A long horizontal hose of diameter 3.4 cm is connected to a faucet. At the other end, there is a nozzle of diameter 1.8 cm. Water squirts from the nozzle at velocity 14 m/sec. Assume that the water has no viscosity or other form of energy dissipation.
A) What is the velocity of the water in the hose ?
B) What is the pressure differential between the water in the hose and water in the nozzle ?
C) How long will it take to fill a tub of volume 120 liters with the hose ?

Answers

Answer 1

Answer:

a) v₁ = 3.92 m / s , b)     ΔP =  = 9.0 10⁴ Pa, c)  t = 0.0297 s  

Explanation:

This is a fluid mechanics exercise

a) let's use the continuity equation

       

let's use index 1 for the hose and index 2 for the nozzle

        A₁ v₁ = A₂v₂

in area of ​​a circle is

       A = π r² = π d² / 4

we substitute in the continuity equation

        π d₁² / 4 v₁ = π d₂² / 4 v₂

        d₁² v₁ = d₂² v₂

the speed of the water in the hose is v1

       v₁ = v₂ d₂² / d₁²

       v₁ = 14 (1.8 / 3.4)²

        v₁ = 3.92 m / s

b) they ask us for the pressure difference, for this we use Bernoulli's equation

       P₁ + ½ ρ v₁² + m g y₁ = P₂ + ½ ρ v₂² + mg y2

as the hose is horizontal y₁ = y₂

       P₁ - P₂ = ½ ρ (v₂² - v₁²)

      ΔP = ½ 1000 (14² - 3.92²)

       ΔP = 90316.8 Pa = 9.0 10⁴ Pa

c) how long does a tub take to flat

the continuity equation is equal to the system flow

        Q = A₁v₁

        Q = V t

where V is the volume, let's equalize the equations

         V t = A₁ v₁

         t = A₁ v₁ / V

A₁ = π d₁² / 4

let's reduce it to SI units

         V = 120 l (1 m³ / 1000 l) = 0.120 m³

          d1 = 3.4 cm (1 m / 100cm) = 3.4 10⁻² m

let's substitute and calculate

         t = π d₁²/4   v1 / V

         t = π (3.4 10⁻²)²/4 3.92 / 0.120

         t = 0.0297 s


Related Questions

A spherical balloon is made from a material whose mass is 4.30 kg. The thickness of the material is negligible compared to the 1.54-m radius of the balloon. The balloon is filled with helium (He) at a temperature of 289 K and just floats in air, neither rising nor falling. The density of the surrounding air is 1.19 kg/m3. Find the absolute pressure of the helium gas.

Answers

Answer:

P = 5.97 × 10^(5) Pa

Explanation:

We are given;

Mass of balloon;m_b = 4.3 kg

Radius;r = 1.54 m

Temperature;T = 289 K

Density;ρ = 1.19 kg/m³

We know that, density = mass/volume

So, mass = Volume x Density

We also know that Force = mg

Thus;

F = mg = Vρg

Where m = mass of balloon(m_b) + mass of helium (m_he)

So,

(m_b + m_he)g = Vρg

g will cancel out to give;

(m_b + m_he) = Vρ - - - eq1

Since a sphere shaped balloon, Volume(V) = (4/3)πr³

V = (4/3)π(1.54)³

V = 15.3 m³

Plugging relevant values into equation 1,we have;

(3 + m_he) = 15.3 × 1.19

m_he = 18.207 - 3

m_he = 15.207 kg = 15207 g

Molecular weight of helium gas is 4 g/mol

Thus, Number of moles of helium gas is ; no. of moles = 15207/4 ≈ 3802 moles

From ideal gas equation, we know that;

P = nRT/V

Where,

P is absolute pressure

n is number of moles

R is the gas constant and has a value lf 8.314 J/mol.k

T is temperature

V is volume

Plugging in the relevant values, we have;

P = (3802 × 8.314 × 289)/15.3

P = 597074.53 Pa

P = 5.97 × 10^(5) Pa

A skydiver stepped out of an airplane at an altitude of 1000m fell freely for 5.00s opened her parachute and slowed to 7.00m/s in a negligible time what was the total elapsed time from leaving the airplane to landing on the ground

Answers

Answer:

t = 17.68s

Explanation:

In order to calculate the total elapsed time that skydiver takes to reache the ground, you first calculate the distance traveled by the skydiver in the first 5.00s. You use the following formula:

[tex]y=y_o-v_ot-\frac{1}{2}gt^2[/tex]            (1)

y: height for a time t

yo: initial height = 1000m

vo: initial velocity = 0m/s

g: gravitational acceleration = 9.8m/s^2

t: time = 5.00 s

You replace the values of the parameters to get the values of the new height of the skydiver:

[tex]y=1000m-\frac{1}{2}(9.8m/s^2)(5.00s)^2\\\\y=877.5m[/tex]

Next, you take this value of 877.5m as the initial height of the second part of the trajectory of the skydiver. Furthermore, use the value of 7.00m/s as the initial velocity.

You use the same equation (1) with the values of the initial velocity and new height. We are interested in the time for which the skydiver arrives to the ground, then y = 0

[tex]0=877.5-7.00t-4.9t^2[/tex]       (2)

The equation (2) is a quadratic equation, you solve it for t with the quadratic formula:

[tex]t_{1,2}=\frac{-(-7.00)\pm \sqrt{(-7.00)^2-4(-4.9)(877.5)}}{2(-4.9)}\\\\t_{1,2}=\frac{7.00\pm 131.33}{-9.8}\\\\t_1=12.68s\\\\t_2=-14.11s[/tex]

You use the positive value of t1 because it has physical meaning.

Finally, you sum the times of both parts of the trajectory:

total time = 5.00s + 12.68s = 17.68s

The total elapsed time taken by the skydiver to arrive to the ground from the airplane is 17.68s

A soccer ball is released from rest at the top of a grassy incline. After 2.2 seconds, the ball travels 22 meters. One second later, the ball reaches the bottom of the incline. (Assume that the acceleration was constant.) How long was the incline

Answers

Answer:

x = 46.54m

Explanation:

In order to find the length of the incline you use the following formula:

[tex]x=v_ot+\frac{1}{2}at^2[/tex]      (1)

vo: initial speed of the soccer ball = 0 m/s

t: time

a: acceleration

You first use the the fact that the ball traveled 22 m in 2.2 s. Whit this information you can calculate the acceleration a from the equation (1):

[tex]22m=\frac{1}{2}a(2.2s)^2\\\\a=9.09\frac{m}{s^2}[/tex]      (2)

Next, you calculate the distance traveled by the ball for t = 3.2 s (one second later respect to t = 2.2s). The values of the distance calculated is the lenght of the incline:

[tex]x=\frac{1}{2}(9.09m/s^2)(3.2s)^2=46.54m[/tex]       (3)

The length of the incline is 46.54 m

The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax

Answers

Answer:

The distance is  [tex]d = 1.5 *10^{15} \ km[/tex]

Explanation:

From the question we are told that

        The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]

Generally a grid unit is  [tex]\frac{1}{10}[/tex] of  an arcsec

  This implies that  0.2 grid unit is  [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]

The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as

           [tex]d = \frac{1}{k}[/tex]

substituting values

           [tex]d = \frac{1}{0.02}[/tex]

           [tex]d = 50 \ parsec[/tex]

Note  [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]

So  [tex]d = 50 * 3.08 *10^{13}[/tex]

     [tex]d = 1.5 *10^{15} \ km[/tex]

A particle leaves the origin with a speed of 3 106 m/s at 38 degrees to the positive x axis. It moves in a uniform electric field directed along positive y axis. Find Ey such that the particle will cross the x axis at x

Answers

Answer:

If the particle is an electron [tex]E_y = 3.311 * 10^3 N/C[/tex]

If the particle is a proton, [tex]E_y = 6.08 * 10^6 N/C[/tex]

Explanation:

Initial speed at the origin, [tex]u = 3 * 10^6 m/s[/tex]

[tex]\theta = 38^0[/tex] to +ve x-axis

The particle crosses the x-axis at , x = 1.5 cm = 0.015 m

The particle can either be an electron or a proton:

Mass of an electron, [tex]m_e = 9.1 * 10^{-31} kg[/tex]

Mass of a proton, [tex]m_p = 1.67 * 10^{-27} kg[/tex]

The electric field intensity along the positive y axis [tex]E_y[/tex], can be given by the formula:

[tex]E_y = \frac{2 m u^2 sin \theta cos \theta}{qx} \\[/tex]

If the particle is an electron:

[tex]E_y = \frac{2 m_e u^2 sin \theta cos \theta}{qx} \\[/tex]

[tex]E_y = \frac{2 * 9.1 * 10^{-31} * (3*10^6)^2 *(sin38)( cos38)}{1.6*10^{-19} * 0.015} \\[/tex]

[tex]E_y = 3311.13 N/C\\E_y = 3.311 * 10^3 N/C[/tex]

If the particle is a proton:

[tex]E_y = \frac{2 m_p u^2 sin \theta cos \theta}{qx} \\[/tex]

[tex]E_y = \frac{2 * 1.67 * 10^{-27} * (3*10^6)^2 *(sin38)( cos38)}{1.6*10^{-19} * 0.015} \\[/tex]

[tex]E_y = 6.08 * 10^6 N/C[/tex]

A glass flask whose volume is 1000 cm^3 at a temperature of 1.00°C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0°C , a volume of 8.50 cm^3 of mercury overflows the flask.Required:If the coefficient of volume expansion of mercury is βHg = 1.80×10^−4 /K , compute βglass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.

Answers

Answer:

the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]

Explanation:

Given that:

Initial volume of the glass flask = 1000 cm³ = 10⁻³ m³

temperature of the glass flask and mercury= 1.00° C

After heat is applied ; the final temperature = 52.00° C

Temperature change ΔT = 52.00° C - 1.00° C = 51.00° C

Volume of the mercury overflow = 8.50 cm^3 = 8.50 ×  10⁻⁶ m³

the coefficient of volume expansion of mercury is 1.80 × 10⁻⁴ / K

The increase in the volume of the mercury =  10⁻³ m³ ×  51.00 × 1.80 × 10⁻⁴

The increase in the volume of the mercury = [tex]9.18*10^{-6} \ m^3[/tex]

Increase in volume of the glass =  10⁻³ × 51.00 × [tex]\beta _{glass}[/tex]

Now; the mercury overflow = Increase in volume of the mercury - increase in the volume of the flask

the mercury overflow = [tex](9.18*10^{-6} - 51.00* \beta_{glass}*10^{-3})\ m^3[/tex]

[tex]8.50*10^{-6} = (9.18*10^{-6} -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]8.50*10^{-6} - 9.18*10^{-6} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]-6.8*10^{-7} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]6.8*10^{-7} = ( 51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]\dfrac{6.8*10^{-7}}{51.00 * 10^{-3}}= ( \beta_{glass} )[/tex]

[tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]

Thus; the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]

A Nearsighted Eye. A certain very nearsighted person cannot focus on anything farther than 36.0 cm from the eye. Consider the simplified model of the eye. In a simplified model of the human eye, the aqueous and vitreous humors and the lens all have a refractive index of 1.40, and all the refraction occurs at the cornea, whose vertex is 2.60 cm from the retina.

Required:
a. If the radius of curvature of the cornea is 0.65 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina?
b. What does this tell you about the shape of the nearsighted eye?

1. This distance is greater than for the normal eye.
2. This distance is shorter than for the normal eye.

Answers

Answer:

a) The distance from the cornea vertex to the retina is 2.37 cm

b) This distance is shorter than for the normal eye.

Explanation:

a) Let refractive index of air,

n(air) = x = 1

Let refractive index of lens,

n(lens) = y = 1.4

Object distance, s = 36 cm

Radius of curvature, R = 0.65 cm

The distance from the cornea vertex to the retina is the image distance because image is formed in the retina.

Image distance, s' = ?

(x/s) + (y/s') = (y-x)/R

(1/36) + (1.4/s') = (1.4 - 1)/0.65

1.4/s' = 0.62 - 0.028

1.4/s' = 0.592

s' = 1.4/0.592

s' = 2.37 cm

Distance from the cornea vertex to the retina is 2.37 cm

(b) For a normal eye, the distance between the cornea vertex and the retina is 2.60 cm. Since 2.37 < 2.60, this distance is shorter than for normal eye.

Two guitarists attempt to play the same note of wavelength 6.50 cm at the same time, but one of the instruments is slightly out of tune. Consequently, a 17.0-Hz beat frequency is heard between the two instruments. What were the possible wavelengths of the out-of-tune guitar’s note? Express your answers, separated by commas, in centimeters to three significant figures IN cm.

Answers

Answer:

The two value of the wavelength for the out of tune guitar is  

[tex]\lambda _2 = (6.48,6.52) \ cm[/tex]

Explanation:

From the question we are told that

     The wavelength of the note is [tex]\lambda = 6.50 \ cm = 0.065 \ m[/tex]

     The difference in beat frequency is [tex]\Delta f = 17.0 \ Hz[/tex]

     

Generally the frequency of the note played by the guitar that is in tune is  

        [tex]f_1 = \frac{v_s}{\lambda}[/tex]

Where [tex]v_s[/tex] is the speed of sound with a constant value [tex]v_s = 343 \ m/s[/tex]

       [tex]f_1 = \frac{343}{0.0065}[/tex]

      [tex]f_1 = 5276.9 \ Hz[/tex]

The difference in beat is mathematically represented as

       [tex]\Delta f = |f_1 - f_2|[/tex]

Where [tex]f_2[/tex] is the frequency of the sound from the out of tune guitar

     [tex]f_2 =f_1 \pm \Delta f[/tex]

substituting values

      [tex]f_2 =f_1 + \Delta f[/tex]

      [tex]f_2 = 5276.9 + 17.0[/tex]  

     [tex]f_2 = 5293.9 \ Hz[/tex]

The wavelength for this frequency is

      [tex]\lambda_2 = \frac{343 }{5293.9}[/tex]

     [tex]\lambda_2 = 0.0648 \ m[/tex]

    [tex]\lambda_2 = 6.48 \ cm[/tex]

For the second value of the second frequency

     [tex]f_2 = f_1 - \Delta f[/tex]

     [tex]f_2 = 5276.9 -17[/tex]

      [tex]f_2 = 5259.9 Hz[/tex]

The wavelength for this frequency is

   [tex]\lambda _2 = \frac{343}{5259.9}[/tex]

   [tex]\lambda _2 = 0.0652 \ m[/tex]

   [tex]\lambda _2 = 6.52 \ cm[/tex]

This question involves the concepts of beat frequency and wavelength.

The possible wavelengths of the out-of-tune guitar are "6.48 cm" and "6.52 cm".

The beat frequency is given by the following formula:

[tex]f_b=|f_1-f_2|\\\\[/tex]

f₂ = [tex]f_b[/tex] ± f₁

where,

f₂ = frequency of the out-of-tune guitar = ?

[tex]f_b[/tex] = beat frequency = 17 Hz

f₁ = frequency of in-tune guitar = [tex]\frac{speed\ of\ sound\ in\ air}{\lambda_1}=\frac{343\ m/s}{0.065\ m}=5276.9\ Hz[/tex]

Therefore,

f₂ = 5276.9 Hz ± 17 HZ

f₂ = 5293.9 Hz (OR) 5259.9 Hz

Now, calculating the possible wavelengths:

[tex]\lambda_2=\frac{speed\ of\ sound}{f_2}\\\\\lambda_2 = \frac{343\ m/s}{5293.9\ Hz}\ (OR)\ \frac{343\ m/s}{5259.9\ Hz}\\\\[/tex]

λ₂ = 6.48 cm (OR) 6.52 cm

Learn more about beat frequency here:

https://brainly.com/question/10703578?referrer=searchResults

A uniformly charged sphere has a potential on its surface of 450 V. At a radial distance of 8.1 m from this surface, the potential is 150 V. What is the radius of the sphere

Answers

Answer:

The radius of the sphere is 4.05 m

Explanation:

Given;

potential at surface, [tex]V_s[/tex] = 450 V

potential at radial distance, [tex]V_r[/tex] = 150

radial distance, l = 8.1 m

Apply Coulomb's law of electrostatic force;

[tex]V = \frac{KQ}{r} \\\\V_s = \frac{KQ}{r} \\\\V_r = \frac{KQ}{r+ l}[/tex]

[tex]450 = \frac{KQ}{r} ------equation (i)\\\\150 = \frac{KQ}{r+8.1} ------equation (ii)\\\\divide \ equation (i)\ by \ equation \ (ii)\\\\\frac{450}{150} = (\frac{KQ}{r} )*(\frac{r+8.1}{KQ} )\\\\3 = \frac{r+8.1}{r} \\\\3r = r + 8.1\\\\2r = 8.1\\\\r = \frac{8.1}{2} \\\\r = 4.05 \ m[/tex]

Therefore, the radius of the sphere is 4.05 m

Other Questions
A soccer ball is released from rest at the top of a grassy incline. After 2.2 seconds, the ball travels 22 meters. One second later, the ball reaches the bottom of the incline. (Assume that the acceleration was constant.) How long was the incline Which table represents a direct variation function? Can someone help me please!!! Which elements in the same below are integers? -3,3.7,9,-7.34,2.83,5,56/7,-1 Based on graph 1 do you think the changes in solar intensity are a significant cause of the trend in global Temperatures why or why not Mr. X and Y are having a discussion. Mr. X felt that business is based on selfish desires to gain higher and higher profits while Mr. Y felt that profit is essential for business. Can you support Mr. Y's case by providing strong points for his favour. The January 1, Year 1 trial balance for the Tyrell Company is found on the trial balance tab. The beginning balances are assumed. Tyrell Co. entered into the following transactions involving short-term liabilities in Year 1 and Year 2.Year 1 Apr. 20 Purchased $40,250 of merchandise on credit from Locust, terms n/30. May 19 Replaced the April 20 account payable to Locust with a 90-day, 10%, $35,000 note payable along with paying $5,250 in cash. July 8 Borrowed $80,000 cash from NBR Bank by signing a 120-day, 9%, $80,000 note payable. Aug. 17 Paid the amount due on the note to Locust at the maturity date. Nov. 5 Paid the amount due on the note to NBR Bank at the maturity date. Nov. 28 Borrowed $42,000 cash from Fargo Bank by signing a 60-day, 8%, $42,000 note payable. Dec. 31 Recorded an adjusting entry for accrued interest on the note to Fargo Bank. Year 2 Jan. 27 Paid the amount due on the note to Fargo Bank at the maturity date.Requirement General General Trial Schedule of Calculation of Year 2 Journal Ledger Balance Payables Interest Payment1. General Journal tab- Prepare the 2016 journal entries related to the notes and accounts payable of Tyrell Co 2. Calculation of interest tab - Use the interest formula (P x Rx T) to verify the amount of interest recorded in your entries. Verify that total interest expense agrees with the trial balance.3. Year 2 payment tab - Prepare the January 27, 2017 entry to record the re-payment of the note at maturity A right triangle ABC has sides /AB/ =9cm, /BC/=12cm find /AC/ and angles ACB and ABC if angle BAC= 90 John wants to invest in a simple intereset savings account The intereset rate on this account is 0.7%. The account balance y can be modeled by the following linear equation y=150,000+150,000(0.007)x where x represents the time (in years) that john leaves her money in the account what is johns initial investment? Marx and engels believed that a communist revolution would defeat capitalism and that the revolution would be led by On 12/31/X4, Zoom, LLC, reported a $55,500 loss on its books. The items included in the loss computation were $27,000 in sales revenue, $12,000 in qualified dividends, $19,000 in cost of goods sold, $47,000 in charitable contributions, $17,000 in employee wages, and $11,500 of rent expense. How much ordinary business income (loss) will Zoom report on its X4 return An 8-sided fair die is rolled twice and the product of the two numbers obtained when the die is rolled two times is calculated. Draw the possibility diagram of the product of the two numbers appearing on the die in each throw Use the possibility diagram to calculate the probability that the product of the two numbers is A prime number Not a perfect square A multiple of 5 Less than or equal to 21 Divisible by 4 or 6 In a certain community, eight percent of all adults over age 50 have diabetes. If a health service in this community correctly diagnosis 95% of all persons with diabetes as having the disease and incorrectly diagnoses ten percent of all persons without diabetes as having the disease, find the probabilities that: Correctly order the production and transport of sperm through the male reproductive system. Semen is released from the penis. Sperm are produced in the testes. Sperm leave the testes through the semen duct. In the semen duct, fluids from the glands are added to the sperm. Solve for x12:15 = x 536060 Which graph represents the solution set of the inequality. 5a+18 Solve for r in the triangle. Round your answer to the nearest tenth. please need help I will be MARKING as BRIANILIST. thank you so much. HELP ME PLEASE! So Im working on this practice page before I start my quiz but I dont understand these two problems, I was hoping someone would help me. Complete the statement about the types of violence to which children are exposed. Children are exposed to violence through aggressive acts in the home called ------------ violence, perpetrated by family members against other family members. These acts can include physical and sexual abuse, intimidation, verbal abuse, and neglect. ------------- violence includes conventional crimes such as robbery, murder, threats, hate crimes, and child maltreatment.