. Factorize a +3ab - 5ab - 15b9. The bearing of a staff room from the assembly ground is 195degrees, what is the bearing of the assembly ground from the staff room? Which represents a measure of volume?5 cm5 square cm5 cm5 cm Rollins Corporation is estimating its WACC. Its target capital structure is 20 percent debt, 20 percent preferred stock, and 60 percent common equity. Its bonds have a 12 percent coupon, paid semiannually, a current maturity of 20 years, and sell for $1,000. The firm could sell, at par, $100 preferred stock which pays a 12 percent annual dividend, but flotation costs of 5 percent would be incurred. Rollins' beta is 1.2, the risk-free rate is 10 percent, and the market risk premium is 5 percent. Rollins is a constant-growth firm which just paid a dividend of $2.00, sells for $27.00 per share, and has a growth rate of 8 percent. The firm's policy is to use a risk premium of 4 percentage points when using the bond-yield-plus-risk-premium method to find rs. The firm's marginal tax rate is 40 percent. What is Rollins' cost of preferred stock? Select one: a. 10.0% b. 11.0% c. 12.0% d. 12.6% e. 13.2% Which of the following expressions are equivalent to -9/6? Lisa drew three circles to form a figure. The areas of the circles were in theratio 1:4:16. She then shaded some parts of the figure as shown.What fraction of the figure was shaded? I am interested in the how, not just an answer. Who can show me the correct solution path? My mind is made up! If they do not offer me theft insurance, I will not buy the smartphone.Which of the following is this an example of? A) Best alternative to a negotiated agreement B) A specific limit objective C) A target objective D) An opening objective offer The windows of a downtown office building are arranged so that each floor has 6 fewer windows than the floor below. If the ground floor has 52 windows, how many windows are on the 8th floor? The burrowing owl is found in dry, open areas such as grasslands, prairies, savannas, deserts, farmlands, golf courses, and other urban areas throughout most of western United States and Florida, Central America, and most of South America. It makes its home in burrows of other animals and primarily eats insects and small rodents. As humans build more cities, nearby burrowing owl habitats change due to destruction of burrows and loss of prey. Which is the least likely outcome of the habitat changes that are described? WILL GIVE BRAINLIEST AND 25 POINTS! Which art category does this image most reflect? Explain your answer. Which of the following is an example of a government's laissez-faire approach to business and theeconomy?O During a strike the government sends negotiators to work out a deal between the company and itsworkersThe government brings a court case against a telecommunications company that has a 'monopoly inthe state of Coloradoo Congress votes down a law providing a loan to a failing car manufacturer Given the following diagram, are OC and OE opposite rays ? development of society is also called transformation of society justify the statement in short Accounts Receivable has a balance of $6,000, and the Allowance for Bad Debts has a credit balance of $400. The allowance method is used. What is the net realizable value of Accounts Receivable after a $150 account receivable is written off What is the difference between requirements and controls in the security process? Give examples of each. The graph of f(x) =7x is reflected across the x-axis. write a function g(x) to describe the new graph. G(x)=___ Dr. Pagels is a mammalogist who studies meadow and common voles. He frequently traps the moles and has noticed what appears to be a preference for a peanut butter-oatmeal mixture by the meadow voles vs apple slices are usually used in traps, where the common voles seem to prefer the apple slices. So he conducted a study where he used a peanut butter-oatmeal mixture in half the traps and the normal apple slices in his remaining traps to see if there was a food preference between the two different voles.Indicate which of the following is the null hypothesis, and which is the alternate hypothesis.There food preferences among vole species are independent of one another. _____There is a relationship between voles and food preference. ______To test for independence, we need to calculate the Chi-square statistic.These are the data that Dr. Pagels collected:meadow voles common volesapple slices 26 32peanut butter-oatmeal 35 25When transferring your answers, make sure you carry them out to AT LEAST SIX SIGNIFICANT FIGURES unless otherwise stated._____= expected meadow vole/apple slices_____= expected common vole/apple slices_____= expected meadow vole/peanut butter-oatmeal_____= expected common vole/peanut butter-oatmeal_____= chi-square value_____= degrees of freedom (whole number only)_____= using Statistical Table A (pg 704 of your textbook), what is the chi-square critical value with significance level of alpha=0.05?_____= will you reject or fail to reject the null hypothesis? (answer either reject or fail to reject)