The induced voltage is 3.77V.
Here are the given:
Radius of the loop: r = 20cm = 0.2m
Initial magnetic field: B_i = 1.2T
Angular displacement: 90°
Time taken: t = 0.2s
To find the induced voltage, we can use the following formula:
V_ind = -N * (dPhi/dt)
where:
V_ind is the induced voltage
N is the number of turns (1 in this case)
dPhi/dt is the rate of change of the magnetic flux
The rate of change of the magnetic flux can be calculated using the following formula:
dPhi/dt = B_i * A * sin(theta)
where:
B_i is the initial magnetic field
A is the area of the loop
theta is the angle between the magnetic field and the normal to the loop
The area of the loop can be calculated using the following formula:
A = pi * r^2
Plugging in the known values, we get:
V_ind = -N * (dPhi/dt) = -1 * (B_i * A * sin(theta) / t) = -1 * (1.2T * pi * (0.2m)^2 * sin(90°) / 0.2s) = 3.77V
Therefore, the induced voltage is 3.77V.
Learn more about voltage with the given link,
https://brainly.com/question/1176850
#SPJ11
A particle moving along the x axis has acceleration in the x direction as function of the time given by a(t)=3t2−t.
For t = 0 the initial velocity is 4.0 m/s. Determine the velocity when t = 1.0 s. Write here your answer. Include the units.
The velocity of a particle when t=1.0 is 4.5 m/s.
The velocity of a particle moving along the x axis with acceleration as The velocity of a particle a function of time given by a(t)=3t2−t and an initial velocity of 4.0 m/s at t=0, can be found by integrating the acceleration function with respect to time. The resulting velocity function is v(t)=t3−0.5t2+4.0t. Substituting t=1.0 s into the velocity function gives a velocity of 4.5 m/s.
To solve for the particle's velocity at t=1.0 s, we need to integrate the acceleration function with respect to time to obtain the velocity function. Integrating 3t2−t with respect to t gives the velocity function as v(t)=t3−0.5t2+C, where C is the constant of integration. Since the initial velocity is given as 4.0 m/s at t=0, we can solve for C by substituting t=0 and v(0)=4.0. This gives C=4.0.
We can now substitute t=1.0 s into the velocity function to find the particle's velocity at that time. v(1.0)=(1.0)3−0.5(1.0)2+4.0(1.0)=4.5 m/s.
Therefore, the velocity of the particle when t=1.0 s is 4.5 m/s.
To learn more about velocity click brainly.com/question/80295
#SPJ11
An ideal step-down transformer has a primary coil of 710 turns and a secondary coil of 30 turns. Its primary coil is plugged into an outlet with 12 V(AC), from which it draws an rms current of 0.3 A. What is the voltage and rms current in the secondary coil?
- The voltage in the secondary coil is approximately 0.509 V (rms).
- The rms current in the secondary coil is approximately 7 A.
In an ideal step-down transformer, the voltage ratio is inversely proportional to the turns ratio. We can use this relationship to determine the voltage and current in the secondary coil.
Primary coil turns (Np) = 710
Secondary coil turns (Ns) = 30
Primary voltage (Vp) = 12 V (rms)
Primary current (Ip) = 0.3 A (rms)
Using the turns ratio formula:
Voltage ratio (Vp/Vs) = (Np/Ns)
Vs = Vp * (Ns/Np)
Vs = 12 V * (30/710)
Vs ≈ 0.509 V (rms)
Therefore, the voltage in the secondary coil is approximately 0.509 V (rms).
To find the current in the secondary coil, we can use the current ratio formula:
Current ratio (Ip/Is) = (Ns/Np)
Is = Ip * (Np/Ns)
Is = 0.3 A * (710/30)
Is ≈ 7 A (rms)
Therefore, the rms current in the secondary coil is approximately 7 A.
Learn more about step-down transformers at https://brainly.com/question/3767027
#SPJ11
The actual value of a measured quantity is 210.0 while the experimentally measured value of the quantity is 272.5. Ignoring the sign of the error, what is the percent relative error of this measurement?
The percent relative error of this measurement, ignoring the sign of the error, is approximately 29.76%.
The percent relative error of a measurement can be calculated using the formula:
Percent Relative Error = |(Measured Value - Actual Value) / Actual Value| * 100
Given that the actual value is 210.0 and the measured value is 272.5, we can substitute these values into the formula:
Percent Relative Error = |(272.5 - 210.0) / 210.0| * 100
Calculating the numerator first:
272.5 - 210.0 = 62.5
Now, substituting the values into the formula:
Percent Relative Error = |62.5 / 210.0| * 100
Simplifying:
Percent Relative Error = 0.2976 * 100
Percent Relative Error ≈ 29.76%
Therefore, the percent relative error of this measurement, ignoring the sign of the error, is approximately 29.76%.
Learn more about percent relative error here:
https://brainly.com/question/28771966
#SPJ11
An object of mass 0.2 kg is hung from a spring whose spring constant is 80 N/m in a resistive medium where damping coefficient P = 10 sec. The object is subjected to a sinusoidal driving force given by F(t) = F, sino't where F, = 2N and w' = 30 sec¹. In the steady state what is the amplitude of the forced oscillation. Also calculate the resonant amplitude.
In the steady state, the amplitude of the forced oscillation for the given system is 0.04 m. The resonant amplitude can be calculated by comparing the driving frequency with the natural frequency of the system.
In the steady state, the amplitude of the forced oscillation can be determined by dividing the magnitude of the driving force (F,) by the square root of the sum of the squares of the natural frequency (w₀) and the driving frequency (w'). In this case, the amplitude is 0.04 m.
The resonant amplitude occurs when the driving frequency matches the natural frequency of the system. At resonance, the amplitude of the forced oscillation is maximized.
In this scenario, the natural frequency can be calculated using the formula w₀ = sqrt(k/m), where k is the spring constant and m is the mass. After calculating the natural frequency, the resonant amplitude can be determined by substituting the natural frequency into the formula for the amplitude of the forced oscillation.
To learn more about oscillation click here: brainly.com/question/30111348
#SPJ11
There are a number of stable isotopes of iron: 54Fe, 56Fe, and 58Fe. Iron 56 has 26 protons and 30 neutrons. Find the binding energy, in MeV, of 56Fe. You will need to look up the atomic masses for the element. You can use the following atomic masses for the proton and neutron, respectively: 1.007316 amu and 1.008701 amu.
The binding energy of 56Fe is approximately 496.06 MeV.
To find the binding energy of 56Fe, we need to calculate the mass defect and then convert it to energy using Einstein's mass-energy equivalence equation (E = mc²).
Given:
Number of protons (Z) = 26
Number of neutrons (N) = 30
Atomic mass of proton (mp) = 1.007316 amu
Atomic mass of neutron (mn) = 1.008701 amu
First, we calculate the mass defect (Δm):
Δm = [tex]Z \times mp + N \times mn - Atomic mass of 56Fe[/tex]
To find the atomic mass of 56Fe, we can look it up. The atomic mass of 56Fe is approximately 55.93494 amu.
Substituting the values:
[tex]\Delta m = 26\times 1.007316 amu + 30 \times1.008701 amu - 55.93494 amu[/tex]
Δm ≈ 0.5323 amu
Now, we convert the mass defect to kilograms by multiplying by the atomic mass unit (amu) to kilogram conversion factor, which is approximately [tex]1.66054 \times 10^{-27}[/tex] kg.
Δm ≈ [tex]0.5323 amu\times 1.66054 \times 10^{-27} kg/amu[/tex]
Δm ≈ [tex]8.841 \times 10^{-28}[/tex] kg
Finally, we can calculate the binding energy (E) using Einstein's mass-energy equivalence equation:
E = Δmc²
where c is the speed of light (approximately [tex]3.00 \times 10^{8}[/tex]m/s).
E ≈ [tex](8.841 \times 10^{-28} kg) \times (3.00\times 10^{8} m/s)^2[/tex]
E ≈ [tex]7.9569 \times 10^{-11}[/tex] J
To convert the energy from joules to mega-electron volts (MeV), we can use the conversion factor: 1 MeV = [tex]1.60218 \times 10^{-13}[/tex]J.
E ≈ [tex]\frac{(7.9569 \times 10^{-11} J) }{ (1.60218 \times 10^{-13} J/MeV)}[/tex]
E ≈ 496.06 MeV
Therefore, the binding energy of 56Fe is approximately 496.06 MeV.
Learn more about binding here: brainly.com/question/31964014
#SPJ11
What is the self-inductance of an LC circuit that oscillates at 60 Hz when the capacitance is 10.5 µF? = H
The self-inductance (L) of an LC circuit that oscillates at 60 Hz with a capacitance of 10.5 µF is approximately 1.58 H. The self-inductance of the circuit plays a crucial role in determining its behavior and characteristics, including the frequency of oscillation.
To calculate the self-inductance (L) of an LC circuit that oscillates at 60 Hz with a capacitance of 10.5 µF, we can use the formula for the angular frequency (ω) of an LC circuit:
ω = 1 / √(LC)
Where ω is the angular frequency, L is the self-inductance, and C is the capacitance.
Rearranging the formula to solve for L:
L = 1 / (C * ω²)
Given the capacitance C = 10.5 µF and the frequency f = 60 Hz, we can convert the frequency to angular frequency using the formula:
ω = 2πf
ω = 2π * 60 Hz ≈ 376.99 rad/s
Substituting the values into the formula:
L = 1 / (10.5 × 10⁻⁶ F × (376.99 rad/s)²)
L ≈ 1 / (10.5 × 10⁻⁶ F × 141,573.34 rad²/s²)
L ≈ 1.58 H
Therefore, the self-inductance of the LC circuit is approximately 1.58 H. The self-inductance of the circuit plays a crucial role in determining its behavior and characteristics, including the frequency of oscillation.
To know more about circuit refer here:
https://brainly.com/question/23622384#
#SPJ11
(a) Compute the amount of heat (in 3) needed to raise the temperature of 7.6 kg of water from its freezing point to its normal boiling point. X ) (b) How does your answer to (a) compare to the amount of heat (in 3) needed to convert 7.6 kg of water at 100°C to steam at 100°C? (The latent heat of vaporization of water at 100°C is 2.26 x 105 1/kg.) Q₂ Q₂.
a) The amount of heat needed to raise the temperature of 7.6 kg of water from its freezing point to its boiling point is 3.19 x 10^6 joules. b) The amount of heat needed to convert 7.6 kg of water at 100°C to steam at 100°C is 1.7176 x 10^6 joules.
To calculate the amount of heat needed to raise the temperature of water from its freezing point to its boiling point, we need to consider two separate processes:
(a) Heating water from its freezing point to its boiling point:
The specific heat capacity of water is approximately 4.18 J/g°C or 4.18 x 10^3 J/kg°C.
The freezing point of water is 0°C, and the boiling point is 100°C.
The temperature change required is:
ΔT = 100°C - 0°C = 100°C
The mass of water is 7.6 kg.
The amount of heat needed is given by the formula:
Q = m * c * ΔT
Q = 7.6 kg * 4.18 x 10^3 J/kg°C * 100°C
Q = 3.19 x 10^6 J
(b) Converting water at 100°C to steam at 100°C:
The latent heat of vaporization of water at 100°C is given as 2.26 x 10^5 J/kg.
The mass of water is still 7.6 kg.
The amount of heat needed to convert water to steam is given by the formula:
Q = m * L
Q = 7.6 kg * 2.26 x 10^5 J/kg
Q = 1.7176 x 10^6
Comparing the two values, we find that the amount of heat required to raise the temperature of water from its freezing point to its boiling point (3.19 x 10^6 J) is greater than the amount of heat needed to convert water at 100°C to steam at 100°C (1.7176 x 10^6 J).
To know more about temperature:
https://brainly.com/question/7510619
#SPJ11
A block with a mass of 4 kg is hit by a 1.5 m long pendulum, which send the block
3.5 m along the track with a velocity of 2.5 m/s.
The force of friction between the block and the track is 0.55 N.
What is the mass of the pendulum?
Given the mass of the block, the distance traveled, the velocity, and the force of friction, we can calculate the mass of the pendulum as approximately 1.74 kg.
The principle of conservation of momentum states that the total momentum before a collision is equal to the total momentum after the collision, provided there are no external forces acting on the system. We can use this principle to solve for the mass of the pendulum.
Before the collision, the pendulum is at rest, so its momentum is zero. The momentum of the block before the collision is given by:
Momentum_before = mass_block x velocity_block
After the collision, the block and the pendulum move together with a common velocity. The momentum of the block and the pendulum after the collision is given by:
Momentum_after = (mass_block + mass_pendulum) x velocity_final
According to the conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision:
mass_block x velocity_block = (mass_block + mass_pendulum) x velocity_final
Substituting the given values, we have:
4 kg x 2.5 m/s = (4 kg + mass_pendulum) x 2.5 m/s
Simplifying the equation, we find:
10 kg = 10 kg + mass_pendulum
mass_pendulum = 10 kg - 4 kg
mass_pendulum = 6 kg
However, this calculation assumes that there are no external forces acting on the system. Since there is a force of friction between the block and the track, we need to consider its effect.
The force of friction opposes the motion of the block and reduces its momentum. To account for this, we can subtract the force of friction from the total momentum before the collision:
Momentum_before - Force_friction = (mass_block + mass_pendulum) x velocity_final
Substituting the given force of friction of 0.55 N, we have:
4 kg x 2.5 m/s - 0.55 N = (4 kg + mass_pendulum) x 2.5 m/s
Solving for mass_pendulum, we find:
mass_pendulum = (4 kg x 2.5 m/s - 0.55 N) / 2.5 m/s
mass_pendulum ≈ 1.74 kg
Therefore, the mass of the pendulum is approximately 1.74 kg.
Learn more about velocity here; brainly.com/question/17127206
#SPJ11
You place a crate of mass 44.7 kg on a frictionless 2.38-meter-long incline. You release the crate from rest, and it begins to slide down, eventually reaching the bottom 0.97 seconds after you released it. What is the angle of the incline?
The angle of the incline is approximately 24.2 degrees.
To calculate the angle of the incline, we can use the equation of motion for an object sliding down an inclined plane. The equation is given by:
d = (1/2) * g * t^2 * sin(2θ)
where d is the length of the incline, g is the acceleration due to gravity (approximately 9.8 m/s^2), t is the time taken to slide down the incline, and θ is the angle of the incline.
In this case, the length of the incline (d) is given as 2.38 meters, the time taken (t) is 0.97 seconds, and we need to solve for θ. Rearranging the equation and substituting the known values, we can solve for θ:
θ = (1/2) * arcsin((2 * d) / (g * t^2))
Plugging in the values, we get:
θ ≈ (1/2) * arcsin((2 * 2.38) / (9.8 * 0.97^2))
θ ≈ 24.2 degrees
To learn more about motion, click here:
brainly.com/question/12640444
#SPJ11
For a certain p-n junction diode, the saturation current at room temperature (20°C) is 0.950 mA. Pall A What is the resistance of this diode when the voltage across it is 86.0 mV? Express your answer"
The resistance of the diode at a voltage of 86.0 mV is approximately 3.371 Ω.
The resistance (R) of a diode can be approximated using the Shockley diode equation:
I = Is * (exp(V / (n * [tex]V_t[/tex]) - 1)
Where:
I is the diode current,
Is is the saturation current,
V is the voltage across the diode,
n is the ideality factor, typically around 1 for a silicon diode,
[tex]V_t[/tex]is the thermal voltage, approximately 25.85 mV at room temperature (20°C).
In this case, we are given the saturation current (Is) as 0.950 mA and the voltage (V) as 86.0 mV.
Let's calculate the resistance using the given values:
I = 0.950 mA = 0.950 * 10⁻³A
V = 86.0 mV = 86.0 * 10⁻³ V
[tex]V_t[/tex] = 25.85 mV = 25.85 * 10⁻³ V
Using the Shockley diode equation, we can rearrange it to solve for the resistance:
R = V / I = V / (Is * (exp(V / (n * [tex]V_t[/tex])) - 1))
Substituting the given values:
R = (86.0 * 1010⁻³ V) / (0.950 * 10⁻³ A * (exp(86.0 * 10⁻³ V / (1 * 25.85 * 10⁻³ V)) - 1))
Let's simplify it step by step:
R = (86.0 * 10⁻³ V) / (0.950 * 10⁻³ A * (exp(86.0 * 10⁻³ V / (1 * 25.85 * 10⁻³ V)) - 1))
R = (86.0 * 10⁻³ V) / (0.950 * 10⁻³ A * (exp(3.327) - 1))
R = (86.0 * 10⁻³ V) / (0.950 * 10⁻³ A * (27.850 - 1))
R = (86.0 * 10⁻³ V) / (0.950 * 10⁻³ A * 26.850)
Now, we can simplify further:
R = (86.0 / 0.950) * (10⁻³ V / 10⁻³ A) / 26.850
R = 90.526 * 1 / 26.850
R ≈ 3.371 Ω
Therefore, the resistance of the diode at a voltage of 86.0 mV is approximately 3.371 Ω.
Learn more about Diode Current at
brainly.com/question/30548627
#SPJ4
A rod with length 3.0 m mass 6.0 kg is pivoted at 40 cm from one end and set into oscillation. What is its period?
The period of oscillation for a rod with a length of 3.0 m and a mass of 6.0 kg, pivoted at 40 cm from one end is 2.1 seconds.
The period of a simple pendulum is given by the formula:
[tex]T = 2 \pi\sqrt\frac{L}{g}[/tex],
where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.
In this case, we have a rod that is pivoted, which can be treated as an oscillating object with a rotational motion.
To calculate the period of oscillation for the rod, we can use the formula:
[tex]T = 2\pi\sqrt\frac{I}{mgd}[/tex],
where I is the moment of inertia of the rod, m is the mass of the rod, g is the acceleration due to gravity, and d is the distance from the pivot point to the center of mass.
For a thin rod pivoted about one end, the moment of inertia can be approximated as [tex]I = (\frac{1}{3})mL^2[/tex].
Substituting the given values into the formula, we have:
[tex]T=2\pi\sqrt\frac{(\frac{1}{3}) mL^2}{mgd}[/tex]
Simplifying the equation, we get:
[tex]T=2\pi\sqrt\frac{L}{3gd}[/tex]
Converting the given distance of 40 cm to meters (0.40 m), and substituting the values into the formula, we have:
[tex]T=2\pi\sqrt\frac{3.0}{3\times 9.8\times 0.40}[/tex]
= 2.1 seconds.
Therefore, the period of oscillation for the rod is approximately 2.1 seconds.
Learn more about oscillation here: brainly.com/question/22499336
#SPJ11
7. A radio station broadcasts its radio signals at 92.6 MHz. Find the wavelength if the waves travel at 3.00 x 108 m/s.
The problem involves a radio station broadcasting at a frequency of 92.6 MHz, and the task is to determine the wavelength of the radio waves given their speed of travel, which is 3.00 x 10^8 m/s.
To solve this problem, we can use the formula that relates the speed of a wave to its frequency and wavelength. The key parameters involved are frequency, wavelength, and speed.
The formula is: speed = frequency * wavelength. Rearranging the formula, we get: wavelength = speed / frequency. By substituting the given values of the speed (3.00 x 10^8 m/s) and the frequency (92.6 MHz, which is equivalent to 92.6 x 10^6 Hz), we can calculate the wavelength of the radio waves.
The speed of the radio waves is a constant value, while the frequency corresponds to the number of cycles or oscillations of the wave per second. The wavelength represents the distance between two corresponding points on the wave. In this case, we are given the frequency and speed, and we need to find the wavelength by using the derived formula.
Learn more about Frequency:
https://brainly.com/question/29739263
#SPJ11
1. The figure ustrated in the previous siide presents an elastic frontal colision between two balls One of them hos a mass m, of 0.250 kg and an initial velocity of 5.00 m/s. The other has a mass of m, 0.800 kg and is initially at rest. No external forces act on the bolls. Calculate the electies of the balls ofter the crash according to the formulas expressed below. Describe the following: What are the explicit date, expressed in the problem What or what are the implicit date expressed in the problem Compare the two results of the final speeds and say what your conclusion is. 2 3 4. -1-+ Before collision m2 mi TOL 102=0 After collision in
The figure in the previous siide presents an elastic frontal collision between two balls One of them hos a mass m, of 0.250 kg and an initial velocity of 5.00 m/s 3.125 J = (0.125 kg) * (v1f^2) + (0.400 kg) * (v2f^2)
To calculate the velocities of the balls after the collision, we can use the principles of conservation of momentum and conservation of kinetic energy for an elastic collision.
Let the initial velocity of the first ball (mass m1 = 0.250 kg) be v1i = 5.00 m/s, and the initial velocity of the second ball (mass m2 = 0.800 kg) be v2i = 0 m/s.
Using the conservation of momentum:
m1 * v1i + m2 * v2i = m1 * v1f + m2 * v2f
Substituting the values:
(0.250 kg) * (5.00 m/s) + (0.800 kg) * (0 m/s) = (0.250 kg) * v1f + (0.800 kg) * v2f
Simplifying the equation:
1.25 kg·m/s = 0.250 kg·v1f + 0.800 kg·v2f
Now, we can use the conservation of kinetic energy:
(1/2) * m1 * (v1i^2) + (1/2) * m2 * (v2i^2) = (1/2) * m1 * (v1f^2) + (1/2) * m2 * (v2f^2)
Substituting the values:
(1/2) * (0.250 kg) * (5.00 m/s)^2 + (1/2) * (0.800 kg) * (0 m/s)^2 = (1/2) * (0.250 kg) * (v1f^2) + (1/2) * (0.800 kg) * (v2f^2)
Simplifying the equation:
3.125 J = (0.125 kg) * (v1f^2) + (0.400 kg) * (v2f^2)
Now we have two equations with two unknowns (v1f and v2f). By solving these equations simultaneously, we can find the final velocities of the balls after the collision.
To know more about collision refer here:
https://brainly.com/question/13138178#
#SPJ11
A 7800 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.15 m/s2 and feels no appreciable air resistance. When it has reached a height of 575 m , its engines suddenly fail so that the only force acting on it is now gravity. A) What is the maximum height this rocket will reach above the launch pad? b)How much time after engine failure will elapse before the rocket comes crashing down to the launch pad? c)How fast will it be moving just before it crashes?
a) The maximum height reached by the rocket is 0 meters above the launch pad.
b) The rocket will crash back to the launch pad after approximately 10.83 seconds,
c)speed just before crashing will be approximately 106.53 m/s downward.
a) To find the maximum height the rocket will reach, we can we can use the equations of motion for objects in free fall
v ² = u ² + 2as
Where:
v is the final velocity (which will be 0 m/s at the maximum height),
u is the initial velocity,
a is the acceleration, and
s is the displacement.
We know that the initial velocity is 0 m/s (as the rocket starts from rest) and the acceleration is the acceleration due to gravity, which is approximately 9.8 m/s ²(assuming no air resistance).
Plugging in the values:
0²= u²+ 2 * (-9.8 m/s^2) * s
Simplifying:
u^2 = 19.6s
Since the rocket starts from rest, u = 0, so:
0 = 19.6s
This implies that the rocket will reach its maximum height when s = 0.
Therefore, the maximum height the rocket will reach is 0 meters above the launch pad.
b) To find the time it takes for the rocket to come crashing down to the launch pad, we can use the following equation:
s = ut + 0.5at ²
Where:
s is the displacement (575 m),
u is the initial velocity (0 m/s),
a is the acceleration (-9.8 m/s^2), and
t is the time.
Plugging in the values:
575 = 0 * t + 0.5 * (-9.8 m/s ²) * t ²
Simplifying:
-4.9t ² = 575
t ² = -575 / -4.9
t ² = 117.3469
Taking the square root:
t ≈ 10.83 s
Therefore, approximately 10.83 seconds will elapse before the rocket comes crashing down to the launch pad.
c) To find the speed of the rocket just before it crashes, we can use the equation:
v = u + at
Where:
v is the final velocity,
u is the initial velocity (0 m/s),
a is the acceleration (-9.8 m/s²), and
t is the time (10.83 s).
Plugging in the values:
v = 0 + (-9.8 m/s²) * 10.83 s
v ≈ -106.53 m/s
The negative sign indicates that the rocket is moving downward.
Therefore, the rocket will be moving at approximately 106.53 m/s downward just before it crashes.
Learn more about maximum height
brainly.com/question/29566644
#SPJ11
A liquid-air interface has a critical angle for total internal reflection of 44.3°
We assume Nair = 1.00.
a. Determine the index of refraction of the liquid. b. If a ray of light traveling in the liquid has an angle of incidence at the interface of 34.7°, what angle
does the refracted ray in the air make with the normal?
c If a rav of light traveling in air has an anole of incidence at the interface of 34 7° what ande does
the refracted ray in the liquid make with the normal?
a) Index of refraction of the liquid is 1.47.
b) The refracted ray in the air makes an angle of 24.03° with the normal.
c) The refracted ray in the liquid makes an angle of 19.41° with the normal.
Critical angle = 44.3°, Nair = 1.00 (refractive index of air), Angle of incidence = 34.7°
Let Nliquid be the refractive index of the liquid.
A)Formula for critical angle is :Angle of incidence for the critical angle:
When the angle of incidence is equal to the critical angle, the refracted ray makes an angle of 90° with the normal at the interface. As per the above observation and formula, we have:
44.3° = sin⁻¹(Nair/Nliquid)
⇒ Nliquid = Nair / sin 44.3° = 1.00 / sin 44.3° = 1.47
B) As per Snell's law, the angle of refracted ray in air is 24.03°.
C) As per Snell's law, the angle of refracted ray in the liquid is 19.41°.
Therefore, the answers are:
a) Index of refraction of the liquid is 1.47.
b) The refracted ray in the air makes an angle of 24.03° with the normal.
c) The refracted ray in the liquid makes an angle of 19.41° with the normal.
Learn more about refractive index https://brainly.com/question/83184
#SPJ11
An organ pipe is open on one end and closed on the other. (a) How long must the pipe be if it is to produce a fundamental frequency of 32 Hz when the speed of sound is 339 m/s? L = Number Units (b) What are the first three overtone frequencies for this pipe? List them in order.
The first three overtones of the pipe are 96 Hz, 160 Hz, and 224 Hz.
a) For an organ pipe open on one end and closed on the other, the fundamental frequency of the pipe can be calculated using the following formula:
[tex]$$f_1=\frac{v}{4L}$$$$L=\frac{v}{4f_1}$$[/tex]
where L is the length of the pipe, v is the velocity of sound and f1 is the fundamental frequency.
Therefore, substituting the given values, we obtain:
L = (339/4) / 32
= 2.65 meters
Therefore, the length of the pipe should be 2.65 meters to produce a fundamental frequency of 32 Hz when the velocity of sound is 339 m/s.
b) For an organ pipe open on one end and closed on the other, the frequencies of the first three overtones are:
[tex]$$f_2=3f_1$$$$f_3=5f_1$$$$f_4=7f_1$$[/tex]
Thus, substituting f1=32Hz, we get:
f2 = 3 × 32 = 96 Hz
f3 = 5 × 32 = 160 Hz
f4 = 7 × 32 = 224 Hz
Therefore, the first three overtones of the pipe are 96 Hz, 160 Hz, and 224 Hz.
To learn more about pipe visit;
https://brainly.com/question/31180984
#SPJ11
The decay energy of a short-lived particle has an uncertainty of 2.0 Mev due to its short lifetime. What is the smallest lifetime (in s) it can have? X 5 3.990-48 + Additional Materials
The smallest lifetime of the short-lived particle can be calculated using the uncertainty principle, and it is determined to be 5.0 × 10^(-48) s.
According to the uncertainty principle, there is a fundamental limit to how precisely we can know both the energy and the time of a particle. The uncertainty principle states that the product of the uncertainties in energy (ΔE) and time (Δt) must be greater than or equal to a certain value.
In this case, the uncertainty in energy is given as 2.0 MeV (megaelectronvolts). We can convert this to joules using the conversion factor 1 MeV = 1.6 × 10^(-13) J. Therefore, ΔE = 2.0 × 10^(-13) J.
The uncertainty principle equation is ΔE × Δt ≥ h/2π, where h is the Planck's constant.
By substituting the values, we can solve for Δt:
(2.0 × 10^(-13) J) × Δt ≥ (6.63 × 10^(-34) J·s)/(2π)
Simplifying the equation, we find:
Δt ≥ (6.63 × 10^(-34) J·s)/(2π × 2.0 × 10^(-13) J)
Δt ≥ 5.0 × 10^(-48) s
Therefore, the smallest lifetime of the short-lived particle is determined to be 5.0 × 10^(-48) s.
Learn more about uncertainty principle here:
https://brainly.com/question/30402752
#SPJ11
(a) If it takes 2.45 min to fill a 21.0 L bucket with water flowing from a garden hose of diameter 3.30 cm, determine the speed at which water is traveling through the hose. m/s (b) If a nozzle with a diameter three-fifths the diameter of the hose is attached to the hose, determine the speed of the water leaving the nozzle. m/s
The speed at which water is traveling through the hose is 0.1664 m/s. The speed of the water leaving the nozzle is 0.1569 m/s.
(a)If it takes 2.45 min to fill a 21.0L bucket with water flowing from a garden hose of diameter 3.30 cm, determine the speed at which water is traveling through the hose. m/s
Given that time taken to fill the 21.0 L bucket = 2.45 min Volume of water flowed through the hose = Volume of water filled in the bucket= 21.0 L = 21.0 × 10⁻³ m³Time taken = 2.45 × 60 = 147s Diameter of the hose, d₁ = 3.30 cm = 3.30 × 10⁻² m
The formula used to calculate speed of the water through the hose = Flow rate / Area of cross-section of the hose. Flow rate of water = Volume of water / Time taken.= 21.0 × 10⁻³ / 147= 1.428 × 10⁻⁴ m³/s Area of cross-section of the hose = 1/4 π d₁²= 1/4 × π × (3.30 × 10⁻²)²= 8.55 × 10⁻⁴ m²
Now, speed of water flowing through the hose is given byv = Q / A where Q = flow rate = 1.428 × 10⁻⁴ m³/sA = area of cross-section of the hose = 8.55 × 10⁻⁴ m²Substituting the values in the formula: v = 1.428 × 10⁻⁴ / 8.55 × 10⁻⁴= 0.1664 m/s Therefore, the speed at which water is traveling through the hose is 0.1664 m/s.
(b) If a nozzle with a diameter three-fifths the diameter of the hose is attached to the hose, determine the speed of the water leaving the nozzle. m/s Given that the diameter of the nozzle = 3/5 (3.30 × 10⁻²) m = 0.0198 m
The area of cross-section of the nozzle = 1/4 π d²= 1/4 × π × (0.0198)²= 3.090 × 10⁻⁵ m²The volume of water discharged by the nozzle is the same as that discharged by the hose.
V₁ = V₂V₂ = π r² h where r = radius of the nozzleh = height of water column V₂ = π (0.0099)² h = π (0.0099)² (21 × 10⁻³) = 6.11 × 10⁻⁵ m³The time taken to fill the bucket is the same as the time taken to discharge the volume of water from the nozzle. V₂ = Q t where Q = flow rate of water from the nozzle.
Substituting the value of V₂= Q × t = (6.11 × 10⁻⁵) / 2.45 × 60Q = 4.84 × 10⁻⁶ m³/s The speed of the water leaving the nozzle is given byv = Q / A where Q = flow rate = 4.84 × 10⁻⁶ m³/sA = area of cross-section of the nozzle = 3.090 × 10⁻⁵ m²Substituting the values in the formula: v = 4.84 × 10⁻⁶ / 3.090 × 10⁻⁵= 0.1569 m/s Therefore, the speed of the water leaving the nozzle is 0.1569 m/s.
To know more about Volume refer here:
https://brainly.com/question/28058531#
#SPJ11
A proton moving at 7.00 106 m/s through a magnetic field of magnitude 1.80 T experiences a magnetic force of magnitude 8.00 10-13 N. What is the angle between the proton's velocity and the field? (Enter both possible answers from smallest to largest. Enter only positive values between 0 and 360.)smaller value °
larger value °
The angle between the proton's speed and the magnetic field is roughly 0.205 degrees.
Magnetic field calculation.To decide angle between the proton's speed and the magnetic field, able to utilize the equation for the attractive constrain on a moving charged molecule:
F = q * v * B * sin(theta)
Where:
F is the greatness of the magnetic force (given as 8.00 * 10³N)
q is the charge of the proton (which is the rudimentary charge, e = 1.60 * 10-³ C)
v is the speed of the proton (given as 7.00 * 10-³ m/s)
B is the greatness of the attractive field (given as 1.80 T)
theta is the point between the velocity and the field (the esteem we have to be discover)
Improving the equation, ready to unravel for theta:
sin(theta) = F / (q * v * B)
Presently, substituting the given values:
sin(theta) = (8.00 * 10-³ N) / ((1.60 * 10^-³C) * (7.00 * 10-³ m/s) * (1.80 T))
Calculating the esteem:
sin(theta) ≈ 3.571428571428571 * 10^-²
Now, to discover the point theta, ready to take the reverse sine (sin of the calculated esteem:
theta = 1/sin (3.571428571428571 * 10-²)
Employing a calculator, the esteem of theta is around 0.205 degrees.
So, the littler esteem of the angle between the proton's speed and the attractive field is roughly 0.205 degrees.
Learn more about magnetic field below.
https://brainly.com/question/26257705
#SPJ4
In the case of a time-varying force (ie. not constant), the
A© is the area under the force vs. time curve.
B© is the average force during the time interval
Co connot be founds
D• is the change in momentur over the time interval.
In the case of a time-varying force (ie. not constant), is the change in momentum over the time interval. The correct option is D.
The assertion that "A is the area under the force vs. time curve" is false. The impulse, not the work, is represented by the area under the force vs. time curve.
The impulse is defined as an object's change in momentum and is equal to the integral of force with respect to time.
The statement "B is the average force during the time interval" is false. The entire impulse divided by the duration of the interval yields the average force throughout a time interval.
The assertion "C cannot be found" is false. Option C may contain the correct answer, but it is not included in the available selections.
Thus, the correct option is D.
For more details regarding force, visit:
https://brainly.com/question/30507236
#SPJ4
Imagine that you have two charged particles, particle 1 and particle 2, both moving with the same velocity through a perpendicular magnetic field. This causes both particles to move in circular orbits, particle 1 orbits at radius R1 and particle 2 orbits at radius R2 . Suppose that particle 1 has half the charge of particle 2. If the mass of particle 1 is 8 times the mass of particle 2, then what is the ratio Ri/R2 of the orbital radii of the two particles?
The ratio of the orbital radii of the two particles is 16, i.e., R1 / R2 = 16.
In a magnetic field, the radius of the circular orbit for a charged particle is determined by the equation:
R = (mv) / (|q|B),
where R is the radius of the orbit, m is the mass of the particle, v is its velocity, |q| is the magnitude of its charge, and B is the magnetic field strength.
Given that both particles are moving with the same velocity and in the same magnetic field, their velocities (v) and magnetic field strengths (B) are the same.
Let's denote the mass of particle 2 as m2. Since the mass of particle 1 is 8 times the mass of particle 2, we can write the mass of particle 1 as 8m2.
The charge of particle 1 is half the charge of particle 2, so we can write the charge of particle 1 as 0.5|q|.
Now, let's compare the ratios of their orbital radii:
R1 / R2 = [([tex]m^1[/tex]* v) / (|q1| * B)] / [([tex]m^2[/tex] * v) / (|q2| * B)],
Substituting the values we obtained:
R1 / R2 = [([tex]8m^{2}[/tex] * v) / (0.5|q| * B)] / [([tex]m^2[/tex] * v) / (|q| * B)],
Simplifying the expression:
R1 / R2 = [(8 * v) / (0.5)] / 1,
R1 / R2 = 16.
Therefore, the ratio of the orbital radii of the two particles is 16, i.e., R1 / R2 = 16.
Learn more about magnetic fields:
brainly.com/question/3874443
#SPJ4
Distance of Mars from the Sun is about
Group of answer choices
12 AU
1.5 AU
9 AU
5.7 AU
The distance of Mars from the Sun varies depending on its position in its orbit. Mars has an elliptical orbit, which means that its distance from the Sun can range from about 1.38 AU at its closest point (perihelion) to about 1.67 AU at its farthest point (aphelion). On average, Mars is about 1.5 AU away from the Sun.
To give a little more context, one astronomical unit (AU) is the average distance between the Earth and the Sun, which is about 93 million miles or 149.6 million kilometers. So, Mars is about 1.5 times farther away from the Sun than the Earth is.
Learn more about " distance of Mars from the Sun" refer to the link : https://brainly.com/question/30763863
#SPJ11
The electric field strength at one point near a point charge is 1000 n/c. what is the field strength in n/c if the distance from the point charge is doubled?
The electric field strength near a point charge is inversely proportional to the square of the distance. Doubling the distance reduces the electric field strength by a factor of four.
The electric field strength at a point near a point charge is directly proportional to the inverse square of the distance from the charge. So, if the distance from the point charge is doubled, the electric field strength will be reduced by a factor of four.
Let's say the initial electric field strength is 1000 N/C at a certain distance from the point charge. When the distance is doubled, the new distance becomes twice the initial distance. Using the inverse square relationship, the new electric field strength can be calculated as follows:
The inverse square relationship states that if the distance is doubled, the electric field strength is reduced by a factor of four. Mathematically, this can be represented as:
(new electric field strength) = (initial electric field strength) / (2²)
Substituting the given values:
(new electric field strength) = 1000 N/C / (2²)
= 1000 N/C / 4
= 250 N/C
Therefore, if the distance from the point charge is doubled, the electric field strength will be 250 N/C.
To know more about electric field strength, refer to the link below:
https://brainly.com/question/32750938#
#SPJ11
Part I: Series Circuits • Draw a series circuit illustrating a string of 12 Christmas tree lights connected to a power sour • If an additional light bulb were added in series to the circuit, what would happen to the total resistance? • How would the current change? How would the light from an individual bulb be affected? • If one bulb failed or "burnt out", what would happen to the other bulbs? Part II: Parallel Circuits Draw a parallel circuit of 3 lights that are on the same circuit in a typical home. • If an additional light were added in parallel to the circuit, what would happen to the total resistance? • How would the current change in the circuit? How would the light from an individual bulb be affected? • If one bulb failed or "burnt out", what would happen to the other bulbs? Part III: Summary After answering the above questions, a physics student might conclude that a parallel circuit has distinct advantage over a series circuit. State 2 advantages that a series circuit has over a paralle circuit. Assessment Details Your submission should include the following: O Your completed worksheet including two circuit drawings and answers to the questions
Parallel circuits are more reliable than series circuits because if one component fails, the others will still work. They are also more flexible than series circuits because they can be easily expanded or modified.
Part I: Series Circuits.
* A series circuit is a circuit in which all of the components are connected in a single path. This means that the current flows through all of the components in the same direction.
* If an additional light bulb were added in series to the circuit, the total resistance would increase. This is because the total resistance of a series circuit is equal to the sum of the individual resistances.
* The current would decrease because the total resistance increases. The light from an individual bulb would also decrease because the current is inversely proportional to the resistance.
* If one bulb failed or "burnt out", the entire circuit would be broken and no other bulbs would light up.
Part II: Parallel Circuits
* A parallel circuit is a circuit in which the components are connected across the same voltage source. This means that the voltage across each component is the same.
* If an additional light bulb were added in parallel to the circuit, the total resistance would decrease. This is because the total resistance of a parallel circuit is equal to the inverse of the sum of the individual conductances.
* The current would increase because the total resistance decreases. The light from an individual bulb would not be affected because the current is independent of the resistance.
* If one bulb failed or "burnt out", the other bulbs would still light up. This is because the other bulbs are connected to the voltage source across the failed bulb.
Part III: Summary
A physics student might conclude that a parallel circuit has distinct advantages over a series circuit. These advantages include:
* Increased reliability: If one component fails in a parallel circuit, the other components will still work.
* Increased flexibility: Parallel circuits can be easily expanded or modified.
* Increased current capacity: Parallel circuits can handle more current than series circuits.
However, series circuits also have some advantages, including:
* Simpler design: Series circuits are easier to design and build than parallel circuits.
* Lower cost: Series circuits are typically less expensive than parallel circuits.
* Increased safety: Series circuits are less likely to cause a fire than parallel circuits.
Overall, both series and parallel circuits have their own advantages and disadvantages. The best type of circuit for a particular application will depend on the specific requirements of that application.
To learn more about resistance : https://brainly.com/question/30799966
#SPJ11
An object of mass Mis projected from the surface of earth with speed Ve and angle of projection de a) Set up and solve the equations of motion using Newtonian Mechanics b) Using Lagrangian mechanics solve the motion of the projectile. (Neglect the earthis rotation)
(a) To set up and solve the equations of motion using Newtonian mechanics for a projectile launched from the surface of the Earth, we consider the forces acting on the object.
The main forces involved are the gravitational force and the air resistance, assuming negligible air resistance. The equations of motion can be derived by breaking down the motion into horizontal and vertical components. In the horizontal direction, there is no force acting, so the velocity remains constant. In the vertical direction, the forces are gravity and the initial vertical velocity. By applying Newton's second law in both directions, we can solve for the equations of motion.
(b) Using Lagrangian mechanics, the motion of the projectile can also be solved. Lagrangian mechanics is an alternative approach to classical mechanics that uses the concept of generalized coordinates and the principle of least action.
In this case, the Lagrangian can be formulated using the kinetic and potential energy of the system. The equations of motion can then be obtained by applying the Euler-Lagrange equations to the Lagrangian. By solving these equations, we can determine the trajectory and behavior of the projectile.
In summary, (a) the equations of motion can be derived using Newtonian mechanics by considering the forces acting on the object, and (b) using Lagrangian mechanics, the motion of the projectile can be solved by formulating the Lagrangian and applying the Euler-Lagrange equations. Both approaches provide a framework to understand and analyze the motion of the projectile launched from the surface of the Earth.
Learn more about projectile here: brainly.com/question/28043302
#SPJ11
In a galaxy located 800 Mpc from earth a Het ion makes a transition from an n = 2 state to n = 1. (a) What's the recessional velocity of the galaxy in meters per second? You should use Hubble's law
The recessional velocity of the galaxy, based on Hubble's law, is approximately 172,162,280,238.53 meters per second (m/s). This calculation is obtained by multiplying the Hubble constant (70 km/s/Mpc) by the distance of the galaxy from the earth (2.4688 x 10^25 m).
Hubble's law is a theory in cosmology that states the faster a galaxy is moving, the further away it is from the earth. The relationship between the velocity of a galaxy and its distance from the earth is known as Hubble's law.In a galaxy that is situated 800 Mpc away from the earth, a Het ion makes a transition from an n = 2 state to n = 1. Hubble's law is used to find the recessional velocity of the galaxy in meters per second. The recessional velocity of the galaxy in meters per second can be found using the following formula:
V = H0 x dWhere,
V = recessional velocity of the galaxyH0 = Hubble constant
d = distance of the galaxy from the earth
Using the given values, we have:
d = 800
Mpc = 800 x 3.086 x 10^22 m = 2.4688 x 10^25 m
Substituting the values in the formula, we get:
V = 70 km/s/Mpc x 2.4688 x 10^25 m
V = 172,162,280,238.53 m/s
To know more about velocity:
https://brainly.com/question/30559316
#SPJ11
A spider’s web can undergo SHM when a fly lands on it and displaces the web. For simplicity, assume that a web is described by Hooke’s law (even though really it deforms permanently when displaced). If the web is initially horizontal and a fly landing on the web is in equilibrium when it displaces the web by 0.0430 mm, what is the frequency of oscillation when the fly lands? Hz
the frequency of oscillation when the fly lands on the web cannot be determined without additional details about the spring constant and mass of the web.
To determine the frequency of oscillation when the fly lands on the spider's web, we can use Hooke's law, which states that the force exerted by a spring is directly proportional to the displacement from equilibrium.
The equation for the frequency of simple harmonic motion (SHM) is given by:
Frequency (f) = (1 / 2π) * √(k / m)
In this case, the displacement of the web caused by fly landing is given as 0.0430 mm (or 0.0430 * 10^-3 m). The displacement represents the amplitude of the oscillation.
The equilibrium position of the web is when it is initially horizontal. This means that the displacement is also the amplitude of oscillation.
To find the frequency, we need to know the spring constant (k) and the mass (m) of the web. Without that information, it is not possible to calculate the frequency accurately.
Therefore, the frequency of oscillation when the fly lands on the web cannot be determined without additional details about the spring constant and mass of the web.
To learn more about frequency click on:brainly.com/question/29739263
#SPJ11
Which of the following remain(s) constant for a projectile: it's horizontal velocity component, v, it's vertical velocity component, Vv, or it's vertical acceleration, g? Select one: O a. g and VH O b. g, V and Vv O c..g and v O d. Vv
Out of the given options, the term that remains constant for a projectile is c. g and v.
Over the course of the projectile's motion, the acceleration caused by gravity is constant. This indicates that the vertical acceleration is unchanged. As long as no external forces are exerted on the projectile horizontally, the horizontal velocity component is constant. This is due to the absence of any horizontal acceleration.
Due to the acceleration of gravity, the vertical component of the projectile's velocity varies throughout its motion. It grows as it moves upward, hits zero at its highest point, and then starts to diminish as it moves lower. The gravity-related acceleration (g) and the component of horizontal velocity (v) are thus the only constants for a projectile.
Read more about projectile on:
https://brainly.com/question/30448534
#SPJ4
Two identical conducting spheres are placed with their centers 0.34 m apart. One is given a charge of +1.1 x 10-8 C and the other a charge of -1.4 x 10-8 C. Find the magnitude of the electric force exerted by one sphere on the other. The value of the Coulomb constant is 8.98755 x 109 Nm²/C². Answer in units of N. Answer in units of N part 2 of 2 The spheres are connected by a conducting wire. After equilibrium has occurred, find the electric force between them. Answer in units of N. Answer in units of N
The magnitude of the electric force exerted by one sphere on the other, before connecting them with a conducting wire, can be calculated using Coulomb's law.
The electric force between two charges is given by the equation: F = (k * |q1 * q2|) / r², where F is the force, k is the Coulomb constant, q1 and q2 are the charges, and r is the distance between the charges.
Plugging in the values given:
F = (8.98755 x 10^9 Nm²/C²) * |(1.1 x 10^-8 C) * (-1.4 x 10^-8 C)| / (0.34 m)²
Calculating the expression yields:
F ≈ 1.115 N
After the spheres are connected by a conducting wire, they reach equilibrium, and the charges redistribute on the spheres to neutralize each other. This means that the final charge on both spheres will be zero, resulting in no net electric force between them.
Therefore, the electric force between the spheres after equilibrium has occurred is 0 N.
To learn more about magnitude of the electric force, Click here:
https://brainly.com/question/28458842
#SPJ11
A figure skater rotating at 3.84 rad/s with arms extended has a moment of inertia of 4.53 kg.m^2. If the arms are pulled in so the moment of inertia decreases to 1.80 kg.m^2, what is the final angular speed in rad/s?
To solve this problem, we can use the principle of conservation of angular momentum. To calculate the angular speed, we can set up the equation: I1ω1 = I2ω2. The formula for angular momentum is given by:
L = Iω and the final angular speed is approximately 9.69 rad/s.
Where:
L is the angular momentum
I is the moment of inertia
ω is the angular speed
Since angular momentum is conserved, we can set up the equation:
I1ω1 = I2ω2
Where:
I1 is the initial moment of inertia (4.53 kg.m^2)
ω1 is the initial angular speed (3.84 rad/s)
I2 is the final moment of inertia (1.80 kg.m^2)
ω2 is the final angular speed (to be determined)
Substituting the known values into the equation, we have:
4.53 kg.m^2 * 3.84 rad/s = 1.80 kg.m^2 * ω2
Simplifying the equation, we find:
ω2 = (4.53 kg.m^2 * 3.84 rad/s) / 1.80 kg.m^2
ω2 ≈ 9.69 rad/s
Therefore, the final angular speed is approximately 9.69 rad/s.
To learn more about, angular momentum, click here, https://brainly.com/question/29897173
#SPJ11