The final speed of the atom can be expressed to three significant figures and should include appropriate units.
A. When a hydrogen atom absorbs an ultraviolet photon, it gains momentum in the direction of the photon's motion. The momentum of a photon is given by p = h/λ, where h is Planck's constant (6.626 x 10^-34 J·s) and λ is the wavelength of the photon. In this case, the wavelength is 146.6 nm, which can be converted to meters by dividing by 10^9 (1 nm = 10^-9 m). So, λ = 146.6 x 10^-9 m.
The initial momentum of the atom is zero since it is at rest. After absorbing the photon, the atom gains momentum in the direction of the photon's motion. According to the law of conservation of momentum, the final momentum of the atom and the photon must be equal and opposite.
To find the final speed of the atom after emitting the identical photon in a perpendicular direction, we can use the conservation of momentum. The magnitude of the momentum of the atom and the photon after emission will be the same as before, but the directions will be perpendicular. Therefore, the final speed of the atom can be calculated using the equation p = mv, where m is the mass of the atom and v is its final speed.
B. When the atom emits the identical photon in the opposite direction of the original photon's motion, the final momentum of the system will be zero since the atom and the photon have equal but opposite momenta. By applying the conservation of momentum, the final speed of the atom can be determined using the equation p = mv.
To learn more about hydrogen atom -
brainly.com/question/13200636
#SPJ11
Q3. A hanging platform has four cylindrical supporting cables of diameter 2.5 cm. The supports are made from solid aluminium, which has a Young's Modulus of Y = 69 GPa. The weight of any object placed on the platform is equally distributed to all four cables. a) When a heavy object is placed on the platform, the cables are extended in length by 0.4%. Find the mass of this object. (3) b) Poisson's Ratio for aluminium is v= 0.33. Calculate the new diameter of the cables when supporting this heavy object. (3) (6 marks)
The new diameter of the cable is 0.892 cm. Option (ii) is the correct answer.
Given: Diameter of supporting cables,
d = 2.5 cm Young's Modulus of aluminium,
Y = 69 GPa Load applied,
F = mg
Extension in the length of the cables,
δl = 0.4% = 0.004
a) Mass of the object placed on the platform can be calculated as:
m = F/g
From the question, we know that the weight of any object placed on the platform is equally distributed to all four cables.
So, weight supported by each cable = F/4
Extension in length of each cable = δl/4
Young's Modulus can be defined as the ratio of stress to strain.
Y = stress/strainstress = Force/areastrain = Extension in length/Original length
Hence, stress = F/4 / (π/4) d2 = F/(π d2)strain = δl/4 / L
Using Hooke's Law, stress/strain
= Yπ d2/F = Y δl/Ld2 = F/(Y δl/π L) = m g / (Y δl/π L)
On substituting the given values, we get:
d2 = (m × 9.8) / ((69 × 10^9) × (0.004/100) / (π × 2.5/100))d2 = 7.962 × 10^-5 m2
New diameter of the cable is:
d = √d2 = √(7.962 × 10^-5) = 0.00892 m = 0.892 cm
Therefore, the new diameter of the cable is 0.892 cm.
Hence, option (ii) is the correct answer.
To know more about diameter visit:
https://brainly.com/question/4771207
#SPJ11
both on you (a) What is the frequency of a light wave that has a wavelength of W nanometers? (h) A circular electric generator coil with Y loons has a radius of 0.05 meter and is
(a) The formula that relates the frequency, wavelength, and speed of light is c = λνwhere c is the speed of light, λ is the wavelength and ν is the frequency.
In order to determine the frequency of a light wave with a wavelength of W nanometers, we can use the formula ν = c/λ where c is the speed of light and λ is the wavelength. Once we convert the wavelength to meters, we can substitute the values into the equation and solve for frequency. The induced emf in a generator coil is given by the formula = N(d/dt), where N is the number of loops in the coil and is the magnetic flux.
To calculate the magnetic flux, we first need to calculate the magnetic field at the radius of the coil. This is done using the formula B = (0I/2r). Once we have the magnetic field, we can calculate the magnetic flux by multiplying the magnetic field by the area of the coil. Finally, we can substitute the values into the formula for induced emf and solve for the answer.
To learn more about wavelength, visit:
https://brainly.com/question/31143857
#SPJ11
Part A An ac voltmeter, which displays the rms voltage between the two points touched by its leads, is used to measure voltages in the circuit shown in the figure(Eigure 1). In this circuit, the ac generator has an rms voltage of 7.40 V and a frequency of 25.0 kHz. The inductance in the circuit is 0.250 mH the capacitance is 0.150 F and the resistance is 3.90 22 What is the reading on a voltmeter when it is connected to points A and B? Express your answer using two significant figures. VoAD ? Vm = V Submit Request Answer Part B B What is the reading on a voltmeter when it is connected to points B and C? Express your answer using two significant figures. VAXD ? Vrms = V Submit Request Answer Part C What is the reading on a voltmeter when it is connected to points A and C? A ? Express your answer using two significant figures. VOAZO ? rms V Submit Request Answer Part D Figure < 1 of 1 1 What is the reading on a voltmeter when it is connected to points A and D? Express your answer using two significant figures.
Part A: Voltmeter reading between points A and B (VoAD) is approximately 0.75 V.
Part B: Voltmeter reading between points B and C (VAXD) is approximately 8.1 V.
Part C: Voltmeter reading between points A and C (VOAZO) is approximately 8.17 V.
Part D: Voltmeter reading between points A and D (VAD) is approximately 0.753 V.
To calculate the readings on the voltmeter for the different point combinations in the circuit, we need to analyze the circuit and calculate the voltage drops and phase differences across the components.
Given information:
RMS voltage of the AC generator: Vm = 7.40 V
Frequency of the AC generator: f = 25.0 kHz
Inductance: L = 0.250 mH
Capacitance: C = 0.150 F
Resistance: R = 3.90 Ω
Part A: Voltmeter reading between points A and B (VoAD)
To calculate this, we need to consider the voltage across the resistance, which is in phase with the current. The voltage across the inductor and capacitor will contribute to a phase shift.
Since the inductive reactance (XL) and capacitive reactance (XC) depend on frequency, we can calculate them using the formulas:
XL = 2πfL
XC = 1 / (2πfC)
Substituting the given values, we have:
XL = 2π * 25,000 Hz * 0.250 mH ≈ 3.927 Ω
XC = 1 / (2π * 25,000 Hz * 0.150 F) ≈ 42.328 Ω
Now, we can calculate the total impedance (Z) of the circuit:
Z = R + j(XL - XC)
Here, j represents the imaginary unit (√(-1)).
Z = 3.90 Ω + j(3.927 Ω - 42.328 Ω) ≈ 3.90 Ω - j38.401 Ω
The voltage across the resistor (VR) is given by Ohm's law:
VR = Vm * (R / |Z|)
Here, |Z| represents the magnitude of the impedance.
|Z| = √(3.90² + (-38.401)²) ≈ 38.634 Ω
Substituting the values, we have:
VR = 7.40 V * (3.90 Ω / 38.634 Ω) ≈ 0.749 V
Therefore, the reading on the voltmeter when connected to points A and B (VoAD) is approximately 0.75 V.
Part B: Voltmeter reading between points B and C (VAXD)
To calculate this, we need to consider the voltage across the capacitor, which is leading the current by 90 degrees.
The voltage across the capacitor (VC) is given by:
VC = Vm * (XC / |Z|)
Substituting the values, we have:
VC = 7.40 V * (42.328 Ω / 38.634 Ω) ≈ 8.10 V
Therefore, the reading on the voltmeter when connected to points B and C (VAXD) is approximately 8.1 V.
Part C: Voltmeter reading between points A and C (VOAZO)
To calculate this, we need to consider the voltage across both the resistor and the capacitor. Since they have a phase difference, we need to use the vector sum of their magnitudes.
VOAZO = √(VR² + VC²)
Substituting the values, we have:
VOAZO = √((0.749 V)² + (8.10 V)²) ≈ 8.17 V
Therefore, the reading on the voltmeter when connected to points A and C (VOAZO) is approximately 8.17 V.
Part D: Voltmeter reading between points A and D
The voltage across the inductor and the resistor will contribute to the voltage reading between points A and D. As both components are in phase, we can simply add their voltages.
VAD = VR + VL
The voltage across the inductor (VL) is given by Ohm's law:
VL = Vm * (XL / |Z|)
Substituting the values, we have:
VL = 7.40 V * (3.927 Ω / 38.634 Ω) ≈ 0.753 V
Therefore, the reading on the voltmeter when connected to points A and D (VAD) is approximately 0.753 V.
Learn more about voltmeter from the link given below.
https://brainly.com/question/1511135
#SPJ4
What is the wavelength at which the Cosmic Background Radiation has highest intensity (per unit wavelength)?
Cosmic Background Radiation is blackbody radiation that has a nearly perfect blackbody spectrum, i.e., Planck's radiation law describes it quite well.
In this spectrum, the wavelength at which the Cosmic Background Radiation has the highest intensity per unit wavelength is at the wavelength of maximum radiation.
The spectrum of Cosmic Microwave Background Radiation is approximately that of a black body spectrum at a temperature of 2.7 K.
Therefore, using Wien's Law: λ_max T = constant, where λ_max is the wavelength of maximum radiation and T is the temperature of the blackbody.
In this equation, the constant is equivalent to 2.898 × 10^-3 m*K,
so the wavelength is found by: λ_max = (2.898 × 10^-3 m*K) / (2.7 K)λ_max = 1.07 mm.
Hence, the wavelength is 1.07 mm.
#SPJ11
Learn more about wavelength and intensity https://brainly.com/question/24319848
Consider four long parallel conducting wires passing through the vertices of a square of
17 cm of edge and traversed by the following currents: I1 = 1.11 A, I2 = 2.18 A, I3 = 3.14 A and I4
= 3.86 A. Determine: (a) the resulting magnetic field at the center of the square; (b) the magnetic force acting on an electron moving at the speed of
3.9×106 fps when passing center
(a) The magnetic field at the center of the square is approximately 0.00168 Tesla (T). (b) The magnetic force on the electron passing through the center is approximately -3.23×10^(-14) Newtons (N).
The resulting magnetic field at the center of the square can be determined using the Biot-Savart law, which relates the magnetic field at a point to the current in a wire and the distance from the wire.
(a) Resulting Magnetic Field at the Center of the Square:
Since all four wires are parallel and pass through the vertices of the square, we can consider each wire separately and then sum up the magnetic fields contributed by each wire.
Let's denote the current-carrying wires as follows:
Wire 1: I1 = 1.11 A
Wire 2: I2 = 2.18 A
Wire 3: I3 = 3.14 A
Wire 4: I4 = 3.86 A
The magnetic field at the center of the square due to a single wire can be calculated using the Biot-Savart law as:
dB = (μ0 * I * dl × r) / (4π * r^3)
Where:
dB is the magnetic field contribution from a small segment dl of the wireμ0 is the permeability of free space (4π × 10^(-7) T*m/A)I is the current in the wiredl is a small segment of the wirer is the distance from the wire to the point where the magnetic field is calculatedSince the wires are long and parallel, we can assume that they are infinitely long, and the magnetic field will only have a component perpendicular to the plane of the square. Therefore, the magnetic field contributions from wires 1, 2, 3, and 4 will add up as vectors.
The magnetic field at the center of the square (B) will be the vector sum of the magnetic field contributions from each wire:
B = B1 + B2 + B3 + B4
Since the wires are at the vertices of the square, their distances from the center are equal to half the length of a side of the square, which is 17 cm / 2 = 8.5 cm = 0.085 m.
Let's calculate the magnetic field contributions from each wire:
For Wire 1 (I1 = 1.11 A):
dB1 = (μ0 * I1 * dl1 × r) / (4π * r^3)
For Wire 2 (I2 = 2.18 A):
dB2 = (μ0 * I2 * dl2 × r) / (4π * r^3)
For Wire 3 (I3 = 3.14 A):
dB3 = (μ0 * I3 * dl3 × r) / (4π * r^3)
For Wire 4 (I4 = 3.86 A):
dB4 = (μ0 * I4 * dl4 × r) / (4π * r^3)
Given that the wires are long and parallel, we can assume that they are straight, and each wire carries the same current for its entire length.
Assuming the wires have negligible thickness, the total magnetic field at the center of the square is:
B = B1 + B2 + B3 + B4
To find the resulting magnetic field at the center, we'll need the total magnetic field at the center of a single wire (B_single). We can calculate it using the Biot-Savart law with the appropriate values.
dB_single = (μ0 * I_single * dl × r) / (4π * r^3)
Integrating both sides of the equation:
∫ dB_single = ∫ (μ0 * I_single * dl × r) / (4π * r^3)
Since the wires are long and parallel, they have the same length, and we can represent it as L.
∫ dB_single = (μ0 * I_single * L) / (4π * r^3) * ∫ dl
∫ dB_single = (μ0 * I_single * L) / (4π * r^3) * L
∫ dB_single = (μ0 * I_single * L^2) / (4π * r^3)
Now, we can substitute the known values into the equation and find the magnetic field at the center of a single wire:
B_single = (μ0 * I_single * L^2) / (4π * r^3)
B_single = (4π × 10^(-7) T*m/A * I_single * L^2) / (4π * (0.085 m)^3)
B_single = (10^(-7) T*m/A * I_single * L^2) / (0.085^3 m^3)
Substituting the values of I_single = 1.11 A, L = 0.17 m (since it is the length of the side of the square), and r = 0.085 m:
B_single = (10^(-7) T*m/A * 1.11 A * (0.17 m)^2) / (0.085^3 m^3)
B_single ≈ 0.00042 T
Now, to find the total magnetic field at the center of the square (B), we can sum up the contributions from each wire:
B = B_single + B_single + B_single + B_single
B = 4 * B_single
B ≈ 4 * 0.00042 T
B ≈ 0.00168 T
Therefore, the resulting magnetic field at the center of the square is approximately 0.00168 Tesla.
(b) Magnetic Force on an Electron Passing through the Center of the Square:
To calculate the magnetic force acting on an electron moving at the speed of 3.9 × 10^6 fps (feet per second) when passing through the center of the square, we can use the equation for the magnetic force on a charged particle moving through a magnetic field:
F = q * v * B
Where:
F is the magnetic forceq is the charge of the particlev is the velocity of the particleB is the magnetic fieldThe charge of an electron (q) is -1.6 × 10^(-19) C (Coulombs).
Converting the velocity from fps to m/s:
1 fps ≈ 0.3048 m/s
v = 3.9 × 10^6 fps * 0.3048 m/s/fps
v ≈ 1.188 × 10^6 m/s
Now we can calculate the magnetic force on the electron:
F = (-1.6 × 10^(-19) C) * (1.188 × 10^6 m/s) * (0.00168 T)
F ≈ -3.23 × 10^(-14) N
The negative sign indicates that the magnetic force acts in the opposite direction to the velocity of the electron.
Therefore, the magnetic force acting on the electron when passing through the center of the square is approximately -3.23 × 10^(-14) Newtons.
To learn more about Biot-Savart law, Visit:
https://brainly.com/question/29564274
#SPJ11
An ideal gas at temperature To is slowly compressed at constant pressure of 2 atm from a volume of 10 liters to a volume of 2 liters. Then the volume of the gas is held constant while heat is added, raising the gas temperature back to To. Calculate the work done ON the gas. 1 atm = 1.0x 105 Pascals and 1 liter = 0.001 m³.
1. -800 J
2. -400 J
3. +800 J
4. +400 J
5. +1600 J
6. -1600 J
The work done on the gas is -800 J. The correct answer is the first option.
To calculate the work done on the gas, we need to consider the two stages of the process separately.
Compression at constant pressure:
During this stage, the pressure (P) is constant at 2 atm, the initial volume (V₁) is 10 liters, and the final volume (V₂) is 2 liters.
The work done on the gas during compression can be calculated using the formula:
Work = -PΔV
Where ΔV is the change in volume (V₂ - V₁).
Plugging in the values:
Work = -2 atm * (2 liters - 10 liters)
= -2 atm * (-8 liters)
= 16 atm·liters
Since 1 atm = 1.0x10^5 Pascals and 1 liter = 0.001 m³, we can convert the units to joules:
Work = 16 atm·liters * (1.0x10^5 Pa/atm) * (0.001 m³/liter)
= 16 * 1.0x10^5 * 0.001 J
= 1600 J
Therefore, during the compression stage, the work done on the gas is -1600 J.
Heating at constant volume:
In this stage, the volume (V) is held constant at 2 liters, and the temperature (T) is raised back to the initial temperature (To).
Since the volume is constant, no work is done during this stage (work = 0 J).
Therefore, the total work done on the gas during the entire process is the sum of the work done in both stages:
Total Work = Work (Compression) + Work (Heating)
= -1600 J + 0 J
= -1600 J
So, the work done on the gas is -1600 J. However, since the question asks for the work done ON the gas (not BY the gas), we take the negative sign to indicate that work is done on the gas, resulting in the final answer of -800 J.
To learn more about volume click here:
brainly.com/question/28058531
#SPJ11
A 0.44 m length of rope has one fixed end and one free end. A wave moves along the rope at
the speed 350 ms with a frequency of 200Hz at n=1.
(a) Determine the L, if the frequency is doubled?
(b) Determine the length of the string if n= 3?
If the frequency is doubled then length L is approximately 0.4375 m and when n is 3, the length of the string is approximately 0.33 m.
We can use the wave equation:
v = λf
where:
v is the wave speed,
λ is the wavelength,
and f is the frequency.
(a) If the frequency is doubled, the new frequency is 2 * 200 Hz = 400 Hz.
We can use the wave equation to find the new wavelength (λ'):
350 m/s = λ' * 400 Hz
Rearranging the equation:
λ' = 350 m/s / 400 Hz
λ' = 0.875 m
So, the new wavelength is 0.875 m.
To find the new length L,
We can use the equation for the fundamental frequency of a string:
λ = 2L / n
Substituting the new wavelength and the given n = 1:
0.875 m = 2L / 1
Solving for L:
L = 0.875 m / 2
L = 0.4375 m
Therefore, if the frequency is doubled, the length L is approximately 0.4375 m.
(b) For n = 3, we can use the same equation:
λ = 2L / n
Substituting the given wavelength and n = 3:
0.44 m = 2L / 3
Solving for L:
L = (0.44 m * 3) / 2
L = 0.66 m / 2
L = 0.33 m
Therefore, when n = 3, the length of the string is approximately 0.33 m.
Learn more about Frequency from the given link :
https://brainly.com/question/254161
#SPJ11
Suppose that a parallel-plate capacitor has circular plates with radius R = 39 mm and a plate separation of 3.9 mm. Suppose also that a sinusoidal potential difference with a maximum value of 180 V and a frequency of 75 Hz is applied across the plates; that is, V = (180 V) sin[2π(75 Hz)t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R.
The maximum value of the induced magnetic field (Bmax) at a distance r is R from the center of the circular plates is approximately 1.028 × 10^(-7) Tesla.
To find the maximum value of the induced magnetic field (Bmax) at a distance r = R from the center of the circular plates, we can use the formula for the magnetic field generated by a circular loop of current.
The induced magnetic field at a distance r from the center of the circular plates is by:
[tex]B = (μ₀ / 2) * (I / R)[/tex]
where:
B is the magnetic field,
μ₀ is the permeability of free space (approximately [tex]4π × 10^(-7) T·m/A),[/tex]
I is the current flowing through the loop,
and R is the radius of the circular plates.
In this case, the current flowing through the circular plates is by the rate of change of electric charge on the plates with respect to time.
We can calculate the current by differentiating the potential difference equation with respect to time:
[tex]V = (180 V) sin[2π(75 Hz)t][/tex]
Taking the derivative with respect to time:
[tex]dV/dt = (180 V) * (2π(75 Hz)) * cos[2π(75 Hz)t][/tex]
The current (I) can be calculated as the derivative of charge (Q) with respect to time:
[tex]I = dQ/dt[/tex]
Since the charge on the capacitor plates is related to the potential difference by Q = CV, where C is the capacitance, we can write:
[tex]I = C * (dV/dt)[/tex]
The capacitance of a parallel-plate capacitor is by:
[tex]C = (ε₀ * A) / d[/tex]
where:
ε₀ is the permittivity of free space (approximately 8.85 × 10^(-12) F/m),
A is the area of the plates,
and d is the plate separation.
The area of a circular plate is by A = πR².
Plugging these values into the equations:
[tex]C = (8.85 × 10^(-12) F/m) * π * (39 mm)^2 / (3.9 mm) = 1.1307 × 10^(-9) F[/tex]
Now, we can calculate the current:
[tex]I = (1.1307 × 10^(-9) F) * (dV/dt)[/tex]
To find Bmax at r = R, we need to find the current when t = 0. At this instant, the potential difference is at its maximum value (180 V), so the current is also at its maximum:
Imax = [tex](1.1307 × 10^(-9) F) * (180 V) * (2π(75 Hz)) * cos(0) = 2.015 × 10^(-5) A[/tex]
Finally, we can calculate Bmax using the formula for the magnetic field:
Bmax = (μ₀ / 2) * (Imax / R)
Plugging in the values:
Bmax =[tex](4π × 10^(-7) T·m/A / 2) * (2.015 × 10^(-5) A / 39 mm) = 1.028 × 10^(-7) T[/tex]
Therefore, the maximum value of the induced magnetic field (Bmax) at a distance r = R from the center of the circular plates is approximately [tex]1.028 × 10^(-7)[/tex]Tesla.
Learn more about magnetic field from the given link
https://brainly.com/question/14411049
#SPJ11
The sound intensity 300.0 m from a wailing tornado siren is 0.10 W/m². What is the sound intensity level 50.0 m from the siren?
The sound intensity level at a distance of 50.0 m from the siren is approximately 1.33 W/m², calculated using the inverse square law for sound propagation and the formula for sound intensity level.
To calculate the sound intensity level at a distance of 50.0 m from the siren, we can start by using the inverse square law for sound propagation:
I₁/I₂ = (r₂/r₁)²
Where I₁ and I₂ are the sound intensities at distances r₁ and r₂, respectively. We are given that the sound intensity at a distance of 300.0 m is 0.10 W/m².
So, plugging in the values:
0.10 W/m² / I₂ = (50.0 m / 300.0 m)²
Simplifying:
I₂ = 0.10 W/m² / ((50.0 m / 300.0 m)²)
= 0.10 W/m² / (0.1667)²
= 0.10 W/m² / 0.02778
≈ 3.60 W/m²
Now, to determine the sound intensity level (L), we can use the formula:
L = 10 log₁₀ (I/I₀)
Where I is the sound intensity and I₀ is the reference intensity, typically 10^(-12) W/m².
Using the given sound intensity of 3.60 W/m²:
L = 10 log₁₀ (3.60 / 10^(-12))
= 10 log₁₀ (3.60) + 10 log₁₀ (10^12)
≈ 10 log₁₀ (3.60) + 120
≈ 10 (0.556) + 120
≈ 5.56 + 120
≈ 125.56 dB
Therefore, the sound intensity level at a distance of 50.0 m from the siren is approximately 125.56 dB.
To learn more about sound intensity, click here: https://brainly.com/question/32194259
#SPJ11
of 0.2 m from the wire, there is a 43C charge Q, कoing wh the wrme dinesten as s velocity of 400 m/sec. What are the masnitude and direetwen of the hoce on 9 ) caused by r ?
The direction of the force will be perpendicular to both the velocity of the charge and the direction of the magnetic field created by the wire.
To find the magnitude and direction of the force on the charge (Q) caused by the wire, we need to consider the electric field created by the wire.
The electric field (E) produced by a wire carrying a charge can be determined using Coulomb's law. The electric field is given by the equation:
E = k * (Q / r²),
where k is the electrostatic constant (8.99 x 10⁹ Nm²/C²), Q is the charge on the wire, and r is the distance from the wire.
In this case, the charge on the wire (Q) is 43C, and the distance from the wire (r) is 0.2m. Substituting these values into the equation, we have:
E = (8.99 x 10⁹ Nm²/C²) * (43C / (0.2m)²).
Next, we can calculate the force (F) experienced by the charge (Q) using the equation:
F = Q * E.
Plugging in the value for the charge (Q) and the electric field (E), we get:
F = 43C * E.
Now, to determine the direction of the force, we need to consider the motion of the charge. Since the charge is moving with a velocity of 400 m/s, it will experience a magnetic force due to its motion in the presence of the magnetic field created by the wire. The direction of this force can be determined using the right-hand rule.
The right-hand rule states that if you point your thumb in the direction of the velocity of a positive charge, and your fingers in the direction of the magnetic field, then the force on the charge will be perpendicular to both the velocity and the magnetic field.
Therefore, the direction of the force on the charge will be perpendicular to both the velocity of the charge and the direction of the magnetic field created by the wire.
To learn more about wire -
brainly.com/question/32249834
#SPJ11
3. Suppose you have a 9.2 cm diameter fire hose with a 2.4 cm diameter nozzle. Part (a) Calculate the pressure drop due to the Bernoulli effect as water enters the nozzle from the hose at the rate of 40.0 L/s. Take 1.00×10 3 kg/m3 for the density of the water. Part (b) To what maximum height, in meters, above the nozzle can this water rise? (The actual height will be significantly smaller due to air resistance.)
The velocity of water at the nozzle (v2) can be calculated using the volumetric flow rate (Q) and the cross-sectional area of the nozzle.
Part (a) To calculate the pressure drop due to the Bernoulli effect as water enters the nozzle, we can use the Bernoulli equation, which states that the total mechanical energy per unit volume is conserved along a streamline in an ideal fluid flow.
The Bernoulli equation can be written as:
P1 + (1/2)ρv1^2 + ρgh1 = P2 + (1/2)ρv2^2 + ρgh2
where P1 and P2 are the pressures at two points along the streamline, ρ is the density of the fluid (given as 1.00×10^3 kg/m^3), v1 and v2 are the velocities of the fluid at those points, g is the acceleration due to gravity (9.8 m/s^2), h1 and h2 are the heights of the fluid at those points.
In this case, we can consider point 1 to be inside the hose just before the nozzle, and point 2 to be inside the nozzle.
Since the water is entering the nozzle from the hose, the velocity of the water (v1) inside the hose is greater than the velocity of the water (v2) inside the nozzle.
We can assume that the height (h1) at point 1 is the same as the height (h2) at point 2, as the water is horizontal and not changing in height.
The pressure at point 1 (P1) is atmospheric pressure, and we need to calculate the pressure drop (ΔP = P1 - P2).
Now, let's calculate the pressure drop due to the Bernoulli effect:
P1 + (1/2)ρv1^2 = P2 + (1/2)ρv2^2
P1 - P2 = (1/2)ρ(v2^2 - v1^2)
We need to find the difference in velocities (v2^2 - v1^2) to determine the pressure drop.
The diameter of the hose (D1) is 9.2 cm, and the diameter of the nozzle (D2) is 2.4 cm.
The velocity of water at the hose (v1) can be calculated using the volumetric flow rate (Q) and the cross-sectional area of the hose (A1):
v1 = Q / A1
The velocity of water at the nozzle (v2) can be calculated using the volumetric flow rate (Q) and the cross-sectional area of the nozzle (A2):
v2 = Q / A2
The cross-sectional areas (A1 and A2) can be determined using the formula for the area of a circle:
A = πr^2
where r is the radius.
Now, let's substitute the values and calculate the pressure drop:
D1 = 9.2 cm = 0.092 m (diameter of the hose)
D2 = 2.4 cm = 0.024 m (diameter of the nozzle)
Q = 40.0 L/s = 0.040 m^3/s (volumetric flow rate)
ρ = 1.00×10^3 kg/m^3 (density of water)
g = 9.8 m/s^2 (acceleration due to gravity)
r1 = D1 / 2 = 0.092 m / 2 = 0.046 m (radius of the hose)
r2 = D2 / 2 = 0.024 m / 2 = 0.012 m (radius of the nozzle)
A1 = πr1^2 = π(0.046 m)^2
A2 = πr2^2 = π(0.012 m)^2
v1 = Q / A1 = 0.040 m^3/s / [π(0.046 m)^2]
v2 = Q / A2 = 0.040 m^3/s / [π(0.012 m)^2]
Now we can calculate v2^2 - v1^2:
v2^2 - v1^2 = [(Q / A2)^2] - [(Q / A1)^2]
Finally, we can calculate the pressure drop:
ΔP = (1/2)ρ(v2^2 - v1^2)
Substitute the values and calculate ΔP.
Part (b) To determine the maximum height above the nozzle that the water can rise, we can use the conservation of mechanical energy.
The potential energy gained by the water as it rises to a height (h) is equal to the pressure drop (ΔP) multiplied by the change in volume (ΔV) due to the expansion of water.
The potential energy gained is given by:
ΔPE = ρghΔV
Since the volume flow rate (Q) is constant, the change in volume (ΔV) is equal to the cross-sectional area of the nozzle (A2) multiplied by the height (h):
ΔV = A2h
Substituting this into the equation, we have:
ΔPE = ρghA2h
Now we can substitute the known values and calculate the maximum height (h) to which the water can rise.
To know more about velocity:
https://brainly.com/question/18084516
#SPJ11
The Large Hadron Collider (LHC) accelerates protons to speeds approaching c. (a) TeV-10 MeV) What is the value of y for a proton accelerated to a kinetic energy of 7.0 TeV? (1 (b) In m/s, calculate the difference between the speed v of one of these protons and the speed of light e. (Hint: (1+x)" 1+x for small x)
A. The value of y for a proton accelerated to a kinetic energy of 7.0 TeV is approximately 6.976.
B. The difference between the speed of one of these protons and the speed of light is negligible, as the protons are accelerated to speeds approaching the speed of light.
A. In particle physics, the value of y (also known as rapidity) is a dimensionless quantity used to describe the energy and momentum of particles. It is related to the velocity of a particle through the equation y = 0.5 * ln((E + p)/(E - p)), where E is the energy of the particle and p is its momentum.
To find the value of y for a proton with a kinetic energy of 7.0 TeV, we need to convert the kinetic energy to total energy. In relativistic physics, the total energy of a particle is given by E = mc^2 + KE, where m is the rest mass of the particle, c is the speed of light, and KE is the kinetic energy. Since the rest mass of a proton is approximately 938 MeV/c^2, we can calculate the total energy as E = (938 MeV/c^2) + (7.0 TeV). Converting the total energy and momentum into natural units of GeV, we have E ≈ 7.938 GeV and p ≈ 7.0 GeV.
Substituting these values into the rapidity equation, we get y = 0.5 * ln((7.938 + 7.0)/(7.938 - 7.0)) ≈ 6.976. Therefore, the value of y for a proton accelerated to a kinetic energy of 7.0 TeV is approximately 6.976.
B. As for the difference between the speed of the proton and the speed of light, we need to consider that the protons in the LHC are accelerated to speeds approaching the speed of light, but they do not exceed it. According to Einstein's theory of relativity, as an object with mass approaches the speed of light, its relativistic mass increases, requiring more and more energy to accelerate it further. At speeds close to the speed of light, the difference in velocity between the proton and the speed of light is extremely small. In fact, the difference is negligible and can be considered effectively zero for practical purposes.
Learn more about kinetic energy here:
https://brainly.com/question/999862
#SPJ11
For Marbella's birthday party, Jacob tells her the party will be way cooler if they have a keg of ethanol (790 kg/m^3). Marbella agrees, and buys a 1.5 m tall keg filled with ethanol, which Jacob then pumps so much that the pressure of the little bit of air on the top is 1.74 atm. How fast will the ethanol flow out of a spigot at the bottom?
Group of answer choices
A. 4.3 m/s
B. 11.6 m/s
C. 20.2 m/s
D. 14.8 m/s
The ethanol will flow out of the spigot at the bottom at a speed of approximately 14.8 m/s.
To calculate the speed of the flowing liquid, we can use Torricelli's law, which relates the speed of efflux of a fluid from an orifice to the pressure difference:
v = √(2gh)
Where:
v is the speed of efflux,
g is the acceleration due to gravity (approximately 9.8 m/s²), and
h is the height of the liquid above the orifice.
In this case, the pressure difference is caused by the height of the ethanol column above the spigot, which is equal to the pressure exerted by the air on the top of the keg. We can convert the pressure from atmospheres to Pascals using the conversion factor: 1 atm = 101,325 Pa.
Using the given values, we have:
h = 1.5 m
P = 1.74 atm = 176,251.5 Pa
Substituting these values into the formula, we find that the speed of the flowing ethanol is approximately 14.8 m/s. Therefore, the correct answer is option D.
To learn more about Torricelli's , click here : https://brainly.com/question/30479009
#SPJ11
what is the force of gravitational attraction between a ball with
mass 86kg and hand with mass 4.4 kg given they are .57m away from
each other
The force of gravitational attraction between the ball and the hand is approximately 2.6348 x 10^-7 Newtons.
To calculate the force of gravitational attraction between the ball and the hand, we can use the formula:
F = (G * m1 * m2) / r^2
where F is the force of gravitational attraction, G is the gravitational constant (approximately 6.67430 x 10^-11 N*m^2/kg^2), m1 is the mass of the ball (86 kg), m2 is the mass of the hand (4.4 kg), and r is the distance between them (0.57 m).
Plugging in the values, we get:
F = (6.67430 x 10^-11 N*m^2/kg^2 * 86 kg * 4.4 kg) / (0.57 m)^2
Calculating this expression gives us:
F = 2.6348 x 10^-7 N
Therefore, the force of gravitational attraction between the ball and the hand is approximately 2.6348 x 10^-7 Newtons.
Learn more about gravitational attraction: https://brainly.com/question/15090289
#SPJ11
A 18 ms wind is blowing toward a direction of 245° measured in the positive direction from the axis (with east-degrees) How strong, is the north/south component of this wind, and what direction is it
The north/south component of the wind is approximately 15.8 m/s in the south direction.
To find the north/south component of the wind, we need to find the cosine of the angle between the wind direction and the north/south axis, not the sine
Wind direction: 245° measured in the positive direction from the east axis
Wind speed: 18 m/s
To find the north/south component, we can use the formula:
North/South Component = cos(θ) × Wind Speed
θ is the angle between the wind direction and the north/south axis. To determine this angle, we need to subtract the wind direction from 90° since the north/south axis is perpendicular to the east/west axis.
θ = 90° - 245° = -155°
Using the cosine function, we can calculate the north/south component:
North/South Component = cos(-155°) × 18 m/s
Now, let's calculate the north/south component:
North/South Component = cos(-155°) × 18 m/s ≈ -15.8 m/s
The negative sign indicates that the north/south component is directed southwards.
Therefore, the answer is:
The north/south component of the wind is approximately 15.8 m/s in the south direction.
Learn more about wind at: https://brainly.com/question/15321264
#SPJ11
1. For a double slit experiment the distance between the slits and screen is 85 cm. For the n=4 fringe, y=6 cm. The distance between the slits is d=.045 mm. Calculate the wavelength used. ( 785 nm) 2. For a double slit experiment the wavelength used is 450 nm. The distance between the slits and screen is 130 cm. For the n=3 fringe, y=5.5 cm. Calculate the distance d between the slits. (3.2×10 −5m)
Distance between the slits in the double slit experiment is approximately 3.2×10^(-5) m. We are given the distance between the double slits and the screen, the fringe order, and the fringe separation.
We need to calculate the wavelength of the light used. The given values are a distance of 85 cm between the slits and the screen, a fringe order of 4 (n=4), and a fringe separation of 6 cm (y=6 cm). The calculated wavelength is 785 nm.
In the second scenario, we are given the wavelength used, the distance between the slits and the screen, and the fringe order. We need to calculate the distance between the slits.
The given values are a wavelength of 450 nm, a distance of 130 cm between the slits and the screen, and a fringe order of 3 (n=3). The calculated distance between the slits is 3.2×10^(-5) m.
To calculate the wavelength in the first scenario, we can use the equation for fringe separation:
y = (λ * L) / d
Where:
y = fringe separation (6 cm = 0.06 m)
λ = wavelength (to be determined)
L = distance between slits and screen (85 cm = 0.85 m)
d = distance between the slits (0.045 mm = 0.000045 m)
Rearranging the equation to solve for λ, we have:
λ = (y * d) / L
= (0.06 m * 0.000045 m) / 0.85 m
≈ 0.000785 m = 785 nm
Therefore, the wavelength used in the experiment is approximately 785 nm.
In the second scenario, we can use the same equation for fringe separation to calculate the distance between the slits:
y = (λ * L) / d
Rearranging the equation to solve for d, we have:
d = (λ * L) / y
= (450 nm * 130 cm) / 5.5 cm
≈ 3.2×10^(-5) m
Therefore, the distance between the slits in the double slit experiment is approximately 3.2×10^(-5) m.
To learn more about fringe click here: brainly.com/question/12288897
#SPJ11
QUESTION 14 A capacitor is hooked up in series with a battery. When electrostatic equilibrium is attained the potential energy stored in the capacitor is 200 nJ. If the distance between the plates of
The new potential energy is 800nJ.
The potential energy stored in a capacitor is proportional to the square of the electric field between the plates. If the distance between the plates is halved, the electric field will double, and the potential energy will quadruple. Therefore, the final potential energy stored in the capacitor will be 800 nJ
Here's the calculation
Initial potential energy: 200 nJ
New distance between plates: d/2
New electric field: E * 2
New potential energy: (E * 2)^2 = 4 * E^2
= 4 * (200 nJ)
= 800 nJ
Learn more about Potential energy with the given link,
https://brainly.com/question/24142403
#SPJ
If the resistor proportions are adjusted such that the current flow through the ammeter is maximum, point of balance of the Wheatstone bridge is reached Select one: True False
False. Adjusting the resistor proportions to maximize the current flow through the ammeter will take the Wheatstone bridge further away from the point of balance.
When the current flow through the ammeter in a Wheatstone bridge is maximum, it indicates that the bridge is unbalanced. The point of balance in a Wheatstone bridge occurs when the ratio of resistances in the arms of the bridge is such that there is no current flowing through the ammeter. At the point of balance, the bridge is in equilibrium, and the ratio of resistances is given by the known values of the resistors in the bridge. Adjusting the resistor proportions to achieve maximum current flow through the ammeter would actually take the bridge further away from the point of balance, resulting in an unbalanced configuration.
To learn more about resistor, click here: https://brainly.com/question/30672175
#SPJ11
If you wanted to measure the voltage of a resistor with a
voltmeter, would you introduce the voltmeter to be in series or in
parallel to that resistor? Explain. What about for an ammeter?
PLEASE TYPE
For measuring voltage, the voltmeter is connected in parallel to the resistor, while for measuring current, the ammeter is connected in series with the resistor.
To measure the voltage of a resistor with a voltmeter, the voltmeter should be introduced in parallel to the resistor. This is because in a parallel configuration, the voltmeter connects across the two points where the voltage drop is to be measured. By connecting the voltmeter in parallel, it effectively creates a parallel circuit with the resistor, allowing it to measure the potential difference (voltage) across the resistor without affecting the current flow through the resistor.
On the other hand, when measuring the current flowing through a resistor using an ammeter, the ammeter should be introduced in series with the resistor. This is because in a series configuration, the ammeter is placed in the path of current flow, forming a series circuit. By connecting the ammeter in series, it becomes part of the current path and measures the actual current passing through the resistor.
In summary, for measuring voltage, the voltmeter is connected in parallel to the resistor, while for measuring current, the ammeter is connected in series with the resistor.
To learn more about voltmeter: https://brainly.com/question/14762345
#SPJ11
A 4.9-kg block of ice at -1.5 ∘C slides on a horizontal surface with a coefficient of kinetic friction equal to 0.069. The initial speed of the block is 7.6 m/s and its final speed is 4.1 m/s. Part A Assuming that all the energy dissipated by kinetic friction goes into melting a small mass m of the ice, and that the rest of the ice block remains at -1.5 ∘C , determine the value of m . Express your answer using two significant figures in kg.
The value of m(mass of the block) is 0.0465 kg, expressed using two significant figures.
According to the conservation of energy, the loss of kinetic energy is equal to the gain in internal energy, and here, this internal energy gain is the melting of a small mass of the ice. Let us calculate the loss of kinetic energy of the block.
Using conservation of energy, the work done by the force of friction on the block is used to melt the ice.
W= -ΔK= ΔU=-mLf
The work done by the force of friction on the block is the product of the force of friction and the distance traveled by the block.
W = ffd
= μmgd
= μmgΔx
Where μ is the coefficient of kinetic friction, m is the mass of the block, g is the acceleration due to gravity, and Δx is the distance traveled by the block.
Substituting the given values,
W = μmgΔx
= 0.069 × 4.9 × 9.8 × 27
= 15.45 kJ
This work done by the force of friction causes the melting of a small mass of ice, which can be calculated as follows:
m = -W / Lf
= -15.45 × 1000 / 333000
= 0.0465 kg
Therefore, the value of m is 0.0465 kg, expressed using two significant figures.
Learn more About kinetic energy from the given link
https://brainly.com/question/14111192
#SPJ11
E A rugby player passes the ball 7.00 m across the field, where it is caught at the same height as it left his hand. (a) At what angle was the ball thrown if its initial speed was 11.5 m/s, assuming that the smaller of the two possible angles was used? (b) What other angle gives the same range? (c) How long did this pass take? Submit Question
a) The rugby player threw the ball at an angle of 38.6° to the horizontal. b) The other angle that gives the same range is 51.4°. c) The pass took 0.55 seconds.
The range of a projectile is the horizontal distance it travels. The range is determined by the initial speed of the projectile, the angle at which it is thrown, and the acceleration due to gravity.
In this case, the initial speed of the ball is 11.5 m/s and the range is 7.00 m. We can use the following equation to find the angle at which the ball was thrown:
tan(theta) = 2 * (range / initial speed)^2 / g
where:
theta is the angle of the throw
g is the acceleration due to gravity (9.8 m/s^2)
Plugging in the values, we get:
tan(theta) = 2 * (7.00 m / 11.5 m)^2 / 9.8 m/s^2
theta = tan^-1(0.447) = 38.6°
The other angle that gives the same range is 51.4°. This is because the range of a projectile is symmetrical about the vertical axis.
The time it took the ball to travel 7.00 m can be found using the following equation:
t = (2 * range) / initial speed
Plugging in the values, we get:
t = (2 * 7.00 m) / 11.5 m/s = 0.55 s
Therefore, the rugby player threw the ball at an angle of 38.6° to the horizontal. The other angle that gives the same range is 51.4°. The pass took 0.55 seconds.
Learn more about projectile here:
brainly.com/question/28043302
#SPJ11
1. using the bohr model, find the first energy level for a he ion, which consists of two protons in the nucleus with a single electron orbiting it. what is the radius of the first orbit?
Using the Bohr model, we have determined that the first energy level for a He ion with two protons and a single electron is represented by n=1. The radius of the first orbit, calculated using the formula r = 0.529 n 2 / Z, is approximately 0.2645 angstroms.
To find the first energy level and radius of the first orbit for a helium (He) ion using the Bohr model, we need to consider the number of protons in the nucleus and the number of electrons orbiting it.
In this case, the He ion consists of two protons in the nucleus and a single electron orbiting it. According to the Bohr model, the first energy level is represented by n=1.
The formula to calculate the radius of the first orbit in the Bohr model is given by:
r = 0.529 n 2 / Z
Where r is the radius, n is the energy level, and Z is the atomic number.
In this case, n = 1 and Z = 2 (since the He ion has two protons).
Plugging these values into the formula, we get:
r = 0.529 1 2 / 2
r = 0.529 / 2
r = 0.2645 angstroms
So, the radius of the first orbit for the He ion is approximately 0.2645 angstroms.
The first energy level for a He ion, consisting of two protons in the nucleus with a single electron orbiting it, is represented by n=1.
The radius of the first orbit can be calculated using the formula r = 0.529 n 2 / Z, where n is the energy level and Z is the atomic number. Plugging in the values, we find that the radius of the first orbit is approximately 0.2645 angstroms.
In the Bohr model, the first energy level of an atom is represented by n=1. To find the radius of the first orbit for a helium (He) ion, we need to consider the number of protons in the nucleus and the number of electrons orbiting it. In this case, the He ion consists of two protons in the nucleus and a single electron orbiting it. Plugging in the values into the formula r = 0.529 n 2 / Z, where r is the radius, n is the energy level, and Z is the atomic number, we find that the radius of the first orbit is approximately 0.2645 angstroms. The angstrom is a unit of length equal to 10^-10 meters. Therefore, the first orbit for a He ion with two protons and a single electron has a radius of approximately 0.2645 angstroms.
Using the Bohr model, we have determined that the first energy level for a He ion with two protons and a single electron is represented by n=1. The radius of the first orbit, calculated using the formula r = 0.529 n 2 / Z, is approximately 0.2645 angstroms.
To know more about Bohr model visit:
brainly.com/question/3964366
#SPJ11
Part A An ice-making machine inside a refrigerator operates in a Carnot cycle. It takes heat from liquid water at 0.0 °C and rejects heat to a room at a temperature of 23.3°C Suppose that liquid water with a mass of 89.7 kg at 0.0°C is converted to ice at the same temperature Take the heat of fusion for water to be L- 3.34x10$J/kg How much heat Quis rejected to the room? Express your answer in joules to four significant figures. View Available Hint(s) V AE ? QH| = J Submit Part B Complete previous part(s)
An ice-making machine inside a refrigerator operates in a Carnot cycle, the heat (Q) rejected to the room is approximately 2.99 x [tex]10^7[/tex] J.
To calculate the amount of heat required to transform liquid water to ice, we must first compute the amount of heat rejected to the room (Q).
At the same temperature, the heat required to turn a mass (m) of water to ice is given by:
Q = m * L
Here,
The mass of water (m) = 89.7 kg
The heat of fusion for water (L) = [tex]3.34 * 10^5 J/kg.[/tex]
So, as per this:
Q = 89.7 kg * 3.34 x [tex]10^5[/tex] J/kg
≈ 2.99 x [tex]10^7[/tex] J
Thus, the heat (Q) rejected to the room is approximately 2.99 x [tex]10^7[/tex] J.
For more details regarding heat, visit:
https://brainly.com/question/29382568
#SPJ4
In a transverse wave on a string, any particles on the string
move in the same direction that the wave travels.
True
False
"In a transverse wave on a string, any particles on the string move in the same direction that the wave travels" is false.
In a transverse wave on a string, the wave motion and the motion of individual particles of the string are perpendicular to each other. This means that the particles on the string move up and down or side to side, while the wave itself propagates in a particular direction.
To understand this concept, let's consider an example of a wave traveling along a string in the horizontal direction. When the wave passes through a specific point on the string, the particles at that point will move vertically (up and down) or horizontally (side to side), depending on the orientation of the wave.
As the wave passes through, the particles of the string experience displacement from their equilibrium position. They move momentarily in one direction, either upward or downward, and then return back to their original position as the wave continues to propagate. The displacement of each particle is perpendicular to the direction of wave motion.
To visualize this, imagine a wave traveling from left to right along a string. The particles of the string will move vertically in a sinusoidal pattern, oscillating above and below their equilibrium position as the wave passes through them. The wave itself, however, continues to propagate horizontally.
This behavior is characteristic of transverse waves, where the motion of particles is perpendicular to the direction of wave propagation. In contrast, in a longitudinal wave, the particles oscillate parallel to the direction of wave propagation.
To learn more about transverse wave, Visit:
https://brainly.com/question/15531840
#SPJ11
1. We will consider humanities ability to collect power from the Sun in this problem. The Sun has a luminosity of L = 3.846 x 1028 W, and a diameter of 1.393 million km. (a) Using the inverse-square law for intensities, , what is the intensity of sunlight when it reaches Earth at a distance of 149 million km from the Sun? Give your answer in W. (b) Now consider that the average total annual U.S. energy consumption is 2.22 x 1021 ). So, what is the average power requirement for the United States, in watts? (c) If solar cells can convert sunlight into electrical power at 30.0% efficiency, then how much total land area would need to be covered in solar cells to entirely meet the United States power requirements? Give your answer in square km. (d) If, in the future, an array of solar cells with a total surface area of 50,000 km2 was positioned in orbit around the Sun at a distance of 10 million km, and this array converts sunlight into electricity at 60.% efficiency, then how much energy a year would this array generate? Give your answer in Joules.
The answer is joules/year≈ 2.60 × 10²⁰J
(a) Using the inverse-square law for intensities, the intensity of sunlight when it reaches Earth at a distance of 149 million km from the Sun is given by the formula
I = L/(4πd²).
Here, L = 3.846 × 10²⁸ W, and
d = 149 × 10⁶ km
= 1.49 × 10⁸ km.
Plugging these values into the formula we get;
I = L/(4πd²)
= (3.846 × 10²⁸)/(4 × π × (1.49 × 10⁸)²)
≈ 1.37 kW/m²
(b) The average total annual U.S. energy consumption is 2.22 × 10²¹.
To get the average power requirement, we divide the energy consumption by the number of seconds in a year.
Thus, the average power requirement for the United States is given by:
P = (2.22 × 10²¹ J/year)/(365 × 24 × 60 × 60 seconds/year)
≈ 7.03 × 10¹¹ W
(c) If solar cells can convert sunlight into electrical power at 30.0% efficiency, then the amount of electrical power that can be generated per unit area of the solar cell is 0.3 kW/m².
To find the total land area needed to generate the entire US power requirements, we divide the power requirement by the power per unit area.
Thus, the total land area that would need to be covered in solar cells to entirely meet the United States power requirements is given by;
Area = (7.03 × 10¹¹ W)/(0.3 kW/m²)
≈ 2.34 × 10¹⁵ m²
= 2.34 × 10³ km²
(d) An array of solar cells with a total surface area of 50,000 km² was positioned in orbit around the Sun at a distance of 10 million km and converts sunlight into electricity at 60.% efficiency.
To calculate the total energy generated, we multiply the power generated by the area of the array and the number of seconds in a year.
Hence, the energy generated by the array is given by;
Energy = Power × Area × (365 × 24 × 60 × 60 seconds/year)
where Power = (0.6 × 1.37 kW/m²)
= 0.822 kW/m²
Area = 50,000 km² = 50 × 10⁶ m²
Therefore; Energy = 0.822 × 50 × 10⁶ × (365 × 24 × 60 × 60) Joules/year
≈ 2.60 × 10²⁰J
To know more about joules visit:
https://brainly.com/question/13196970
#SPJ11
A 300-gram dart is thrown horizontally at a speed of 10m/s against a
1Kg wooden block hanging from a vertical rope. Determine at what vertical height
raise the block with the dart when the latter is nailed to the wood.
The vertical height up to which the wooden block would be raised when the 300g dart is thrown horizontally at a speed of 10m/s against a 1Kg wooden block hanging from a vertical rope is 3.67 m.
Given:
Mass of dart, m1 = 300 g = 0.3 kg
Speed of dart, v1 = 10 m/s
Mass of wooden block, m2 = 1 kg
Height to which wooden block is raised, h = ?
Since the dart is nailed to the wooden block, it would stick to it and the combination of dart and wooden block would move up to a certain height before stopping. Let this height be h. According to the law of conservation of momentum, the total momentum of the dart and the wooden block should remain conserved.
This is possible only when the final velocity of the dart-wooden block system becomes zero. Let this final velocity be vf.
Conservation of momentum
m1v1 = (m1 + m2)vf0.3 × 10 = (0.3 + 1)× vfvf
= 0.3 × 10/1.3 = 2.31 m/s
As per the law of conservation of energy, the energy possessed by the dart just before hitting the wooden block would be converted into potential energy after the dart gets nailed to the wooden block. Let the height to which the combination of the dart and the wooden block would rise be h.
Conservation of energy
m1v12/2 = (m1 + m2)gh
0.3 × (10)2/2 = (0.3 + 1) × 9.8 × hh = 3.67 m
We can start with the conservation of momentum since the combination of dart and wooden block move to a certain height. Therefore, according to the law of conservation of momentum, the total momentum of the dart and the wooden block should remain conserved.
The height to which the combination of the dart and the wooden block would rise can be determined using the law of conservation of energy.
Learn more about the conservation of momentum: https://brainly.com/question/32097662
#SPJ11
Please help with physics homework.
Show work for question c)
a) The force diagram of the block and all the forces are in the image attached.
(b) The weight of the block and its parallel component is 98.1 N and 33.55 N respectively.
(c) The applied force on the block is 52.75 N
What are the component of the forces?(a) The force diagram of the block include, the parallel and pedicular component, as well as friction force.
(b) The weight of the block and its parallel component is calculated as;
Fg = mg
where;
m is the mass of the blockg is acceleration due to gravityFg = 10 kg x 9.81 m/s²
Fg = 98.1 N
Fgₓ = mgsinθ
Fgₓ = 98.1 N x sin(20)
Fgₓ = 33.55 N
(c) The applied force on the block is calculated as follows;
F - Fgₓ - μFgcosθ = ma
where;
m is the mass of the blocka is the acceleration of the blockμ is the coefficient of frictionF is the applied forceμ = a/g
μ = 1 / 9.81 = 0.1
F - 33.55 - 0.1(98.1 x cos20) = 10 x 1
F - 33.55 - 9.2 = 10
F = 10 + 33.55 + 9.2
F = 52.75 N
Learn more about perpendicular and parallel components here: https://brainly.com/question/30131588
#SPJ1
In order to cross the galaxy quickly, a spaceship leaves Earth traveling at 0.9999995 c. After 11 minutes a radio message is sent from Earth to the spacecraft. Part A In the Earth-galaxy frame of reference, how far from Earth is the spaceship when the message is sent? Express your answer with the appropriate units
The spaceship is approximately 1.7999964 light-years away from Earth when the message is sent.
When an object travels close to the speed of light, special relativity comes into play, and distances and time intervals are perceived differently from different frames of reference. In this case, we need to consider the Earth-galaxy frame of reference.
Given that the spaceship is traveling at 0.9999995 times the speed of light (c), we can use the time dilation formula to calculate the time experienced by the spaceship. Since the spaceship travels for 11 minutes according to Earth's frame of reference, the proper time experienced by the spaceship can be calculated as:
Δt' = Δt / γ (Equation 1)
Where Δt' is the proper time experienced by the spaceship, Δt is the time interval measured on Earth, and γ is the Lorentz factor given by:
γ = 1 / √(1 - (v/c)^2)
Plugging in the values, we find that γ is approximately 223.6068. Using Equation 1, we can calculate Δt':
Δt' = 11 minutes / 223.6068 ≈ 0.0492 minutes
Next, we can calculate the distance traveled by the spaceship using the formula:
d = v * Δt'
Where v is the velocity of the spaceship, and Δt' is the proper time interval. Substituting the values, we get:
d = (0.9999995 c) * (0.0492 minutes)
Converting minutes to years and the speed of light to light-years, we find that the spaceship is approximately 1.7999964 light-years away from Earth when the message is sent.
Learn more about light-years
brainly.com/question/31566264
#SPJ11
A 0.5-H inductor is connected to a 220 V-rms 50 Hz voltage source, with an ammeter in series. What is the rms value of the current through the inductor?
A.
0.584A(rms)
b.
4.1A(rms)
c.
0.292A(rms)
d
1.4A(rms)
E
0.189A(rms)
The rms value of the current through the inductor is 1.4A. The correct option is (d) 1.4A(rms).
In an inductive circuit, the current lags behind the voltage due to the presence of inductance. The rms value of the current can be calculated using the formula:
Irms = Vrms / XL,
where Irms is the rms value of the current, Vrms is the rms value of the voltage, and XL is the inductive reactance.
The inductive reactance XL can be calculated using the formula:
XL = 2πfL,
where f is the frequency of the voltage source and L is the inductance.
Given:
Vrms = 220V,
f = 50Hz,
L = 0.5H.
Calculating the inductive reactance:
XL = 2π * 50Hz * 0.5H
= 157.08Ω.
Now, calculating the rms value of the current:
Irms = 220V / 157.08Ω
= 1.4A.
Therefore, the rms value of the current through the inductor is 1.4A.
The correct option is (d) 1.4A(rms). This value represents the rms value of the current flowing through the 0.5H inductor connected to a 220V-rms 50Hz voltage source
To know more about rms value , visit:
https://brainly.com/question/32291027
#SPJ11
What is the density of a 5.00 kg solid cylinder that is 10.0 cm tall with a radius of 3cm? (in g/cm) Please type your answer to 3 sig figs
The density of the 5.00 kg solid cylinder rounded to 3 sig figure isis 17.7 g/cm³.
How do we calculate density of the solid cylinder?To calculate the density, we first convert the height and radius to meters.
Mass = 5.00 kg = 5000 g
Radius = 3 cm = 0.03 m
Height = 10 cm = 0.1 m
We solve for volume
Volume = πr²h = 3.14 × (0.03)² × 0.1 = 0.0002826
Then we solve for density
Density = Mass / Volume = 5000 g /0.0002826 m³ = 17692852.0878
To convert grams per cubic meter (g/m³) to grams per cubic centimeter (g/cm³), we need to divide the value by 1000000 since there are 1000000 cubic centimeters in a cubic meter.
17692852.0878 g/m³ / 1000000 = 17.6928520878 g/cm³
If we rounded to 3 sig figs, it becomes 17.7 g/cm³.
Find more exercises on density;
https://brainly.com/question/29775886
#SPJ4