Answer:
First, convert 13.5 m/s to km/hr
13.5 x 3.6 = 48.6 km/hr
This is below the speed limit of 50 km/hr
Answer:
48600/hour × 1/1000= 48.6km/h
Step-by-step explanation:
Refer to the accompanying data set and construct a 90​% confidence interval estimate of the mean pulse rate of adult​ females; then do the same for adult males. Compare the results.
Male/Females
81 82
77 94
53 60
59 66
53 53
60 81
54 78
76 83
52 87
64 53
73 34
57 64
65 83
78 74
79 81
66 66
69 65
94 76
45 61
89 64
71 82
66 80
70 71
74 77
52 88
68 90
56 87
79 91
75 89
62 93
66 68
96 87
60 83
65 81
55 74
57 56
70 101
70 71
83 74
57 77
The required 90% confidence interval for adult males is
[tex]\text {CI} = (64.2, \: 70.6)\\\\[/tex]
The required 90% confidence interval for adult females is
[tex]\text {CI} = (72, \: 79.2)\\\\[/tex]
The confidence interval of male and female pulse rates do not overlap since the mean pulse rate of female is way greater than the mean pulse rate of males.
Step-by-step explanation:
We are given the pulse rates of adult females and adult males and we have to construct the 90% confidence interval of the mean pulse rate for males and females.
Let us first compute the mean and standard deviation of the given pulse rates data.
Using Excel,
=AVERAGE(number1, number2,....)
The mean pulse rate of adult males is found to be
[tex]\bar{x}_{male} = 67.4[/tex]
The mean pulse rate of adult females is found to be
[tex]\bar{x}_{female} = 75.6[/tex]
Using Excel,
=STDEV(number1, number2,....)
The standard deviation for adult male pulse rate is found to be
[tex]s_{male} = 11.9[/tex]
The standard deviation for adult female pulse rate is found to be
[tex]s_{female} = 13.5[/tex]
The confidence interval is given by
[tex]$ \text {CI} = \bar{x} \pm t_{\alpha/2}(\frac{s}{\sqrt{n} } ) $\\\\[/tex]
Where [tex]\bar{x}[/tex] is the sample mean, n is the sample size, s is the sample standard deviation and [tex]t_{\alpha/2}[/tex] is the t-score corresponding to a 90% confidence level.
The t-score corresponding to a 90% confidence level is
Significance level = α = 1 - 0.90 = 0.10/2 = 0.05
Degree of freedom = n - 1 = 40 - 1 = 39
From the t-table at α = 0.05 and DoF = 39
t-score = 1.685
The required 90% confidence interval for adult males is
[tex]\text {CI} = 67.4 \pm 1.685\cdot \frac{11.9}{\sqrt{40} } \\\\\text {CI} = 67.4 \pm 1.685\cdot 1.882\\\\\text {CI} = 67.4 \pm 3.17\\\\\text {CI} = 67.4 - 3.17, \: 67.4 + 3.17\\\\\text {CI} = (64.2, \: 70.6)\\\\[/tex]
Therefore, we are 90% confident that the actual mean pulse rate of adult male is within the range of 64.2 to 70.6 bpm
The required 90% confidence interval for adult females is
[tex]\text {CI} = 75.6 \pm 1.685\cdot \frac{13.5}{\sqrt{40} } \\\\\text {CI} = 75.6 \pm 1.685\cdot 2.1345\\\\\text {CI} = 75.6 \pm 3.60\\\\\text {CI} = 75.6 - 3.60, \: 75.6 + 3.60\\\\\text {CI} = (72, \: 79.2)\\\\[/tex]
Therefore, we are 90% confident that the actual mean pulse rate of adult female is within the range of 72 to 79.2 bpm
Comparison:
The confidence interval of male and female pulse rates do not overlap since the mean pulse rate of female is way greater than the mean pulse rate of males.
Suppose the sequence StartSet a Subscript n Baseline EndSet is defined by the recurrence relation a Subscript n plus 1equalsnegative 2na Subscript n, for nequals1, 2, 3,..., where a1equals5. Write out the first five terms of the sequence.
Answer:
-10, 40, -240, 1,920 and -19, 200
Step-by-step explanation:
Given the recurrence relation of the sequence defined as aₙ₊₁ = -2naₙ for n = 1, 2, 3... where a₁ = 5, to get the first five terms of the sequence, we will find the values for when n = 1 to n =5.
when n= 1;
aₙ₊₁ = -2naₙ
a₁₊₁ = -2(1)a₁
a₂ = -2(1)(5)
a₂ = -10
when n = 2;
a₂₊₁ = -2(2)a₂
a₃ = -2(2)(-10)
a₃ = 40
when n = 3;
a₃₊₁ = -2(3)a₃
a₄ = -2(3)(40)
a₄ = -240
when n= 4;
a₄₊₁ = -2(4)a₄
a₅ = -2(4)(-240)
a₅ = 1,920
when n = 5;
a₅₊₁ = -2(5)a₅
a₆ = -2(5)(1920)
a₆ = -19,200
Hence, the first five terms of the sequence is -10, 40, -240, 1,920 and -19, 200
heres a list of numbers 3 6 9 7 4 6 7 0 7 Find median,mean,range and mode
median=order them and find the middle=6
mean=add them all up and divide by the amount of numbers=(3+6+9+7+4+6+7+0 +7)/9=5.4
range= the difference between the smallest and largest number=9-3=6
mode= the one that appears the most= 7
The median, mean, range and mode will be 6, 5.4, 9 and 7.
The median is the number in the middle when arranged in an ascending order. The numbers will be:
0, 3, 4, 6, 6, 7, 7, 7, 9.
The median is 6.
The range is the difference between the highest and lowest number which is: = 9 - 0 = 9
The mode is the number that appears most which is 7.
The mean will be the average which will be:
= (0 + 3 + 4 + 6 + 6 + 7 + 7 + 7 + 9) / 9.
= 49/9
= 5.4
Read related link on:
https://brainly.com/question/9426296
What is the discontinuity of x2+7x+1/x2+2x-15?
The discontinuity occurs when x is either -5 or 3.
That is determined by solving denominator = 0 quadratic equation for x.
Hope this helps.
Factor completely 2x3y + 18xy - 10x2y - 90y. I need this done today in a few minutes.
Answer:
2y (x^2+9) ( x-5)
Step-by-step explanation:
2x^3y + 18xy - 10x^2y - 90y
Factor out the common factor of 2y
2y(x^3+9x-5x^2-45)
Then factor by grouping
2y(x^3+9x -5x^2-45)
Taking x from the first group and -5 from the second
2y( x (x^2+9) -5(x^2+9))
Now factor out (x^2+9)
2y (x^2+9) ( x-5)
Find the upper and lower sums for the region bounded by the graph of the function and the x-axis on the given interval. Leave your answer in terms of n, the number of subintervals. Function Interval f(x) = 7 − 2x [1, 2]
Answer:
-2n
Step-by-step explanation:
f(x)=7-2x {1,2}
f(1)=7-2(1)=5
f(2)=7-2(2)=3
Slope (m)=3/5
{7-2(1)}-{7-2(2)}=3-5=-2
In terms of n=-2n
The upper and lower sums for the region bounded by the graph of the function and the x-axis on the given interval is [5, 3]
Given the function of the graph bounded by the inteval [1, 2] expressed as
f(x) = 7 - 2x
The upper limit of the function is the point where the domain of the function x is 2. Substitute x = 2 into the function, we will have:
f(2) = 7 - 2(2)
f(2) = 7 - 4
f(2) = 3
For the lower limit, the domain of the function is at x = 2:
f(1) = 7 - 2(1)
f(1) = 7 - 2
f(1) = 5
Hence the upper and lower sums for the region bounded by the graph of the function and the x-axis on the given interval is [5, 3].
Learn more here: https://brainly.com/question/18829130
Reese needs to understand the integer laws to complete his homework. As he recites his rules, he is overheard saying "a positive plus a positive is positive, a negative plus a negative is negative, and a positive plus a negative is a negative". Is he right? Explain why or why not?
Answer:
No
Step-by-step explanation:
Let's check the first statement with an example. 2 and 3 are positive numbers and their sum (5) is also positive so his first statement is true.
To check the second statement let's look at the negative numbers -1 and -8 for example. Their sum (-9) is also negative so his second statement is true.
To check the third statement let's look at the numbers 9 and -5. One is positive and one is negative, but their sum (4) is positive, so his third statement is false. However if we look at the numbers 4 and -7, their sum is negative so the third statement is partially false.
Find the area of a circle with a diameter of 8yards. Use 3.14. The area of the circle is approximate
Answer:
50.24 yd²
Step-by-step explanation:
pi r² = (3.14)(4)² = 50.24
find the LCM and solve, it's very very urgent.
Answers:
1. 10502. 12003. 12004. 33605. 10806. 480please see the attached picture for full solution..
Hope it helps....
Good luck on your assignment...
find the value of k if x minus 2 is a factor of P of X that is X square + X + k
Answer:
k = -6
Step-by-step explanation:
hello
saying that (x-2) is a factor of [tex]x^2+x+k[/tex]
means that 2 is a zero of
[tex]x^2+x+k=0 \ so\\2^2+2+k=0\\<=> 4+2+k=0\\<=> 6+k =0\\<=> k = -6[/tex]
and we can verify as
[tex](x^2+x-6)=(x-2)(x+3)[/tex]
so it is all good
hope this helps
Please help! V^2 = 25/81
Answer:
C and D
Step-by-step explanation:
khan acedemy
An equation is formed when two equal expressions. The solutions to the given equation are A, B, and C.
What is an equation?An equation is formed when two equal expressions are equated together with the help of an equal sign '='.
The solution of the given equation v²=25/81 can be found as shown below.
v²=25/81
Taking the square root of both sides of the equation,
√(v²) = √(25/81)
v = √(25/81)
v = √(5² / 9²)
v = ± 5/9
Hence, the solutions of the given equation are A, B, and C.
Learn more about Equation here:
https://brainly.com/question/2263981
#SPJ2
Clara writes the following proof for the theorem: If the diagonals of a quadrilateral bisect each other, the quadrilateral is a parallelogram:
Answer:
CPCTC
Step-by-step explanation:
Statements 3 and 4 show the top and bottom triangles are congruent, and the left and right triangles are congruent. Statement 5 is making use of these facts to claim that the alternate interior angles are congruent. This claim is valid because ...
Corresponding Parts of Congruent Triangles are Congruent (CPCTC)
Which of the following is represented by MN?
Answer: MN represents the radius of the circle.
Step-by-step explanation:
The radius is the distance from the center to the outside of the circle.
You want to obtain a sample to estimate a population mean. Based on previous evidence, you believe the population standard deviation is approximately σ = 58.2 σ=58.2. You would like to be 99% confident that your estimate is within 1 of the true population mean. How large of a sample size is required? Do not round mid-calculation.
Answer:
[tex]n=(\frac{2.58(58.2)}{1})^2 =22546.82 \approx 22547[/tex]
So the answer for this case would be n=22547 rounded up to the nearest integer
Step-by-step explanation:
Let's define some notation
[tex]\bar X[/tex] represent the sample mean
[tex]\mu[/tex] population mean (variable of interest)
[tex]\sigma=58.2[/tex] represent the population standard deviation
n represent the sample size
[tex] ME =1[/tex] represent the margin of error desire
The margin of error is given by this formula:
[tex] ME=z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex] (a)
And on this case we have that ME =+1 and we are interested in order to find the value of n, if we solve n from equation (a) we got:
[tex]n=(\frac{z_{\alpha/2} \sigma}{ME})^2[/tex] (b)
The critical value for 99% of confidence interval now can be founded using the normal distribution. The significance would be [tex]\alpha=0.01[/tex] and the critical value [tex]z_{\alpha/2}=2.58[/tex], replacing into formula (b) we got:
[tex]n=(\frac{2.58(58.2)}{1})^2 =22546.82 \approx 22547[/tex]
So the answer for this case would be n=22547 rounded up to the nearest integer
Diagramming Percents
Percents
Total
An item was marked down 60% from its original price.
The amount of the discount was $30. Fill in the
numbers that belong in the diagram to find the original
price
20%
20%
20%
20%
20%
A=
B=
C=
Answer:
see below
Step-by-step explanation:
Let x be the original price
x* discount rate = discount
x * 60% = 30
Change to decimal form
x * .60 = 30
Divide each side by .60
x = 30/.60
x =50
The original price was 50 dollars
Answer:
A-30 B-20 C-50
Step-by-step explanation:
The Aluminum Association reports that the average American uses 56.8 pounds of aluminum in a year. A random sample of 51 households is monitored for one year to determine aluminum usage. If the population standard deviation of annual usage is 12.2 pounds, what is the probability that the sample mean will be each of the following? Appendix A Statistical Tables a. More than 61 pounds
Answer:
0.007
Step-by-step explanation:
We were told in the above question that a random sample of 51 households is monitored for one year to determine aluminum usage
Step 1
We would have to find the sample standard deviation.
We use the formula = σ/√n
σ = 12.2 pounds
n = number of house holds = 51
= 12.2/√51
Sample Standard deviation = 1.7083417025.
Step 2
We find the z score for when the sample mean is more than 61
z-score formula is z = (x-μ)/σ
where:
x = raw score = 61 pounds
μ = the population mean = 56.8 pounds
σ = the sample standard deviation = 1.7083417025
z = (x-μ)/σ
z = (61 - 56.8)/ 1.7083417025
z = 2.45852
Finding the Probability using the z score table
P(z = 2.45852) = 0.99302
P(x>61) = 1 - P(z = 2.45852) = 0.0069755
≈ 0.007
Therefore,the probability that the sample mean will be more than 61 pounds is 0.007
The area of a rectangular horse pasture is 268,500 square yards. The length of the pasture is 5 yards less than three times the width. What is the width of the pasture in yards? Do not include units in your answer. Please help right away! Thank you very much!
Answer: width = 300
Step-by-step explanation:
Area (A) = Length (L) x width (w)
Given: A = 268,500
L = 3w - 5
w = w
268,500 = (3w - 5) x (w)
268,500 = 3w² - 5w
0 = 3w² - 5w - 268,500
0 = (3w + 895) (w - 300)
0 = 3w + 895 0 = w - 300
-985/3 = w 300 = w
Since width cannot be negative, disregard w = -985/3
So the only valid answer is: w = 300
my dad is designing a new garden. he has 21 feet of fencing to go around the garden. he wants the length of the garden to be 1 1/2 feet longer than the width. how wide should he make the garden?
Answer:
21=2w+2w+3 18=4w w=4.5
Perform the operation 3/a^2+2/ab^2
Answer:
Step-by-step explanation:
Least common denominator = a²b²
[tex]\frac{3}{a^{2}}+\frac{2}{ab^{2}}=\frac{3*b^{2}}{a^{2}*b^{2}}+\frac{2*a}{ab^{2}*a}\\\\=\frac{3b^{2}}{a^{2}b^{2}}+\frac{2a}{a^{2}b^{2}}\\\\=\frac{3b^{2}+2a}{a^{2}b^{2}}[/tex]
I'm having a hard time with this. A new housing development extends 4 miles in one direction, makes a right turn, and then con- tinues for 3 miles. A new road runs between the beginning and ending points of the development. What is the perimeter of the triangle formed by the homes and the road? What is the area of the housing development?
Answer:
perimeter = 12 miles
area = 6 square miles
Step-by-step explanation:
Since it makes a right triangle, use the Pythagorean Formula.
3^2+4^2=c^2
9+16=c^2
25=c^2
5=c, so the hypotenuse of the right triangle is 5.
Perimeter = 3+4+5 = 12 miles
area = 1/2bh (1/2 base times height)
=1/2x3x4
=6
Area = 6 square miles
Any polygon can be the base of a prism. A. True B. False
Answer:
true
Step-by-step explanation:
A prism is a solid with parallelogram sides (usually rectangles) and a polygon for the 2 bases. Any polygon can be the base.
Answer:
Hello!
__________________
Your answer would be (A) True.
Step-by-step explanation: Hope this helped you!
Any polygon can be the base of a prism so the answer is true.
Convert into the following unit into 30 cm into miter
Answer:
it we'll be 0.3
Step-by-step explanation:
trust me man I like to explain but it's long
Answer:
0.3 meter or 3/10 meter
Step-by-step explanation:
As there are 100cm in 1 meter and you want to find 30cm in terms of meters.
It will be as
100cm = 1 meter (rule/lax)
100/100 cm = 1/100 meter (divide both sides of equation with 100)
1 cm = 1/100 meter
1 *30 cm = (1/100)*30 meter (multiply both sides with 30)
30 cm = 30/100 meter
30/100 more shortly can be written as 3/10 meter or in decimals 0.3 meter.
Profit Function for Producing Thermometers The Mexican subsidiary of ThermoMaster manufactures an indoor-outdoor thermometer. Management estimates that the profit (in dollars) realizable by the company for the manufacture and sale of x units of thermometers each week is represented by the function below, where x ≥ 0. Find the interval where the profit function P is increasing and the interval where P is decreasing. (Enter your answer using interval notation.) P(x) = −0.004x2 + 6x − 5,000 Increasing: Decreasing:
Answer:
Increasing: [tex](0, 750)[/tex]
Decreasing: [tex](750, \infty)[/tex]
Step-by-step explanation:
Critical points:
The critical points of a function f(x) are the values of x for which:
[tex]f'(x) = 0[/tex]
For any value of x, if f'(x) > 0, the function is increasing. Otherwise, if f'(x) < 0, the function is decreasing.
The critical points help us find these intervals.
In this question:
[tex]P(x) = -0.004x^{2} + 6x - 5000[/tex]
So
[tex]P'(x) = -0.008x + 6[/tex]
Critical point:
[tex]P'(x) = 0[/tex]
[tex]-0.008x + 6 = 0[/tex]
[tex]0.008x = 6[/tex]
[tex]x = \frac{6}{0.008}[/tex]
[tex]x = 750[/tex]
We have two intervals:
(0, 750) and [tex](750, \infty)[/tex]
(0, 750)
Will find P'(x) when x = 1
[tex]P'(x) = -0.008x + 6 = -0.008*1 + 6 = 5.992[/tex]
Positive, so increasing.
Interval [tex](750, \infty)[/tex]
Will find P'(x) when x = 800
[tex]P'(x) = -0.008x + 6 = -0.008*800 + 6 = -0.4[/tex]
Negative, then decreasing.
Answer:
Increasing: [tex](0, 750)[/tex]
Decreasing: [tex](750, \infty)[/tex]
Irvin buys a car for $21 comma 804. It depreciates 25% each year that he owns it. What is the depreciated value of the car after 1 yr? after 2 yr? The depreciated value of the car after 1 yr is $? The depreciated value of the car after 2 yr is $?
Answer:
The depreciated value of the car after 1 yr is $16,353
The depreciated value of the car after 2 yr is $12,264.75
Step-by-step explanation:
Given
purchase amount P= $21,804
rate of depreciation R= 25%
applying the formula for the car deprecation we have
[tex]A= P*(1-\frac{R}{100} )^n[/tex]
Where,
A is the value of the car after n years,
P is the purchase amount,
R is the percentage rate of depreciation per annum,
n is the number of years after the purchase.
1. The depreciated value of the car after 1 yr is
n=1
[tex]A= 21,804*(1-\frac{25}{100} )^1\\\\A= 21,804*(1-0.25 )^1\\\\A= 21,804*0.75\\\\A= 16353[/tex]
The depreciated value of the car after 1 yr is $16,353
2. The depreciated value of the car after 2 yr is
n=2
[tex]A= 21,804*(1-\frac{25}{100} )^2\\\\A= 21,804*(1-0.25 )^2\\\\A= 21,804*0.75^2\\\\A= 21,804*0.5625\\\\A= 12264.75[/tex]
The depreciated value of the car after 2 yr is $12,264.75
By what percent will the fraction increase if its numerator is increased by 60% and denominator is decreased by 20% ?
Answer:
100%
Step-by-step explanation:
Start with x.
x = x/1
Increase the numerator by 60% to 1.6x.
Decrease the numerator by 20% to 0.8.
The new fraction is
1.6x/0.8
Do the division.
1.6x/0.8 = 2x
The fraction increased from x to 2x. It became double of what it was. From x to 2x, the increase is x. Since x was the original number x is 100%.
The increase is 100%.
Answer:
33%
Step-by-step explanation:
let fraction be x/y
numerator increased by 60%
=x+60%ofx
=8x
denominator increased by 20%
=y+20%of y
so the increased fraction is 4x/3y
let the fraction is increased by a%
then
x/y +a%of (x/y)=4x/3y
or, a%of(x/y)=x/3y
[tex]a\% = \frac{x}{3y} \times \frac{y}{x} [/tex]
therefore a=33
anda%=33%
ratio 300 ml to 6 l
Answer:
20
Step-by-step explanation:
fist you convert 6l to ml=6×1000
then,300/300:6000/300
gives you 1:20
y-9=-2(x-8) what is the slope?
Answer:
-2Step-by-step explanation:
Write in slope intercept form.
y - 9 = -2(x - 8)
y - 9 = -2x + 16
y = -2x + 16 + 9
y = -2x + 25
y = mx + b
The m is the slope, b is the y-intercept.
y = -2 x + 25
The slope is -2.
A fair die is rolled repeatedly. Calculate to at least two decimal places:__________
a) the chance that the first 6 appears before the tenth roll
b) the chance that the third 6 appears on the tenth roll
c) the chance of seeing three 6's among the first ten rolls given that there were six 6's among the first twenty roles.
d) the expected number of rolls until six 6's appear
e) the expected number of rolls until all six faces appear
Answer:
a. 0.34885
b. 0.04651
c. 0.02404
d. 36
e. 14.7, say 15 trials
Step-by-step explanation:
Q17070205
Note:
1. In order to be applicable to established probability distributions, each roll is considered a Bernouilli trial, i.e. has only two outcomes, success or failure, and are all independent of each other.
2. use R to find the probability values from the respective distributions.
a) the chance that the first 6 appears before the tenth roll
This means that a six appears exactly once between the first and the nineth roll.
Using binomial distribution, p=1/6, n=9, x=1
dbinom(1,9,1/6) = 0.34885
b) the chance that the third 6 appears on the tenth roll
This means exactly two six's appear between the first and 9th rolls, and the tenth roll is a six.
Again, we have a binomial distribution of p=1/6, n=9, x=2
p1 = dbinom(2,9,1/6) = 0.27908
The probability of the tenth roll being a 6 is, evidently, p2 = 1/6.
Thus the probability of both happening, by the multiplication rule, assuming independence
P(third on the tenth roll) = p1*p2 = 0.04651
c) the chance of seeing three 6's among the first ten rolls given that there were six 6's among the first twenty roles.
Again, using binomial distribution, probability of 3-6's in the first 10 rolls,
p1 = dbinom(3,10,1/6) = 0.15504
Probability of 3-6's in the NEXT 10 rolls
p1 = dbinom(3,10,1/6) = 0.15504
Probability of both happening (multiplication rule, assuming both events are independent)
= p1 * p1 = 0.02404
d) the expected number of rolls until six 6's appear
Using the negative binomial distribution, the expected number of failures before n=6 successes, with probability p = 1/6
= n(1-p)/p
Total number of rolls by adding n
= n(1-p)/p + n = n(1-p+p)/p = n/p = 6/(1/6) = 36
e) the expected number of rolls until all six faces appear
P1 = 6/6 because the firs trial (roll) can be any face with probability 1
P2 = 6/5 because the second trial for a different face has probability 5/6, so requires 6/5 trials
P3 = 6/4 ...
P4 = 6/3
P5 = 6/2
P6 = 6/1
So the total mean (expected) number of trials is 6/6+6/5+6/4+6/3+6/2+6/1 = 14.7, say 15 trials
What is the value of x in the equation 0.7 x - 1.4 = -3.5
Answer:
x=12.5
Step-by-step explanation:
0.7x times (-1.4)=-3.5
-0.28x=-3.5 (divide both sides)
Ans:12.5
Consider circle T with radius 24 in. and θ = StartFraction 5 pi Over 6 EndFraction radians. Circle T is shown. Line segments S T and V T are radii with lengths of 24 inches. Angle S T V is theta. What is the length of minor arc SV?
Answer:
20π inStep-by-step explanation:
Length of an arc is expressed as [tex]L = \frac{\theta}{2\pi } * 2\pi r\\[/tex]. Given;
[tex]\theta = \frac{5\pi }{6} rad\\ radius = 24in\\[/tex]
The length of the minor arc SV is expressed as:
[tex]L = \frac{\frac{5\pi }{6} }{2\pi } * 2\pi (24)\\L = \frac{5\pi }{12\pi } * 48\pi \\L = \frac{5}{12} * 48\pi \\L = \frac{240\pi }{12} \\L = 20\pi \ in[/tex]
Hence, The length of the arc SV is 20π in
Answer:
20 pi
Step-by-step explanation: