The magnetic field inside the solenoid is 4.8
A long solenoid of radius 3 cm has 2000 turns in unit length. As the solenoid carries a current of 2 A
We need to find the magnetic field inside the solenoid
Magnetic field inside the solenoid is given byB = μ₀NI/L, whereN is the number of turns per unit length, L is the length of the solenoid, andμ₀ is the permeability of free space.
I = 2 A; r = 3 cm = 0.03 m; N = 2000 turns / m (number of turns per unit length)
The total number of turns, n = N x L.
Substituting these values, we getB = (4π × 10-7 × 2000 × 2)/ (0.03) = 4.24 × 10-3 T or 4.24 mT
Therefore, the correct option is B. 4.8z
To learn more about magnetic field
https://brainly.com/question/31357271
#SPJ11
Give at least one example for each law of motion that you
observed or experienced and explain each in accordance with the
laws of motion.
Isaac Newton's Three Laws of Motion describe the way that physical objects react to forces exerted on them. The laws describe the relationship between a body and the forces acting on it, as well as the motion of the body as a result of those forces.
Here are some examples for each of the three laws of motion:
First Law of Motion: An object at rest stays at rest, and an object in motion stays in motion at a constant velocity, unless acted upon by a net external force.
EXAMPLE: If you roll a ball on a smooth surface, it will eventually come to a stop. When you kick the ball, it will continue to roll, but it will eventually come to a halt. The ball's resistance to changes in its state of motion is due to the First Law of Motion.
Second Law of Motion: The acceleration of an object is directly proportional to the force acting on it, and inversely proportional to its mass. F = ma
EXAMPLE: When pushing a shopping cart or a bike, you must apply a greater force if it is heavily loaded than if it is empty. This is because the mass of the object has increased, and according to the Second Law of Motion, the greater the mass, the greater the force required to move it.
Third Law of Motion: For every action, there is an equal and opposite reaction.
EXAMPLE: A bird that is flying exerts a force on the air molecules below it. The air molecules, in turn, exert an equal and opposite force on the bird, which allows it to stay aloft. According to the Third Law of Motion, every action has an equal and opposite reaction.
Learn more about Law of Motion at https://brainly.com/question/28171613
#SPJ11
1. A ball is kicked horizontally at 8 m/s30 degrees above the horizontal. How far does the ball travel before hitting the ground? (2pts) 2. A shell is fired from a cliff horizontally with initial velocity of 800 m/s at a target on the ground 150 m below. How far away is the target? (2 pts) 3. You are standing 50 feet from a building and throw a ball through a window that is 26 feet above the ground. Your release point is 6 feet off of the ground (hint: you are only concerned with Δy ). You throw the ball at 30ft/sec. At what angle from the horizontal should you throw the ball? (hint: this is your launch angle) ( 2 pts) 4. A golfer drives a golf ball from the tee down the fairway in a high arcing shot. When the ball is at the highest point during the flight: ( 1pt) a. The velocity and acceleration are both zero b. The x-velocity is zero and the y-velocity is zero c. The x-velocity is non-zero but the y-velocity is zero d. The velocity is non-zero but the acceleration is zero
1) Distance = 9.23 m ; 2) Horizontal distance = 24,481.7 m ; 3) θ = 33.2 degrees ; 4) When the ball is at the highest point during the flight, a) the velocity and acceleration are both zero and hence option a) is the correct answer.
1. The horizontal component of the ball's velocity is 8cos30, and the vertical component of its velocity is 8sin30. The ball's flight time can be determined using the vertical component of its velocity.
Using the formula v = u + at and assuming that the initial vertical velocity is 8sin30, the acceleration is 9.81 m/s² (acceleration due to gravity), and the final velocity is zero (because the ball is at its maximum height), the time taken to reach the maximum height can be calculated.
The ball will reach its maximum height after half of its flight time has elapsed, so double the time calculated previously to get the total time. Substitute the time calculated previously into the horizontal velocity formula to get the distance the ball travels horizontally before landing.
Distance = 8cos30 x 2 x [8sin30/9.81] = 9.23 m
Answer: 9.23 m
2. Using the formula v = u + gt, the time taken for the shell to hit the ground can be calculated by assuming that the initial vertical velocity is zero (since the shell is fired horizontally) and that the acceleration is 9.81 m/s². The calculated time can then be substituted into the horizontal distance formula to determine the distance the shell travels horizontally before hitting the ground.
Horizontal distance = 800 x [2 x 150/9.81]
= 24,481.7 m
Answer: 24,481.7 m³.
3) To determine the angle at which the ball should be thrown, the vertical displacement of the ball from the release point to the window can be used along with the initial velocity of the ball and the acceleration due to gravity.
Using the formula v² = u² + 2as and assuming that the initial vertical velocity is 30sinθ, the acceleration due to gravity is -32.2 ft/s² (because the acceleration due to gravity is downwards), the final vertical velocity is zero (because the ball reaches its highest point at the window), and the displacement is 20 feet (26-6), the angle θ can be calculated.
Angle θ = arc sin[g x (20/900 + 1/2)]/2, where g = 32.2 ft/s²
Answer: θ = 33.2 degrees
4. A golfer drives a golf ball from the tee down the fairway in a high arcing shot. When the ball is at the highest point during the flight, the velocity and acceleration are both zero. (1pt)
Answer: a. The velocity and acceleration are both zero. Thus, option a) is correct.
To know more about Horizontal distance, refer
https://brainly.com/question/31169277
#SPJ11
Questions 7.39 Homework. Unanswered ★ A pendulum is fashioned out of a thin bar of length 0.55 m and mass 1.9 kg. The end of the bar is welded to the surface of a sphere of radius 0.11 m and mass 0.86 kg. Find the centre of mass of the composite object as measured in metres from the end of the bar without the sphere. Type your numeric answer and submit
The center of mass of the composite object, consisting of the bar and sphere, is approximately 0.206 meters from the end of the bar. This is calculated by considering the individual centers of mass and their weighted average based on their masses.
To find the center of mass of the composite object, we need to consider the individual center of masses of the bar and the sphere and calculate their weighted average based on their masses.
The center of mass of the bar is located at its midpoint, which is L/2 = 0.55 m / 2 = 0.275 m from the end of the bar.
The center of mass of the sphere is at its geometric center, which is at a distance of R/2 = 0.11 m / 2 = 0.055 m from the end of the bar.
Now we calculate the weighted average:
Center of mass of the composite object = ([tex]m_bar[/tex] * center of mass of the bar + [tex]m_bar[/tex] * center of mass of the sphere) / ([tex]m_bar + m_sphere[/tex])
Center of mass of the composite object = (1.9 kg * 0.275 m + 0.86 kg * 0.055 m) / (1.9 kg + 0.86 kg)
To solve the expression (1.9 kg * 0.275 m + 0.86 kg * 0.055 m) / (1.9 kg + 0.86 kg), we can simplify the numerator and denominator separately and then divide them.
Numerator: (1.9 kg * 0.275 m + 0.86 kg * 0.055 m) = 0.5225 kg⋅m + 0.0473 kg⋅m = 0.5698 kg⋅m
Denominator: (1.9 kg + 0.86 kg) = 2.76 kg
Now we can calculate the expression:
(0.5698 kg⋅m) / (2.76 kg) ≈ 0.206 m
Therefore, the solution to the expression is approximately 0.206 meters.
To know more about the center of mass refer here,
https://brainly.com/question/8662931#
#SPJ11
3. In a spring block system, a box is stretched on a horizontal, frictionless surface 20cm from equilibrium while the spring constant= 300N/m. The block is released at 0s. What is the KE (J) of the system when velocity of block is 1/3 of max value. Answer in J and in the hundredth place.Spring mass is small and bock mass unknown.
The kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.
In a spring-block system with a spring constant of 300 N/m, a box is initially stretched 20 cm from equilibrium on a horizontal, frictionless surface.
The box is released at t = 0 s. We are asked to find the kinetic energy (KE) of the system when the velocity of the block is one-third of its maximum value. The answer will be provided in joules (J) rounded to the hundredth place.
The potential energy stored in a spring-block system is given by the equation PE = (1/2)kx², where k is the spring constant and x is the displacement from equilibrium. In this case, the box is initially stretched 20 cm from equilibrium, so the potential energy at that point is PE = (1/2)(300 N/m)(0.20 m)² = 6 J.
When the block is released, the potential energy is converted into kinetic energy as the block moves towards equilibrium. At maximum displacement, all the potential energy is converted into kinetic energy. Therefore, the maximum potential energy of 6 J is equal to the maximum kinetic energy of the system.
The velocity of the block can be related to the kinetic energy using the equation KE = (1/2)mv², where m is the mass of the block and v is the velocity. Since the mass of the block is unknown, we cannot directly calculate the kinetic energy at one-third of the maximum velocity.
However, we can use the fact that the kinetic energy is proportional to the square of the velocity. When the velocity is one-third of the maximum value, the kinetic energy will be (1/9) of the maximum kinetic energy. Therefore, the kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.
Learn more about spring constant here: brainly.com/question/29975736
#SPJ11
In an oscillating IC circuit with capacitance C, the maximum potential difference across the capacitor during the oscillations is V and the
maximum current through the inductor is I.
NOTE: Give your answer in terms of the variables given.
(a) What is the inductance L?
[:
(b) What is the frequency of the oscillations?
f (c) How much time is required for the charge on the capacitor to rise
from zero to its maximum value?
The inductance (L) is obtained by dividing V by I multiplied by 2πf, while f is determined by 1/(2π√(LC)).
In an oscillating circuit, the inductance L can be calculated using the formula L = V / (I * 2πf). The inductance is directly proportional to the maximum potential difference across the capacitor (V) and inversely proportional to both the maximum current through the inductor (I) and the frequency of the oscillations (f). By rearranging the formula, we can solve for L.
The frequency of the oscillations can be determined using the formula f = 1 / (2π√(LC)). This formula relates the frequency (f) to the inductance (L) and capacitance (C) in the circuit. The frequency is inversely proportional to the product of the square root of the product of the inductance and capacitance.
To summarize, to find the inductance (L) in an oscillating circuit, we can use the formula L = V / (I * 2πf), where V is the maximum potential difference across the capacitor, I is the maximum current through the inductor, and f is the frequency of the oscillations. The frequency (f) can be determined using the formula f = 1 / (2π√(LC)), where L is the inductance and C is the capacitance.
To learn more about inductance click here:
brainly.com/question/31127300
#SPJ11
An ideal gas expands isothermally, performing 5.00×10 3
J of work in the process. Calculate the change in internal energy of the gas. Express your answer with the appropriate units. Calculate the heat absorbed during this expansion. Express your answer with the appropriate units.
For an isothermal expansion of an ideal gas, the change in internal energy is zero. In this case, the gas performs 5.00×10^3 J of work, and the heat absorbed during the expansion is also 5.00×10^3 J.
An isothermal process involves a change in a system while maintaining a constant temperature. In this case, an ideal gas is expanding isothermally and performing work. We need to calculate the change in internal energy of the gas and the heat absorbed during the expansion.
To calculate the change in internal energy (ΔU) of the gas, we can use the first law of thermodynamics, which states that the change in internal energy is equal to the heat (Q) absorbed or released by the system minus the work (W) done on or by the system. Mathematically, it can be represented as:
ΔU = Q - W
Since the process is isothermal, the temperature remains constant, and the change in internal energy is zero. Therefore, we can rewrite the equation as:
0 = Q - W
Given that the work done by the gas is 5.00×10^3 J, we can substitute this value into the equation:
0 = Q - 5.00×10^3 J
Solving for Q, we find that the heat absorbed during this expansion is 5.00×10^3 J.
To know more about the first law of thermodynamics, refer here:
https://brainly.com/question/32101564#
#SPJ11
The magnitude of the orbital angular momentum of an electron in an atom is L=120ħ. How many different values of L, are possible?
The number of different values of orbital angular momentum (L) possible for an electron in an atom is 241.
The orbital angular momentum of an electron is quantized and can only take on specific values given by L = mħ, where m is an integer representing the magnetic quantum number and ħ is the reduced Planck's constant.
In this case, we are given that L = 120ħ. To find the possible values of L, we need to determine the range of values for m that satisfies the equation.
Dividing both sides of the equation by ħ, we have L/ħ = m. Since L is given as 120ħ, we have m = 120.
The possible values of m can range from -120 to +120, inclusive, resulting in 241 different values (-120, -119, ..., 0, ..., 119, 120).
Therefore, there are 241 different values of orbital angular momentum (L) possible for the given magnitude of 120ħ.
learn more about orbital angular momentum here:
https://brainly.com/question/31626716
#SPJ11
A proton is moving north at a velocity of 4.9-10 m/s through an east directed magnetic field. The field has a strength of 9.6-10 T. What is the direction and strength of the magnetic force?
The direction of the magnetic force is towards the west, and its strength is [tex]7.7 * 10^{-28}[/tex] N.
Given data, Velocity of proton, v = 4.9 × 10⁻¹⁰ m/s
Strength of magnetic field, B = 9.6 × 10⁻¹⁰ T
We know that the magnetic force is given by the equation:
F = qvBsinθ
where, q = charge of particle, v = velocity of particle, B = magnetic field strength, and θ = angle between the velocity and magnetic field vectors.
Now, the direction of the magnetic force can be determined using Fleming's left-hand rule. According to this rule, if we point the thumb of our left hand in the direction of the velocity vector, and the fingers in the direction of the magnetic field vector, then the direction in which the palm faces is the direction of the magnetic force.
Therefore, using Fleming's left-hand rule, the direction of the magnetic force is towards the west (perpendicular to the velocity and magnetic field vectors).
Now, substituting the given values, we have:
[tex]F = (1.6 * 10^{-19} C)(4.9 * 10^{-10} m/s)(9.6 *10^{-10} T)sin 90°F = 7.7 * 10^{-28} N[/tex]
Thus, the direction of the magnetic force is towards the west, and its strength is [tex]7.7 * 10^{-28}[/tex] N.
Learn more about " magnetic force " refer to the link : https://brainly.com/question/26257705
#SPJ11
A long cylindrical wire of radius 4 cm has a current of 8 amps flowing through it. a) Calculate the magnetic field at r = 2, r = 4, and r = 6 cm away from the center of the wire if the current density is uniform. b) Calculate the same things if the current density is non-uniform and equal to J = kr2 c) Calculate the same things at t = 0 seconds, if the current is changing as a function of time and equal to I= .8sin(200t). Assume the wire is made of copper and current density as a function of r is uniform. =
At the respective distances, the magnetic field is approximate:
At r = 2 cm: 2 × 10⁻⁵ T
At r = 4 cm: 1 × 10⁻⁵ T
At r = 6 cm: 6.67 × 10⁻⁶ T
a) When the current density is uniform, the magnetic field at a distance r from the centre of a long cylindrical wire can be calculated using Ampere's law. For a wire with current I and radius R, the magnetic field at a distance r from the centre is given by:
B = (μ₀ × I) / (2πr),
where μ₀ is the permeability of free space (μ₀ ≈ 4π × 10⁻⁷ T m/A).
Substituting the values, we have:
1) At r = 2 cm:
B = (4π × 10⁻⁷ T m/A * 8 A) / (2π × 0.02 m)
B = (8 × 10⁻⁷ T m) / (0.04 m)
B ≈ 2 × 10⁻⁵ T
2) At r = 4 cm:
B = (4π × 10⁻⁷ T m/A * 8 A) / (2π × 0.04 m)
B = (8 × 10⁻⁷ T m) / (0.08 m)
B ≈ 1 × 10⁻⁵ T
3) At r = 6 cm:
B = (4π × 10⁻⁷ T m/A * 8 A) / (2π × 0.06 m)
B = (8 × 10⁻⁷ T m) / (0.12 m)
B ≈ 6.67 × 10⁻⁶ T
Therefore, at the respective distances, the magnetic field is approximately:
At r = 2 cm: 2 × 10⁻⁵ T
At r = 4 cm: 1 × 10⁻⁵ T
At r = 6 cm: 6.67 × 10⁻⁶ T
b) When the current density is non-uniform and equal to J = kr², we need to integrate the current density over the cross-sectional area of the wire to find the total current flowing through the wire. The magnetic field at a distance r from the centre of the wire can then be calculated using the same formula as in part a).
The total current (I_total) flowing through the wire can be calculated by integrating the current density over the cross-sectional area of the wire:
I_total = ∫(J × dA),
where dA is an element of the cross-sectional area.
Since the current density is given by J = kr², we can rewrite the equation as:
I_total = ∫(kr² × dA).
The magnetic field at a distance r from the centre can then be calculated using the formula:
B = (μ₀ × I_total) / (2πr),
1) At r = 2 cm:
B = (4π × 10⁻⁷ T m/A) × [(8.988 × 10⁹ N m²/C²) × (0.0016π m²)] / (2π × 0.02 m)
B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.02 m)
B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.02)
B = (0.2296 * 10² × T) / (0.04)
B = 5.74 T
2) At r = 4 cm:
B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.04 m)
B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.04)
B = (0.2296 * 10² × T) / (0.08)
B = 2.87 T
3) At r=6cm
B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.06 m)
B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.06)
B = (0.2296 * 10² × T) / (0.012)
B = 1.91 T
c) To calculate the magnetic field at t = 0 seconds when the current is changing as a function of time (I = 0.8sin(200t)), we need to use the Biot-Savart law. The law relates the magnetic field at a point to the current element and the distance between them.
The Biot-Savart law is given by:
B = (μ₀ / 4π) × ∫(I (dl x r) / r³),
where
μ₀ is the permeability of free space,
I is the current, dl is an element of the current-carrying wire,
r is the distance between the element and the point where the magnetic field is calculated, and
the integral is taken over the entire length of the wire.
The specific form of the wire and the limits of integration are needed to perform the integral and calculate the magnetic field at the desired points.
Learn more about Magnetic Field from the given link:
https://brainly.com/question/16387830
#SPJ11
If given a 2-D conductor at zero Kelvin temperature, then the electron density will be expressed as:
If given a 2-D conductor at zero Kelvin temperature, then the electron density will be expressed as:
n = (2 / h²) * m_eff * E_F
Where n is the electron density in the conductor, h is the Planck's constant, m_eff is the effective mass of the electron in the conductor, and E_F is the Fermi energy of the conductor.
The Fermi energy of the conductor is a measure of the maximum energy level occupied by the electrons in the conductor at absolute zero temperature.
To learn more about conductor, refer below:
https://brainly.com/question/14405035
#SPJ11
In the case of a time-varying force (ie. not constant), the
A© is the area under the force vs. time curve.
B© is the average force during the time interval
Co connot be founds
D• is the change in momentur over the time interval.
In the case of a time-varying force (ie. not constant), is the change in momentum over the time interval. The correct option is D.
The assertion that "A is the area under the force vs. time curve" is false. The impulse, not the work, is represented by the area under the force vs. time curve.
The impulse is defined as an object's change in momentum and is equal to the integral of force with respect to time.
The statement "B is the average force during the time interval" is false. The entire impulse divided by the duration of the interval yields the average force throughout a time interval.
The assertion "C cannot be found" is false. Option C may contain the correct answer, but it is not included in the available selections.
Thus, the correct option is D.
For more details regarding force, visit:
https://brainly.com/question/30507236
#SPJ4
2. For each pair of systems, circle the one with the larger entropy. If they both have the same entropy, explicitly state it. a. 1 kg of ice or 1 kg of steam b. 1 kg of water at 20°C or 2 kg of water at 20°C c. 1 kg of water at 20°C or 1 kg of water at 50°C d. 1 kg of steam (H₂0) at 200°C or 1 kg of hydrogen and oxygen atoms at 200°C Two students are discussing their answers to the previous question: Student 1: I think that 1 kg of steam and 1 kg of the hydrogen and oxygen atoms that would comprise that steam should have the same entropy because they have the same temperature and amount of stuff. Student 2: But there are three times as many particles moving about with the individual atoms not bound together in a molecule. I think if there are more particles moving, there should be more disorder, meaning its entropy should be higher. Do you agree or disagree with either or both of these students? Briefly explain your reasoning.
a. 1 kg of steam has the larger entropy. b. 2 kg of water at 20°C has the larger entropy. c. 1 kg of water at 50°C has the larger entropy. d. 1 kg of steam (H2O) at 200°C has the larger entropy.
Thus, the answers to the question are:
a. 1 kg of steam has a larger entropy.
b. 2 kg of water at 20°C has a larger entropy.
c. 1 kg of water at 50°C has a larger entropy.
d. 1 kg of steam (H₂0) at 200°C has a larger entropy.
Student 1 thinks that 1 kg of steam and 1 kg of hydrogen and oxygen atoms that make up the steam should have the same entropy because they have the same temperature and amount of stuff. Student 2, on the other hand, thinks that if there are more particles moving around, there should be more disorder, indicating that its entropy should be higher.I agree with student 2's reasoning. Entropy is directly related to the disorder of a system. Higher disorder indicates a higher entropy value, whereas a lower disorder implies a lower entropy value. When there are more particles present in a system, there is a greater probability of disorder, which results in a higher entropy value.
To know more about entropy:
https://brainly.com/question/20166134
#SPJ11
50. The angle that a reflected light ray makes with the surface normal A) is smaller B) the same size C) greater than the angle that the incident ray makes with the normal 51. The speed of light in gl
The angle that a reflected light ray makes with the surface normal is smaller.
The law of reflection states that the angle of incidence is equal to the angle of reflection. When light is reflected from a surface, the angle at which it is reflected (angle of reflection) is equal to the angle at which it hits the surface (angle of incidence). The angle that a reflected light ray makes with the surface normal is the angle of reflection. Therefore, the answer is that the angle that a reflected light ray makes with the surface normal is smaller than the angle that the incident ray makes with the normal.
The speed of light in glass is less than the speed of light in a vacuum. This means that the refractive index of glass is greater than 1. When light passes through a medium with a higher refractive index than the medium it was previously in, the light is bent towards the normal. Therefore, the answer is that the speed of light in glass is less than the speed of light in a vacuum, and the refractive index of glass is greater than 1.
The angle that a reflected light ray makes with the surface normal is A) is smaller. The law of reflection states that the angle of incidence is equal to the angle of reflection. When light is reflected from a surface, the angle at which it is reflected (angle of reflection) is equal to the angle at which it hits the surface (angle of incidence). The angle that a reflected light ray makes with the surface normal is the angle of reflection. Therefore, the answer is that the angle that a reflected light ray makes with the surface normal is smaller than the angle that the incident ray makes with the normal.
The speed of light in glass is less than the speed of light in a vacuum. This means that the refractive index of glass is greater than 1. When light passes through a medium with a higher refractive index than the medium it was previously in, the light is bent towards the normal. Therefore, the answer is that the speed of light in glass is less than the speed of light in vacuum, and the refractive index of glass is greater than 1.
When a light wave strikes a surface, it can be either absorbed or reflected. Reflection occurs when light bounces back from a surface. The angle at which the light strikes the surface is known as the angle of incidence, and the angle at which it reflects is known as the angle of reflection. The angle of incidence is always equal to the angle of reflection, as stated by the law of reflection. The angle that a reflected light ray makes with the surface normal is the angle of reflection. It's smaller than the angle of incidence.
When light travels through different mediums, such as air and glass, its speed changes, and it bends. Refraction is the process of bending that occurs when light moves from one medium to another with a different density. The refractive index is a measure of the extent to which a medium slows down light compared to its speed in a vacuum. The refractive index of a vacuum is 1.
When light moves from a medium with a low refractive index to a medium with a high refractive index, it bends toward the normal, which is a line perpendicular to the surface separating the two media.
When light is reflected from a surface, the angle of reflection is always equal to the angle of incidence. The angle of reflection is the angle that a reflected light ray makes with the surface normal, and it is smaller than the angle of incidence. The refractive index of a medium is a measure of how much the medium slows down light compared to its speed in a vacuum. When light moves from a medium with a low refractive index to a medium with a high refractive index, it bends toward the normal.
To know more about refractive index visit
brainly.com/question/30761100
#SPJ11
What is the resistance of a 12m long wire of 12 gauge copper
wire at room temperature? The resistivity of copper at room
temperature is 1.72 x 10-8 Ωm and the diameter of 12
gauge wire is 2.64 mm.
Approximately 3.867 ohms is the resistance of a 12m long wire of 12 gauge copper at room temperature.
To calculate the resistance of the copper wire, we can use the formula for resistance:
Resistance (R) = (ρ * length) / cross-sectional area
The resistivity of copper (ρ) at room temperature is 1.72 x 10^(-8) Ωm and the length of the wire (length) is 12 meters, we need to determine the cross-sectional area.
The gauge of the wire is given as 12 gauge, and the diameter (d) of a 12 gauge copper wire is 2.64 mm. To calculate the cross-sectional area, we can use the formula:
Cross-sectional area = π * (diameter/2)^2
Converting the diameter to meters, we have d = 2.64 x 10^(-3) m. By halving the diameter to obtain the radius (r), we find r = 1.32 x 10^(-3) m.
Now, we can calculate the cross-sectional area using the radius:
Cross-sectional area = π * (1.32 x 10^(-3))^2 ≈ 5.456 x 10^(-6) m^2
Finally, substituting the values into the resistance formula, we get:
Resistance (R) = (1.72 x 10^(-8) Ωm * 12 m) / (5.456 x 10^(-6) m^2)
≈ 3.867 Ω
Therefore, the resistance of a 12m long wire of 12 gauge copper at room temperature is approximately 3.867 ohms.
learn more about "resistance ":- https://brainly.com/question/17563681
#SPJ11
A rod of negligible resistance is sliding along a pair of long tracks--also of negligible resistance. The tracks are connected on one end by a wire of resistance R, the rod is sliding away from this end at constant speed, and there is a uniform magnetic field which points in a direction perpendicular to the plane containing the rod and the tracks. Initially, the area bounded by the rod, the tracks, and the end is A1, but after some time the area is A2 = 3A1. At this initial time, the induced emf was 3.0 V. What will it be at the latter time, when the total enclosed area has tripled?
The induced emf will be 9.0 V when the total enclosed area has tripled.
According to Faraday's law of electromagnetic induction, the induced emf (ε) in a circuit is proportional to the rate of change of magnetic flux through the circuit. The magnetic flux (Φ) is given by the product of the magnetic field (B) and the area (A) enclosed by the circuit.
In this scenario, the initially induced emf (ε1) is 3.0 V, and the initial area (A1) is known. When the total enclosed area becomes A2 = 3A1, it means the area has tripled. Since the speed of the rod is constant, the rate of change of area is also constant.
Therefore, the ratio of the final area (A2) to the initial area (A1) is equal to the ratio of the final induced emf (ε2) to the initial induced emf (ε1).
Mathematically, we can express this relationship as:
A2/A1 = ε2/ε1
Substituting the known values, A2 = 3A1 and ε1 = 3.0 V, we can solve for ε2:
3A1/A1 = ε2/3.0 V
3 = ε2/3.0 V
Cross-multiplying, we find:
ε2 = 9.0 V
Hence, the induced emf will be 9.0 V when the total enclosed area has tripled.
To learn more about magnetic flux
Click here brainly.com/question/1596988
#SPJ11
Two identical sinusoidal waves with wavelengths of 3 m travel in the same
direction at a speed of 100 m/s. If both waves originate from the same starting
position, but with time delay At, and the resultant amplitude A_res = V3 A then At
will be equal to:
Two identical sinusoidal waves with wave lengths of 3.00 m travel in the same direction at a speed of 2.00 m/s. The second wave originates from the same point as the first, but at a later time. The minimum possible time interval between the starting moments of the two waves is approximately 0.2387 seconds.
To determine the minimum possible time interval between the starting moments of the two waves, we need to consider their phase difference and the condition for constructive interference.
Let's analyze the problem step by step:
Given:
Wavelength of the waves: λ = 3.00 m
Wave speed: v = 2.00 m/s
Amplitude of the resultant wave: A_res = A (same as the amplitude of each initial wave)
First, we can calculate the frequency of the waves using the formula v = λf, where v is the wave speed and λ is the wavelength:
f = v / λ = 2.00 m/s / 3.00 m = 2/3 Hz
The time period (T) of each wave can be determined using the formula T = 1/f:
T = 1 / (2/3 Hz) = 3/2 s = 1.5 s
Now, let's assume that the second wave starts at a time interval Δt after the first wave.
The phase difference (Δφ) between the two waves can be calculated using the formula Δφ = 2πΔt / T, where T is the time period:
Δφ = 2πΔt / (1.5 s)
According to the condition for constructive interference, the phase difference should be an integer multiple of 2π (i.e., Δφ = 2πn, where n is an integer) for the resultant amplitude to be the same as the initial wave amplitude.
So, we can write:
2πΔt / (1.5 s) = 2πn
Simplifying the equation:
Δt = (1.5 s / 2π) × n
To find the minimum time interval Δt, we need to find the smallest integer n that satisfies the condition.
Since Δt represents the time interval, it should be a positive quantity. Therefore,the smallest positive integer value for n would be 1.
Substituting n = 1:
Δt = (1.5 s / 2π) × 1
Δt = 0.2387 s (approximately)
Therefore, the minimum possible time interval between the starting moments of the two waves is approximately 0.2387 seconds.
To learn more about amplitude visit: https://brainly.com/question/3613222
#SPJ11
The question should be :
Two identical sinusoidal waves with wave lengths of 3.00 m travel in the same direction at a speed of 2.00 m/s. The second wave originates from the same point as the first, but at a later time. The amplitude of the resultant wave is the same as that of each of the two initial waves. Determine the minimum possible time interval (in sec) between the starting moments of the two waves.
a A simple refractor telescope has an objective lens with a focal length of 1.6 m. Its eyepiece has a 3.80 cm focal length lens. a) What is the telescope's angular magnification?
The telescope's angular magnification is approximately -42.11, indicating an inverted image.
Angular magnification refers to the ratio of the angle subtended by an object when viewed through a magnifying instrument, such as a telescope or microscope, to the angle subtended by the same object when viewed with the eye. It quantifies the degree of magnification provided by the instrument, indicating how much larger an object appears when viewed through the instrument compared to when viewed without it.
The angular magnification of a telescope can be calculated using the formula:
Angular Magnification = - (focal length of the objective lens) / (focal length of the eyepiece)
Given:
Focal length of the objective lens (f_objective) = 1.6 mFocal length of the eyepiece (f_eyepiece) = 3.80 cm = 0.038 mPlugging these values into the formula:
Angular Magnification = - (1.6 m) / (0.038 m)
Simplifying the expression:
Angular Magnification ≈ - 42.11
Therefore, the angular magnification of the telescope is approximately -42.11. Note that the negative sign indicates an inverted image.
To learn more about angular magnification, Visit:
https://brainly.com/question/28325488
#SPJ11
A dry cell having internal resistance r = 0.5 Q has an electromotive force & = 6 V. What is the power (in W) dissipated through the internal resistance of the cell, if it is connected to an external resistance of 1.5 Q?
I. 4.5 II. 5.5 III.3.5 IV. 2.5 V. 6.5
The power (in W) dissipated through the internal resistance of the cell, if it is connected to an external resistance of 1.5 Q is 4.5 W. Hence, the correct option is I. 4.5.
The expression for the power (in W) dissipated through the internal resistance of the cell, if it is connected to an external resistance of 1.5 Q is as follows:
Given :The internal resistance of a dry cell is `r = 0.5Ω`.
The electromotive force of a dry cell is `ε = 6 V`.The external resistance is `R = 1.5Ω`.Power is given by the expression P = I²R. We can use Ohm's law to find current I flowing through the circuit.I = ε / (r + R) Substituting the values of ε, r and R in the above equation, we getI = 6 / (0.5 + 1.5)I = 6 / 2I = 3 A Therefore, the power dissipated through the internal resistance isP = I²r = 3² × 0.5P = 4.5 W Therefore, the power (in W) dissipated through the internal resistance of the cell, if it is connected to an external resistance of 1.5 Q is 4.5 W. Hence, the correct option is I. 4.5.
To know more about internal resistance visit
https://brainly.com/question/23575577
#SPJ11
Distance of Mars from the Sun is about
Group of answer choices
12 AU
1.5 AU
9 AU
5.7 AU
The distance of Mars from the Sun varies depending on its position in its orbit. Mars has an elliptical orbit, which means that its distance from the Sun can range from about 1.38 AU at its closest point (perihelion) to about 1.67 AU at its farthest point (aphelion). On average, Mars is about 1.5 AU away from the Sun.
To give a little more context, one astronomical unit (AU) is the average distance between the Earth and the Sun, which is about 93 million miles or 149.6 million kilometers. So, Mars is about 1.5 times farther away from the Sun than the Earth is.
Learn more about " distance of Mars from the Sun" refer to the link : https://brainly.com/question/30763863
#SPJ11
Two capacitors are connected parallel to each
other. Let C1 = 3.50 F .C2 = 5.10 pF be their
capacitances, and Vat = 57.0 V the potential
difference across the system.
a) Calculate the charge on each capacitor (capacitor 1 and 2)
b) Calculate the potential difference across each capacitor (capacitor 1 and 2)
The charge on capacitor 1 is approximately 199.5 C, and the charge on capacitor 2 is approximately 2.907 × 10⁻¹⁰ C. The potential difference across capacitor 1 is approximately 57.0 V, and the potential difference across capacitor 2 is approximately 56.941 V.
a) To calculate the charge on each capacitor, we can use the formula:
Q = C × V
Where:
Q is the charge on the capacitor,
C is the capacitance, and
V is the potential difference across the capacitor.
For capacitor 1:
Q1 = C1 × Vat
= 3.50 F × 57.0 V
For capacitor 2:
Q2 = C2 × Vat
= 5.10 pF × 57.0 V
pF stands for picofarads, which is 10⁻¹² F.
Therefore, we need to convert the capacitance of capacitor 2 to farads:
C2 = 5.10 pF
= 5.10 × 10⁻¹² F
Now we can calculate the charges:
Q1 = 3.50 F × 57.0 V
= 199.5 C
Q2 = (5.10 × 10⁻¹² F) × 57.0 V
= 2.907 × 10⁻¹⁰ C
Therefore, the charge on capacitor 1 is approximately 199.5 C, and the charge on capacitor 2 is approximately 2.907 × 10⁻¹⁰ C.
b) To calculate the potential difference across each capacitor, we can use the formula:
V = Q / C
For capacitor 1:
V1 = Q1 / C1
= 199.5 C / 3.50 F
For capacitor 2:
V2 = Q2 / C2
= (2.907 × 10⁻¹⁰ C) / (5.10 × 10⁻¹² F)
Now we can calculate the potential differences:
V1 = 199.5 C / 3.50 F
= 57.0 V
V2 = (2.907 × 10⁻¹⁰ C) / (5.10 × 10⁻¹² F)
= 56.941 V
Learn more about potential difference -
brainly.com/question/24142403
#SPJ11
FM frequencies range between 88 MHz and 108 MHz and travel at
the same speed.
What is the shortest FM wavelength? Answer in units of m.
What is the longest FM wavelength? Answer in units of m.
The shortest FM wavelength is 2.75 m. The longest FM wavelength is 3.41 m.
Frequency Modulation
(FM) is a kind of modulation that entails altering the frequency of a carrier wave to transmit data.
It is mainly used for transmitting audio signals. An FM frequency
ranges
from 88 MHz to 108 MHz, as stated in the problem.
The wavelength can be computed using the
formula
given below:wavelength = speed of light/frequency of waveWe know that the speed of light is 3 x 10^8 m/s. Substituting the minimum frequency value into the formula will result in a maximum wavelength:wavelength = 3 x 10^8/88 x 10^6wavelength = 3.41 mSimilarly, substituting the maximum frequency value will result in a minimum wavelength:wavelength = 3 x 10^8/108 x 10^6wavelength = 2.75 mThe longer the wavelength, the better the signal propagation.
The FM
wavelength
ranges between 2.75 and 3.41 meters, which are relatively short. As a result, FM signals are unable to penetrate buildings and other structures effectively. It has a line-of-sight range of around 30 miles due to its short wavelength. FM is mainly used for local radio stations since it does not have an extensive range.
to know more about
Frequency Modulation
pls visit-
https://brainly.com/question/31075263
#SPJ11
Two capacitors, C, = 6.10 MF and Cz = 3.18 F, are connected in parallel, then the combination is connected to a 250 V battery. When the capacitors are charged, each one is removed from the circuit. Next, the two charged capacitors are connected to each other so that the positive plate of one
capacitor is connected to the negative plate of the other capacitor. What is the resulting charge on each capacitor (in uC)?
The resulting charge on each capacitor, both when connected in parallel to the battery and when connected to each other in series, is approximately 2.32 µC.
When capacitors are connected in parallel, the voltage across them is the same. Therefore, the voltage across the combination of capacitors in the first scenario (connected in parallel to the battery) is 250 V.
For capacitors connected in parallel, the total capacitance (C_total) is the sum of individual capacitances:
C_total = C1 + C2
Given:
C1 = 6.10 µF = 6.10 × 10^(-6) F
C2 = 3.18 F
C_total = C1 + C2
C_total = 6.10 × 10^(-6) F + 3.18 × 10^(-6) F
C_total = 9.28 × 10^(-6) F
Now, we can calculate the charge (Q) on each capacitor when connected in parallel:
Q = C_total × V
Q = 9.28 × 10^(-6) F × 250 V
Q ≈ 2.32 × 10^(-3) C
Therefore, the resulting charge on each capacitor when connected in parallel to the battery is approximately 2.32 µC.
When the capacitors are disconnected from the circuit and connected to each other in series, the charge remains the same on each capacitor.
Thus, the resulting charge on each capacitor when they are connected to each other in series is also approximately 2.32.
To learn more about voltage, Visit:
https://brainly.com/question/30764403
#SPJ11
Consider LC circuit where at time t = 0, the energy in capacitor is maximum. What is the minimum time t (t> 0) to maximize the energy in capacitor? (Express t as L,C). (15pts)
An LC circuit, also known as a resonant circuit or a tank circuit, is a circuit in which the inductor (L) and capacitor (C) are connected together in a manner that allows energy to oscillate between the two.
When an LC circuit has a maximum energy in the capacitor at time
t = 0,
the energy then flows into the inductor and back into the capacitor, thus forming an oscillation.
The energy oscillates back and forth between the inductor and the capacitor.
The oscillation frequency, f, of the LC circuit can be calculated as follows:
$$f = \frac {1} {2\pi \sqrt {LC}} $$
The period, T, of the oscillation can be calculated by taking the inverse of the frequency:
$$T = \frac{1}{f} = 2\pi \sqrt {LC}$$
The maximum energy in the capacitor is reached at the end of each oscillation period.
Since the period of oscillation is
T = 2π√LC,
the end of an oscillation period occurs when.
t = T.
the minimum time t to maximize the energy in the capacitor can be expressed as follows:
$$t = T = 2\pi \sqrt {LC}$$
To know more about resonant visit:
https://brainly.com/question/32273580
#SPJ11
A 10 m wide building has a gable shaped roof that is
angled at 23.0° from the horizontal (see the linked
figure).
What is the height difference between the lowest and
highest point of the roof?
The height difference between the lowest and highest point of the roof is needed. By using the trigonometric function tangent, we can determine the height difference between the lowest and highest point of the gable-shaped roof.
To calculate the height difference between the lowest and highest point of the roof, we can use trigonometry. Here's how:
1. Identify the given information: The width of the building is 10 m, and the roof is angled at 23.0° from the horizontal.
2. Draw a diagram: Sketch a triangle representing the gable roof. Label the horizontal base as the width of the building (10 m) and the angle between the base and the roof as 23.0°.
3. Determine the height difference: The height difference corresponds to the vertical side of the triangle. We can calculate it using the trigonometric function tangent (tan).
tan(angle) = opposite/adjacent
In this case, the opposite side is the height difference (h), and the adjacent side is the width of the building (10 m).
tan(23.0°) = h/10
Rearrange the equation to solve for h:
h = 10 * tan(23.0°)
Use a calculator to find the value of tan(23.0°) and calculate the height difference.
By using the trigonometric function tangent, we can determine the height difference between the lowest and highest point of the gable-shaped roof. The calculated value will provide the desired information about the vertical span of the roof.
To know more about tangent visit:
https://brainly.com/question/1533811
#SPJ11
Why must hospital personnel wear special conducting shoes while working around oxygen in an operating room?What might happen if the personnel wore shoes with rubber soles?
Hospital personnel must wear special conducting shoes in operating rooms to prevent the buildup of static electricity, which could potentially ignite the highly flammable oxygen. Wearing shoes with rubber soles increases the risk of static discharge and should be avoided to ensure the safety of everyone in the operating room.
Hospital personnel must wear special conducting shoes while working around oxygen in an operating room because oxygen is highly flammable and can ignite easily. These special shoes are made of materials that conduct electricity, such as leather, to prevent the buildup of static electricity.
If personnel wore shoes with rubber soles, static electricity could accumulate on their bodies, particularly on their feet, due to the friction between the rubber soles and the floor. This static electricity could then discharge as a spark, potentially igniting the oxygen in the operating room.
By wearing conducting shoes, the static electricity is safely discharged to the ground, minimizing the risk of a spark that could cause a fire or explosion. The conducting materials in these shoes allow any static charges to flow freely and dissipate harmlessly. This precaution is crucial in an environment where oxygen is used, as even a small spark can lead to a catastrophic event.
To know more about friction visit:
https://brainly.com/question/28356847
#SPJ11
A thermistor is used in a circuit to control a piece of equipment automatically. What might this circuit be used for? A lighting an electric lamp as it becomes darker B ringing an alarm bell if a locked door is opened C switching on a water heater at a pre-determined time D turning on an air conditioner when the temperature rises
A thermistor is used in a circuit to control a piece of equipment automatically, this circuit be used for D. Turn on an air conditioner when the temperature rises.
A thermistor is a type of resistor whose resistance value varies with temperature. In a circuit, it is used as a sensor to detect temperature changes. The thermistor is used to control a piece of equipment automatically in various applications like thermostats, heating, and cooling systems. A circuit with a thermistor may be used to turn on an air conditioner when the temperature rises. In this case, the thermistor is used to sense the increase in temperature, which causes the resistance of the thermistor to decrease.
This change in resistance is then used to trigger the circuit, which turns on the air conditioner to cool the room. A thermistor circuit may also be used to switch on a water heater at a pre-determined time. In this case, the thermistor is used to detect the temperature of the water, and the circuit is programmed to turn on the heater when the water temperature falls below a certain level. This helps to maintain a consistent temperature in the water tank. So therefore the correct answer is D, turn on an air conditioner when the temperature rises.
Learn more about thermistor at:
https://brainly.com/question/31888503
#SPJ11
Prob. 7-6 7-7. Determine the resultant internal loadings in the beam at cross sections through points D and E. Point E is just to the right of the 15-kN load. 15 kN 25 kN/m B E 2 m 2 m 1.5 m- -1.5 m Prob. 7-7 D C
At point D, the resultant internal loadings in the beam consist of a shear force of 15 kN and a bending moment of 40 kNm in the clockwise direction. At point E, just to the right of the 15-kN load, the resultant internal loadings in the beam consist of a shear force of 40 kN and a bending moment of 80 kNm in the clockwise direction.
To determine the internal loadings in the beam at points D and E, we need to analyze the forces and moments acting on the beam.
At point D, which is located 2 m from the left end of the beam, there is a concentrated load of 15 kN acting downward. This load creates a shear force of 15 kN at point D. Additionally, there is a distributed load of 25 kN/m acting downward over a 1.5 m length of the beam from point C to D. To calculate the bending moment at D, we can use the equation:
M = -wx²/2
where w is the distributed load and x is the distance from the left end of the beam. Substituting the values, we have:
M = -(25 kN/m)(1.5 m)²/2 = -56.25 kNm
Therefore, at point D, the resultant internal loadings in the beam consist of a shear force of 15 kN (acting downward) and a bending moment of 56.25 kNm (clockwise).
Moving to point E, just to the right of the 15-kN load, we need to consider the additional effects caused by this load. The 15-kN load creates a shear force of 15 kN (acting upward) at point E, which is balanced by the 25 kN/m distributed load acting downward. As a result, the net shear force at point E is 25 kN (acting downward). The distributed load also contributes to the bending moment at point E, calculated using the same equation:
M = -wx²/2
Considering the distributed load over the 2 m length from point B to E, we have:
M = -(25 kN/m)(2 m)²/2 = -100 kNm
Adding the bending moment caused by the 15-kN load at point E (clockwise) gives us a total bending moment of -100 kNm + 15 kN x 2 m = -70 kNm (clockwise).
Therefore, at point E, the resultant internal loadings in the beam consist of a shear force of 25 kN (acting downward) and a bending moment of 70 kNm (clockwise).
To know more about beam refer here:
https://brainly.com/question/31324896#
#SPJ11
Enter only the last answer c) into moodle.
A solid sphere of mass M and radius R rolls without slipping to the right with a linear speed of v
a) Find a simplified algebraic expression using symbols only for the tolal kinetic energy Kior of the ball in terms of M and R
b) IfM = 7.5 kg. R = 10,8 cm and v = 4.5 m/s find the moment of inertia of the bail.
c) Plug in the numbers from part b) into your formula from part a) to get the value of the total kinetic energy
The total kinetic energy of the rolling ball, taking into account both its translational and rotational kinetic energy, is approximately 100.356 Joules. This is calculated by considering the mass, linear speed, radius, moment of inertia, and angular velocity of the ball.
a) The total kinetic energy of the rolling ball can be expressed as the sum of its translational kinetic energy and rotational kinetic energy.
The translational kinetic energy (Kt) is given by the formula: Kt = 0.5 * M * v^2, where M is the mass of the ball and v is its linear speed.
The rotational kinetic energy (Kr) is given by the formula: Kr = 0.5 * I * ω^2, where I is the moment of inertia of the ball and ω is its angular velocity.
Since the ball is rolling without slipping, the linear speed v is related to the angular velocity ω by the equation: v = R * ω, where R is the radius of the ball.
Therefore, the total kinetic energy (Kior) of the ball can be expressed as: Kior = Kt + Kr = 0.5 * M * v^2 + 0.5 * I * (v/R)^2.
b) To find the moment of inertia (I) of the ball, we can rearrange the equation for ω in terms of v and R: ω = v / R.
Substituting the values, we have: ω = 4.5 m/s / 0.108 m = 41.67 rad/s.
The moment of inertia (I) can be calculated using the equation: I = (2/5) * M * R^2.
Substituting the values, we have: I = (2/5) * 7.5 kg * (0.108 m)^2 = 0.08712 kg·m².
c) Plugging in the values from part b) into the formula from part a) for the total kinetic energy (Kior):
Kior = 0.5 * M * v^2 + 0.5 * I * (v/R)^2
= 0.5 * 7.5 kg * (4.5 m/s)^2 + 0.5 * 0.08712 kg·m² * (4.5 m/s / 0.108 m)^2
= 91.125 J + 9.231 J
= 100.356 J.
Therefore, the total kinetic energy of the ball, with the given values, is approximately 100.356 Joules.
learn more about "inertia":- https://brainly.com/question/1140505
#SPJ11
An ideal step-down transformer has a primary coil of 710 turns and a secondary coil of 30 turns. Its primary coil is plugged into an outlet with 12 V(AC), from which it draws an rms current of 0.3 A. What is the voltage and rms current in the secondary coil?
- The voltage in the secondary coil is approximately 0.509 V (rms).
- The rms current in the secondary coil is approximately 7 A.
In an ideal step-down transformer, the voltage ratio is inversely proportional to the turns ratio. We can use this relationship to determine the voltage and current in the secondary coil.
Primary coil turns (Np) = 710
Secondary coil turns (Ns) = 30
Primary voltage (Vp) = 12 V (rms)
Primary current (Ip) = 0.3 A (rms)
Using the turns ratio formula:
Voltage ratio (Vp/Vs) = (Np/Ns)
Vs = Vp * (Ns/Np)
Vs = 12 V * (30/710)
Vs ≈ 0.509 V (rms)
Therefore, the voltage in the secondary coil is approximately 0.509 V (rms).
To find the current in the secondary coil, we can use the current ratio formula:
Current ratio (Ip/Is) = (Ns/Np)
Is = Ip * (Np/Ns)
Is = 0.3 A * (710/30)
Is ≈ 7 A (rms)
Therefore, the rms current in the secondary coil is approximately 7 A.
Learn more about step-down transformers at https://brainly.com/question/3767027
#SPJ11
An organ pipe is open on one end and closed on the other. (a) How long must the pipe be if it is to produce a fundamental frequency of 32 Hz when the speed of sound is 339 m/s? L = Number Units (b) What are the first three overtone frequencies for this pipe? List them in order.
The first three overtones of the pipe are 96 Hz, 160 Hz, and 224 Hz.
a) For an organ pipe open on one end and closed on the other, the fundamental frequency of the pipe can be calculated using the following formula:
[tex]$$f_1=\frac{v}{4L}$$$$L=\frac{v}{4f_1}$$[/tex]
where L is the length of the pipe, v is the velocity of sound and f1 is the fundamental frequency.
Therefore, substituting the given values, we obtain:
L = (339/4) / 32
= 2.65 meters
Therefore, the length of the pipe should be 2.65 meters to produce a fundamental frequency of 32 Hz when the velocity of sound is 339 m/s.
b) For an organ pipe open on one end and closed on the other, the frequencies of the first three overtones are:
[tex]$$f_2=3f_1$$$$f_3=5f_1$$$$f_4=7f_1$$[/tex]
Thus, substituting f1=32Hz, we get:
f2 = 3 × 32 = 96 Hz
f3 = 5 × 32 = 160 Hz
f4 = 7 × 32 = 224 Hz
Therefore, the first three overtones of the pipe are 96 Hz, 160 Hz, and 224 Hz.
To learn more about pipe visit;
https://brainly.com/question/31180984
#SPJ11