A high speed rotating machine weighs 1500 kg and is mounted on Insulator Springs with negligible mass. The static deflection of the springs as a result of the weight of the machine is 0.4 mm. The rotating part is unbalanced such that its equivalent unbalanced mass is 2.5 kg mass located at 500 mm from the axis of rotation. If the rotational speed of the machine is 1450 rpm I determine: a) The stiffness of the springs in N/m. b) The vertical vibration undamped natural frequency of the machine spring system, in rad/sec and Hz. c) The machine angular velocity in rad/s and centrifugal force in N resulting from the rotation of the unbalanced mass when the system is in operation

Answers

Answer 1

A rotating machine is mounted on insulator springs with negligible mass, and it weighs 1500 kg. As a result of the machine's weight, the static deflection of the springs is 0.4 mm.

The machine's rotating part is unbalanced such that the equivalent unbalanced mass is 2.5 kg mass located at 500 mm from the axis of rotation. If the rotational speed of the machine is 1450 rpm, the following items can be determined:

a) The stiffness of the springs in N/m.
b) The vertical vibration undamped natural frequency of the machine spring system, in rad/sec and Hz.
c) The machine angular velocity in rad/s and centrifugal force in N resulting from the rotation of the unbalanced mass when the system is in operation.

Given,Weight of machine, W = 1500 kg;Equivalent unbalanced mass, m = 2.5 kg;

Unbalanced mass eccentricity, e = 500 mm;

Rotational speed of machine, N = 1450 rpm = 1450/60 rad/s = 24.17 rad/s;

Static deflection of spring, δ = 0.4 mm = 0.4 × 10⁻³ m.

a) Stiffness of spring can be determined as;δ = W/k ⇒ k = W/δ = 1500/(0.4 × 10⁻³) = 3.75 × 10⁶ N/m.∴ The stiffness of the springs in N/m is 3.75 × 10⁶.

b) The natural frequency of a spring mass system is given as;f₀ = (1/2π) √(k/m) rad/s.f₀ = (1/2π) √(3.75 × 10⁶ /1500 + 2.5) = 11.38 rad/s.∴ The vertical vibration undamped natural frequency of the machine spring system is 11.38 rad/s and,Hz = f₀/2π = 1.81 Hz.

c) The angular velocity of the rotating mass is given as;ω = 2πN/60 rad/s.ω = 2π(1450)/60 = 241.02 rad/s.The centrifugal force due to the unbalanced mass can be calculated using the formula;

F = mω²e F = 2.5 × (241.02)² × 0.5 = 1.44 × 10⁵ N.

∴ The machine angular velocity in rad/s is 241.02 rad/s and the centrifugal force in N resulting from the rotation of the unbalanced mass when the system is in operation is 1.44 × 10⁵ N.

Therefore, the stiffness of the springs in N/m is 3.75 × 10⁶, the vertical vibration undamped natural frequency of the machine spring system is 11.38 rad/s and 1.81 Hz and, the machine angular velocity in rad/s is 241.02 rad/s and the centrifugal force in N resulting from the rotation of the unbalanced mass when the system is in operation is 1.44 × 10⁵ N.

To know more about angular velocity :

brainly.com/question/32217742

#SPJ11


Related Questions

Air flows through a 20−cm-diameter pipe at a mass flow rate of 2 kg/m³. Given that the density of air is 1.2 kg/m³. Determine: (a) the velocity of air and (b) the volumetric flow rate of air.

Answers

The velocity of air flowing through a 20-cm-diameter pipe at a given mass flow rate and air density needs to be determined.

(a) To find the velocity of air, we can use the equation: velocity = mass flow rate / (cross-sectional area * density). The cross-sectional area of the pipe can be calculated using the formula for the area of a circle: A = π * (diameter/2)^2. By substituting the known values of the mass flow rate, diameter, and air density, we can calculate the velocity of air.

(b) The volumetric flow rate of air can be calculated by multiplying the cross-sectional area of the pipe by the velocity of air. The formula for volumetric flow rate is Q = A * velocity, where Q is the volumetric flow rate, A is the cross-sectional area of the pipe, and velocity is the air velocity calculated in part (a).

By using the appropriate formulas and substituting the given values, we can determine both the velocity of air and the volumetric flow rate of air through the 20-cm-diameter pipe

Learn more about air density: brainly.com/question/28489627

#SPJ11

Question 1 1.1 The evolution of maintenance can be categorised into four generations. Discuss how the maintenance strategies have changed from the 1st to the 4th generation of maintenance. (10) 1.2 Discuss some of the challenges that maintenance managers face. (5)

Answers

1.1 Maintenance strategies evolved from reactive "Breakdown Maintenance" to proactive "Proactive Maintenance" (4th generation).

1.2 Maintenance managers face challenges such as limited resources, aging infrastructure, technological advancements, cost management, and regulatory compliance.

What are the key components of a computer's central processing unit (CPU)?

Maintenance strategies have evolved significantly across generations. The 1st generation, known as "Breakdown Maintenance," focused on fixing equipment after failure. In the 2nd generation, "Preventive Maintenance," scheduled inspections and maintenance were introduced to prevent failures.

The 3rd generation, "Predictive Maintenance," utilized condition monitoring to predict failures. Finally, the 4th generation, "Proactive Maintenance" or "RCM," incorporates a holistic approach considering criticality, risk analysis, and cost-benefit. These changes resulted in a shift from reactive to proactive maintenance practices.

Maintenance managers encounter various challenges. Limited resources such as budget, staff, and time can hinder effective maintenance management. Aging infrastructure poses reliability and spare parts availability challenges.

Keeping up with technological advancements and integrating them into maintenance practices can be difficult. Balancing maintenance costs while ensuring equipment performance is another challenge. Planning and scheduling maintenance activities, complying with regulations, and managing documentation add complexity to the role of maintenance managers.

Learn more about Maintenance

brainly.com/question/13257907

#SPJ11

If a sensor has a time constant of 3 seconds, how long would it take to respond to 99% of a sudden change in ambient temperature?

Answers

If a sensor has a time constant of 3 seconds, it is required to determine the time it would take for the sensor to respond to 99% of a sudden change in ambient temperature.

The time constant of a sensor represents the time it takes for the sensor's output to reach approximately 63.2% of its final value in response to a step change in input. In this case, the time constant is given as 3 seconds. To calculate the time it would take for the sensor to respond to 99% of a sudden change in ambient temperature, we can use the concept of time constants. Since it takes approximately 3 time constants for the output to reach approximately 99% of its final value, the time it would take for the sensor to respond to 99% of the temperature change can be calculated as:

Time = 3 × Time Constant

Substituting the given time constant value of 3 seconds into the equation, we can determine the required time.

Learn more about time constant here:

https://brainly.com/question/32573412

#SPJ11

A 337 m² light-colored swimming pool is located in a normal suburban site, where the measured wind speed at 10 m height is 5 m/s. There are no swimmers in the pool, the temperature of the make-up water is 15°C, and the solar irradiation on a horizontal surface for the day is 7.2 MJ/m² day. How much energy is needed to supply to the pool to keep its temperature at 30°C? Given the relative humidity is 30% and the ambient temperature is 20°C. Hot Water

Answers

To calculate the energy needed to heat the pool, we can consider the heat loss from the pool to the surrounding environment and the heat gain from solar irradiation. The energy required will be the difference between the heat loss and the heat gain.

First, let's calculate the heat loss using the following formula:

Heat loss = Area × U × ΔT

Where:

Area is the surface area of the pool (337 m²)

U is the overall heat transfer coefficient

ΔT is the temperature difference between the pool and the ambient temperature

To calculate the overall heat transfer coefficient, we can use the following formula:

U = U_conv + U_rad

Where:

U_conv is the convective heat transfer coefficient

U_rad is the radiative heat transfer coefficient

For the convective heat transfer coefficient, we can use the empirical formula:

U_conv = 10.45 - v + 10√v

Where:

v is the wind speed at 10 m height (5 m/s)

For the radiative heat transfer coefficient, we can use the formula:

U_rad = ε × σ × (T_pool^2 + T_amb^2) × (T_pool + T_amb)

Where:

ε is the emissivity of the pool (assumed to be 0.9 for a light-colored pool)

σ is the Stefan-Boltzmann constant (5.67 x 10^-8 W/(m²·K⁴))

T_pool is the pool temperature (30°C)

T_amb is the ambient temperature (20°C)

Next, let's calculate the heat gain from solar irradiation:

Heat gain = Solar irradiation × Area × (1 - α) × f × η

Where:

Solar irradiation is the solar irradiation on a horizontal surface for the day (7.2 MJ/m² day)

Area is the surface area of the pool (337 m²)

α is the pool's solar absorptivity (assumed to be 0.7 for a light-colored pool)

f is the shading factor (assumed to be 1, as there are no obstructions)

η is the overall heat transfer efficiency (assumed to be 0.8)

Finally, we can calculate the energy needed to supply to the pool:

Energy needed = Heat loss - Heat gain

By substituting the given values into the equations and performing the calculations, the energy needed to supply to the pool to keep its temperature at 30°C can be determined.

Know more about heat loss here;

https://brainly.com/question/31857421

#SPJ11

In a piston-cylinder assembly water is contained initially at 200°C as a saturated liquid. The piston moves freely in the cylinder as water undergoes a process to the corresponding saturated vapor state. There is no heat transfer with the surroundings. This change of state is brought by the action of paddle wheel. Determine the amount obowa of entropy produced per unit mass, in kJ/kg · K.

Answers

The given problem is solved as follows: As we know that the entropy can be calculated using the following formula,

[tex]S2-S1 = integral (dq/T)[/tex]

The amount of heat transfer is zero as there is no heat transfer with the surroundings.

The work done during the process is given by the area under the

P-V curve,

w=P(V2-V1)

As the process is isothermal,

the work done is given by the following equation

w=nRT ln (V2/V1)

For a saturated liquid, the specific volume is

vf = 0.001043m³/kg and for a saturated vapor, the specific volume is vg = 1.6945m³/kg.

The values for the specific heat at constant pressure and constant volume can be found from the steam tables.

Using these values, we can calculate the change in entropy.Change in entropy,

S2-S1 = integral(dq/T)

= 0V1 = vf

= 0.001043m³/kgV2 = vg

= 1.6945m³/kgw

= P(V2-V1)

= 100000(1.6945-0.001043)

= 169.405 J/moln

= 1/0.001043

= 958.86 molR

= 8.314 JK-1mol-1T = 200 + 273

= 473 KSo, w = nRT ln (V2/V1)

=> 169.405

= 958.86*8.314*ln(1.6945/0.001043)

Thus, ΔS = S2 - S1

= 959 [8.314 ln (1.6945/0.001043)]/473

= 8.3718 J/Kg K

∴ The amount of entropy produced per unit mass is 8.3718 J/Kg K

In this question, the amount of entropy produced per unit mass is to be calculated in the given piston-cylinder assembly which contains water initially at 200°C as a saturated liquid. This water undergoes a process to the corresponding saturated vapor state and this change of state is brought by the action of the paddle wheel.

It is given that there is no heat transfer with the surroundings. The entropy is calculated by using the formula, S2-S1 = integral (dq/T) where dq is the amount of heat transfer and T is the temperature. The amount of heat transfer is zero as there is no heat transfer with the surroundings.

The work done during the process is given by the area under the P-V curve. As the process is isothermal, the work done is given by the following equation, w=nRT ln (V2/V1). For a saturated liquid, the specific volume is vf = 0.001043m³/kg and for a saturated vapor, the specific volume is vg = 1.6945m³/kg. The values for the specific heat at constant pressure and constant volume can be found from the steam tables. Using these values, we can calculate the change in entropy.

The amount of entropy produced per unit mass in the given piston-cylinder assembly is 8.3718 J/Kg K.

Learn more about entropy here:

brainly.com/question/20166134

#SPJ11

2.3 Briefly explain what happens during the tensile testing of material, using cylinder specimen as and example. 2.4 Illustrate by means of sketch to show the typical progress on the tensile test.

Answers

During the tensile testing of a cylindrical specimen, an axial load is applied to the specimen, gradually increasing until it fractures.

The test helps determine the material's mechanical properties. Initially, the material undergoes elastic deformation, where it returns to its original shape after the load is removed. As the load increases, the material enters the plastic deformation region, where permanent deformation occurs without a significant increase in stress. The material may start to neck down, reducing its cross-sectional area. Eventually, the specimen reaches its maximum stress, known as the tensile strength, and fractures. A typical tensile test sketch shows the stress-strain curve, with the x-axis representing strain and the y-axis representing stress. The curve exhibits an elastic region, a yield point, plastic deformation, ultimate tensile strength, and fracture.

To learn more about tensile testing, click here:

https://brainly.com/question/13260444

#SPJ11

Design a sequential circuit for a simple Washing Machine with the following characteristics: 1.- Water supply cycle (the activation of this will be indicated by a led) motor), 2.- Washing cycle (will be indicated by two other leds that turn on and off at different time, simulating the blades controlled by that motor) 3.- Spin cycle, for water suction (it will be indicated by two leds activation of this motor). Obtain the K maps and the state diagram.

Answers

The sequential circuit includes states (idle, water supply, washing, and spin), inputs (start and stop buttons), outputs (water supply LED, washing LEDs, and spin LEDs), and transitions between states to control the washing machine's operation. Karnaugh maps and a state diagram are used for designing the circuit.

What are the characteristics and design elements of a sequential circuit for a simple washing machine?

To design a sequential circuit for a simple washing machine with the given characteristics, we need to identify the states, inputs, outputs, and transitions.

1. States:

  a. Idle state: The initial state when the washing machine is not in any cycle.

  b. Water supply state: The state where water supply is activated.

  c. Washing state: The state where the washing cycle is active.

  d. Spin state: The state where the spin cycle is active.

2. Inputs:

  a. Start button: Used to initiate the washing machine cycle.

  b. Stop button: Used to stop the washing machine cycle.

3. Outputs:

  a. Water supply LED: Indicate the activation of the water supply cycle.

  b. Washing LEDs: Indicate the washing cycle by turning on and off at different times.

  c. Spin LEDs: Indicate the activation of the spin cycle for water suction.

4. Transitions:

  a. Idle state -> Water supply state: When the Start button is pressed.

  b. Water supply state -> Washing state: After the water supply cycle is complete.

  c. Washing state -> Spin state: After the washing cycle is complete.

  d. Spin state -> Idle state: When the Stop button is pressed.

Based on the above information, the Karnaugh maps (K maps) and the state diagram can be derived to design the sequential circuit for the washing machine. The K maps will help in determining the logical expressions for the outputs based on the current state and inputs, and the state diagram will illustrate the transitions between different states.

Learn more about sequential circuit

brainly.com/question/31676453

#SPJ11

Consider a ball having a mass of 5 kg that is 5m above a bucket containing 50 kg of liquid water, state 1. The ball and the water are at the same temperature. The ball is left to fall into the bucket. Determine AU (change in internal energy), AEkin (change in kinetic energy), 4Epot (change in potential energy), Q (heat) and W (work) for the following changes of state, assuming standard gravitational acceleration of 9.807m/s2: (a) The ball is about to enter the water, state 2. (b) The ball has just come to rest in the bucket, state 3. (c) Heat has been transferred to the surroundings in such an amount that the ball and water are at the same temperature, T, state 4.

Answers

(a) When the ball is about to enter the water, it has a velocity v just before hitting the water. We know that the initial velocity of the ball, u = 0. The work done by the gravitational force on the ball as it falls through a distance h is given by W = mgh. Therefore, the work done by the gravitational force is given by W = (5 kg) (9.807 m/s²) (5 m) = 245.175 J.

When the ball is about to enter the water, its final velocity is v, and its kinetic energy is given by KE = (1/2) mv². Therefore, the change in kinetic energy is given by AEkin = (1/2) m (v² - 0) = (1/2) mv².
The ball and the water are at the same temperature, so there is no heat transfer involved. Also, there is no change in internal energy and no change in the mass of the system. Therefore, the change in internal energy is zero.
The potential energy of the ball just before hitting the water is given by PE = mgh. Therefore, the change in potential energy is given by AEpot = -mgh.
(b) When the ball comes to rest in the bucket, its final velocity, v = 0. Therefore, the change in kinetic energy is given by AEkin = (1/2) m (0² - v²) = - (1/2) mv².
When the ball comes to rest in the bucket, its potential energy is zero. Therefore, the change in potential energy is given by AEpot = -mgh.
The ball and the water are at the same temperature, so there is no heat transfer involved. Also, there is no change in internal energy and no change in the mass of the system. Therefore, the change in internal energy is zero.

(c) Heat has been transferred to the surroundings in such an amount that the ball and water are at the same temperature, T. Therefore, the heat absorbed by the ball is given by Q = mcΔT, where c is the specific heat capacity of the ball, and ΔT is the change in temperature of the ball. The heat released by the water is given by Q = MCΔT, where C is the specific heat capacity of water, and ΔT is the change in temperature of the water.
The ball and the water are at the same temperature, so ΔT = 0. Therefore, there is no heat transfer involved, and the change in internal energy is zero. The ball has come to rest in the bucket, so the change in kinetic energy is given by AEkin = - (1/2) mv². The potential energy of the ball in the bucket is zero, so the change in potential energy is given by AEpot = -mgh.

To know more about velocity refer to:

https://brainly.com/question/21729272

#SPJ11

15.31 Design a parallel bandreject filter with a center fre- quency of 1000 rad/s, a bandwidth of 4000 rad/s, and a passband gain of 6. Use 0.2 μF capacitors, and specify all resistor values.

Answers

To design a parallel bandreject filter with the given specifications, we can use an RLC circuit. Here's how you can calculate the resistor and inductor values:

Given:

Center frequency (f0) = 1000 rad/s

Bandwidth (B) = 4000 rad/s

Passband gain (Av) = 6

Capacitor value (C) = 0.2 μF

Calculate the resistor value (R):

Use the formula R = Av / (B * C)

R = 6 / (4000 * 0.2 * 10^(-6)) = 7.5 kΩ

Calculate the inductor value (L):

Use the formula L = 1 / (B * C)

L = 1 / (4000 * 0.2 * 10^(-6)) = 12.5 H

So, for the parallel bandreject filter with a center frequency of 1000 rad/s, a bandwidth of 4000 rad/s, and a passband gain of 6, you would use a resistor value of 7.5 kΩ and an inductor value of 12.5 H. Please note that these are ideal values and may need to be adjusted based on component availability and practical considerations.

to learn more about  RLC circuit.

https://brainly.com/question/32069284

3) Company A was responsible for design and development of a window cleaning system in a high rised building in Bahrain. Company A while designing did not consider one major design requirements because of which there is a possibility of failure of the system. Upon finding out this negligence by party A, Party B even though they were a sub-contracting company working under company A took initiative and informed the Company A. Company A did not consider suggestions by Company B and decided to move forward without considering suggestions of Party B. Develop the rights and ethical responsibility to be exhibited by Company A in this case, also develop with reference to the case study develop the type of ethics exhibited by party B.

Answers

The rights and ethical responsibility of Company A in this case can be categorized into two sections - rights and ethical responsibility.

Explanation:

Regarding rights, stakeholders such as building occupants and cleaning staff have the right to know about any potential safety risks posed by the window cleaning system. It is essential for Company A to inform them about any potential flaws in the system to ensure their safety and wellbeing.

Regarding ethical responsibility, Company A should take prompt action to address the design flaw in the system and make modifications accordingly to eliminate any potential risks. It is their ethical responsibility to ensure the safety and wellbeing of all stakeholders involved. They should take suggestions from Company B, who reported the design flaw and showed professional ethics by taking the initiative to inform the concerned authority.

Party B, in this case, exhibited professional ethics by reporting the design flaw to Company A and making suggestions for improvement, even though they were a sub-contracting company. Professional ethics are a set of moral principles and values that guide the behavior of individuals and organizations in the professional world. They did not compromise on their professional ethics and took the initiative to ensure the safety of all stakeholders involved.

To know more about rights and ethical responsibility here:

https://brainly.com/question/32981885

#SPJ11

Solve the following first order ODE using the three methods discussed in class, i.e., the Explicit Euler, the Implicit Euler and the Runge Kutta Method. Read the notes and start immediately. dy = x + y; y(0) = 1 dx ' The analytic solution, y(x) = 2eˣ - x-1
Use step size h=0.1; the limit of integration is:0 ≤ x ≤ 4

Answers

Given ODE is dy = x + y and initial condition is y(0) = 1.It is required to solve the ODE using three methods, namely Explicit Euler, Implicit Euler and Runge Kutta method.

Analytical Solution is given as y(x) = 2e^(x) - x - 1.

We are to use the following values of step size (h) and limit of integration(hence, upper limit) respectively.h = 0.1, 0 ≤ x ≤ 4

Explicit Euler Method:

Formula for Explicit Euler is as follows:

[tex]y_n+1 = y_n + h * f(x_n, y_n)[/tex]

where f(x_n, y_n) is derivative of function y with respect to x and n is the subscript i.e., nth value of x and y.

So, the above formula can be written as:

[tex]y_n+1 = y_n + h(x_n + y_n)[/tex]

By substituting[tex]h = 0.1, x_0 = 0, y_0 = 1[/tex]

in the above formula, we get:

[tex]y_1 = 1 + 0.1(0+1) = 1.1y_2 = y_1 + 0.1(0.1 + 1.1) = 1.22and \\so \\on..[/tex]

We can create a table to show the above calculated values.

Now, let's move on to Implicit Euler method.

Implicit Euler Method:

Formula for Implicit Euler is as follows:

[tex]y_n+1 = y_n + h * f(x_n+1, y_n+1)[/tex]

To solve this equation we need to know the value of [tex]y_n+1[/tex]

As it is implicit, we cannot calculate [tex]y_n+1[/tex]directly as it depends on[tex]y_n+1[/tex]

So, we need to use numerical methods to approximate its value.In the same way, as we have done for Explicit Euler, we can create a table to calculate y_n+1 using the formula of Implicit Euler and then can be used for subsequent calculations.

In this case, [tex]y_n+1[/tex] is approximated as follows:

[tex]y_n+1 = (1 + h)x_n+1 + hy_n[/tex]

Runge Kutta Method:

Formula for Runge Kutta method is:

[tex]y_n+1 = y_n + h/6 (k1 + 2k2 + 2k3 + k4)[/tex]

where

[tex]k1 = f(x_n, y_n)k2 \\= f(x_n + h/2, y_n + h/2*k1)k3 \\= f(x_n + h/2, y_n + h/2*k2)k4 \\= f(x_n + h, y_n + hk3)[/tex]

By substituting values of h, k1, k2, k3 and k4 in the above formula we can get the value of y_n+1 for each iteration.

We have been given a differential equation and initial condition to solve it using three methods, namely Explicit Euler, Implicit Euler and Runge Kutta method. Analytical solution of the given differential equation has also been provided. We have also been given values of h and limit of integration.Using the given value of h, we calculated values of y for each iteration using the formula of Explicit Euler.

Then we created a table to show the values obtained. Similarly, we calculated values for Implicit Euler method and Runge Kutta method using their respective formulas. Then we compared the values obtained from these methods with the analytical solution. We observed that the values obtained from Runge Kutta method were the closest to the analytical solution.

We have solved the given differential equation using three methods, namely Explicit Euler, Implicit Euler and Runge Kutta method. Using the given values of h and limit of integration, we obtained values of y for each iteration using each method and then compared them with the analytical solution. We concluded that the values obtained from Runge Kutta method were the closest to the analytical solution.

Learn more about Explicit Euler here:

brainly.com/question/30888267

#SPJ11

a) (10 pts). Using a decoder and external gates, design the combinational circuit defined by the following three Boolean functions: F1 (x, y, z) = (y'+ x) z F2 (x, y, z) = y'z' + xy + yz' F3 (x, y, z) = x' z' + xy

Answers

Given Boolean functions are:F1 (x, y, z) = (y'+ x) z F2 (x, y, z) = y'z' + xy + yz' F3 (x, y, z) = x' z' + xyThe Boolean function F1 can be represented using the decoder as shown below: The diagram of the decoder is shown below:

As shown in the above figure, y'x is the input and z is the output for this circuit.The Boolean function F2 can be represented using the external gates as shown below: From the Boolean expression F2, F2(x, y, z) = y'z' + xy + yz', taking minterms of F2: 1) m0: xy + yz' 2) m1: y'z' From the above minterms, we can form a sum of product expression, F2(x, y, z) = m0 + m1Using AND and OR gates.

The above sum of product expression can be implemented as shown below: The Boolean function F3 can be represented using the external gates as shown below: From the Boolean expression F3, F3(x, y, z) = x' z' + xy, taking minterms of F3: 1) m0: x'z' 2) m1: xy From the above minterms.

To know more about Boolean visit:

https://brainly.com/question/27892600

#SPJ11

a) What do you mean by degree of reaction? Develop a formula for degree of reaction in terms of flow angles and draw and explain the velocity triangles when the degree of reaction is 1 and 0.
b) Consider a single stage axial compressor with inlet stagnation temperature and efficiency 250 K and 0.85 respectively. Conditions at the mean radius of the rotor blade are: Blade speed = 200 m/s, Axial flow velocity = 150 m/s, inlet blade angle = 40 degree, outlet blade angle = 20 degree. Find out the value of stagnation pressure ratio for this compressor.

Answers

Degree of Reaction. The degree of reaction, as defined, is the ratio of the static pressure rise in the rotor to the total static pressure rise.

It is usually represented as R. How to calculate Degree of Reaction. Degree of Reaction

(R) = [(tan β2 - tan β1) / (tan α1 + tan α2)] Where

α1 = angle of flow at entryβ1 = angle of blade at entry

α2 = angle of flow at exit

β2 = angle of blade at exit Flow.

The angle between the direction of absolute velocity and the axial direction in a turbomachine. The flow angle is denoted. Velocity Triangles, The velocity triangles provide a graphical representation of the relative and absolute velocities in the flow.

To know more about Degree visit:

https://brainly.com/question/364572

#SPJ11

3. Principal stresses are applied to a body whose uniaxial yield tensile stress is ay-200MPa. Two stresses of the principal stresses are 100MPa and OMPa. When the body yields, answer another principal

Answers

In order to find out another principal stress, we first need to know the value of the third principal stress which can be calculated as follows:

σ1 = 100 MPa

σ2 = 0 MPa

σ3 = Given that uniaxial yield tensile stress is ay-200 MPa.

It means, the maximum shear stress is 100 MPa. Substituting the values in the maximum shear stress formula, we get;

τmax = (σ1 - σ3)/2

where, σ1 = 100 M

Pa, σ3 = τmax = 100 MPa

σ3 = σ1 - 2τmax

σ3 = 100 - 2 × 100 = -100 MPa

The negative sign indicates that it is compressive stress.

The other principal stress is -100 MPa.

Hence, the three principal stresses are 100 MPa, 0 MPa and -100 MPa respectively.

To know about stresses visit:

https://brainly.com/question/1178663

#SPJ11

An oxygen cylinder has a capacity of 280 litres and contains oxygen at a pressure of 34 bar and temperature of 25 ∘ C. The shut-off valve is opened and some gas is used such that the pressure and temperature of the oxygen left in the cylinder is 18 bar and 12 ∘ C respectively. Calculate the mass of oxygen used. After the shut-off valve is closed, the oxygen remaining in the cylinder gradually attains the initial temperature of 25 ∘ C. Calculate the heat transfer for the oxygen to return to its initial temperature. The specific gas constant, R, for oxygen can be taken as 0.260 kJ/kgK and the ratio of the specific heats, γ as 1.4.

Answers

To calculate the mass of oxygen used, we can apply the ideal gas law and the equation of state for an ideal gas.

First, let's convert the given pressure and temperature values to absolute units:

Initial pressure (P1) = 34 bar = 34 × 10^5 Pa

Initial temperature (T1) = 25 °C = 25 + 273.15 K

Final pressure (P2) = 18 bar = 18 × [tex]10^{5}[/tex] Pa

Final temperature (T2) = 12 °C = 12 + 273.15 K

Using the ideal gas law, PV = mRT, where P is pressure, V is volume, m is mass, R is the specific gas constant, and T is temperature, we can rearrange the equation to solve for the mass (m):

m = PV / (RT)

Given:

Capacity of the cylinder (V) = 280 liters =[tex]\[280 \times 10^{-3} \text{m}^3\][/tex]

Specific gas constant for oxygen (R) = 0.260 kJ/kgK = 0.260 × [tex]10^{3}[/tex]J/kgK

Substituting the values, we have:

[tex]m = \frac{(P_1 - P_2) V}{R \cdot \frac{(T_1 + T_2)}{2}}[/tex]

m = (34 × 10^5 - 18 × 10^5) * 280 × 10^-3 / (0.260 × 10^3 * (25 + 12) / 2)

m = 34 × 10^5 * 280 × 10^-3 / (0.260 × 10^3 * 37)

m = 280 * 10^2 / 9.62

m ≈ 2912.02 kg

Therefore, the mass of oxygen used is approximately 2912.02 kg.

To calculate the heat transfer for the oxygen to return to its initial temperature, we can use the equation:

Q = m * C * (T2 - T1)

Where Q is the heat transfer, m is the mass of the gas, C is the specific heat capacity at constant pressure, and (T2 - T1) is the change in temperature.

Given:

Specific heat capacity at constant pressure (C) = R / (γ - 1)

Substituting the values, we have:

C = 0.260 × 10^3 / (1.4 - 1)

C = 0.260 × 10^3 / 0.4

C = 650 J/kgK

Q = 2912.02 kg * 650 J/kgK * (12 + 273.15 - 25 - 273.15)

Q = 2912.02 kg * 650 J/kgK * (-13)

Q ≈ -24,186,634 J

Therefore, the heat transfer for the oxygen to return to its initial temperature is approximately -24,186,634 J (negative value indicates heat loss).

Note: The negative sign indicates that heat is being lost from the oxygen as it returns to its initial temperature.

To know more about visit:

#SPJ11

(a) Convert the following hexadecimal numbers to decimal. (i) E5 16. (3 marks) (b) Convert the decimal number 730 to hexadecimal by repeated division. (c) Add the following hexadecimal numbers. (i) DF16+AC16.(3 marks) (ii)2B16+8416( 3 marks) (d) (i) Convert 170 decimal number to Binary Coded Decimal (BCD). (3 marks (ii) Add the following BCD numbers. 010011010000+010000010111.(5. marks)

Answers

Conversion of the following hexadecimal numbers to decimal.

(a) (i) E5₁₆ = 229₁₀

(b) 730₁₀ = 2DA₁₆

(c) (i) DF₁₆ + AC₁₆ = 18B₁₆

(ii) 2B₁₆ + 84₁₆ = AF₁₆

(d) (i) 170₁₀ = 0001 0110 1010 BCD

(ii) 010011010000 BCD + 010000010111 BCD = 100011100111 BCD

(a) (i) To convert the hexadecimal number E5₁₆ to decimal, we can use the positional value of each digit. E is equivalent to 14 in decimal, and 5 remains the same. The decimal value is obtained by multiplying the first digit by 16 raised to the power of the number of digits minus one and adding it to the second digit multiplied by 16 raised to the power of the number of digits minus two. So, E5₁₆ = (14 * 16¹) + (5 * 16⁰) = 229₁₀.

(b) To convert the decimal number 730₁₀ to hexadecimal by repeated division, we continuously divide the number by 16 and keep track of the remainders. The remainder of each division represents a digit in the hexadecimal number. By repeatedly dividing 730 by 16, we get the remainders in reverse order: 730 ÷ 16 = 45 remainder 10 (A), 45 ÷ 16 = 2 remainder 13 (D), 2 ÷ 16 = 0 remainder 2. Therefore, 730₁₀ = 2DA₁₆.

(c) (i) To add the hexadecimal numbers DF₁₆ and AC₁₆, we perform the addition as we would in decimal. Adding DF and AC gives us 18B₁₆. Here, D + A = 17 (carry 1, write 7) and F + C = 1B (write B).

(ii) Adding the hexadecimal numbers 2B₁₆ and 84₁₆ gives us AF₁₆. Here, B + 4 = F, and 2 + 8 = A.

(d) (i) Converting the decimal number 170 to Binary Coded Decimal (BCD) involves representing each decimal digit with a 4-bit binary code. So, 170₁₀ in BCD is 0001 0110 1010.

(ii) Adding the BCD numbers 010011010000 and 010000010111 involves adding each corresponding bit pair, taking into account any carry generated. The result is 100011100111 in BCD.

To know more about hexadecimal numbers visit:

https://brainly.com/question/6166334

#SPJ11

Problem #2 (25 pts) Design a multidisc axial clutch to transmit 75kW at 5000 rpm considering 1.5 design factor against slipping and optimum d/D ratio. Knowing that the maximum outed diameter is 150 mm and number of all discs is 9. To complete the design you need to perform the following analysis: Questions a. Determine the optimum ratio d/D to obtain the maximum torque b. Select a suitable material considering wet condition 80% Pa (Use your book) c. Find the factor of safety against slipping. d. Determine the minimum actuating force to avoid slipping. Hint: consider conservative approach in material selection

Answers

Determine the optimum ratio d/D to obtain the maximum torqueThe formula for torque is T = F x r. Where T is torque, F is force and r is the radius. Let's solve for d/D to obtain the maximum torque.

The formula for torque of a clutch is given as;Tc = ( μFD2N)/2c where;F = Frictional force acting on a single axial faceD = Effective diameter of clutch platesN = Speed of rotation of clutch platesμ = Coefficient of friction between the surfacesc = Number of clutch platesThe ratio of effective diameter d to the outside diameter D of a clutch is called the d/D ratio.

To obtain the maximum torque, the optimum d/D ratio should be 0.6. (d/D=0.6). Select a suitable material considering wet condition 80% Pa (Use your book)The clutch plate material should be such that it provides high coefficient of friction in wet condition.Paper-based friction materials have good friction properties in wet conditions and is therefore suitable for this clutch plate material.

To know more about optimum visit:

https://brainly.com/question/14590499

#SPJ11

a. The carrier frequency of an FM signal is 91 MHz and is frequency modulated by an analog message signal. The maximum deviation is 75 kHz. Determine the modulation index and the approximate transmission bandwidth of the FM signal if the frequency of the modulating signal is 75 kHz, 300 kHz and 1 kHz.

Answers

Frequency Modulation (FM) is a method of encoding an information signal onto a high-frequency carrier signal by varying the instantaneous frequency of the signal. FM transmitters produce radio frequency signals that carry information modulated on an oscillator signal.

In an FM system, the frequency of the transmitted signal varies according to the instantaneous amplitude of the modulating signal.The carrier frequency of an FM signal is 91 MHz and is frequency modulated by an analog message signal. The maximum deviation is 75 kHz.

Determine the modulation index and the approximate transmission bandwidth of the FM signal if the frequency of the modulating signal is 75 kHz, 300 kHz and 1 kHz.

To know more about Frequency visit:

https://brainly.com/question/29739263

#SPJ11

Using Creo 7 assume your own dimensions
and construct this wheelbarrow.Please attach a link with
all the part files and the final assembly on the
answer

Answers

To create a wheelbarrow in Creo 7, you can follow these general steps:

1. Start a new assembly in Creo 7.

2. Create a new part file for each individual component of the wheelbarrow, such as the wheel, handles, tray, etc.

3. Design each part according to your own dimensions and requirements. Use the appropriate tools in Creo 7, such as sketches, extrudes, revolves, etc., to create the geometry for each part.

4. Save each part file separately.

5. Once all the individual parts are designed and saved, go back to the assembly file.

6. Use the "Insert Component" tool in Creo 7 to import each part into the assembly.

7. Position and assemble the parts together to form the wheelbarrow. Use constraints and mate features to define the relationships between the components.

8. Save the assembly file.

After following these steps, you should have a wheelbarrow assembly in Creo 7. You can then share the individual part files and the assembly file by packaging them into a ZIP folder and uploading it to a file-sharing platform or hosting service. You can then share the download link with others.

To know more about  assembly file visit:

brainly.com/question/29975263

#SPJ11

An oil preheater consists of a single tube of 10-mm diameter and 6-m length, with its surface maintained at 180∘C by swirling combustion gases. The engine oil (new) enters at 70∘C. What flow rate, in kg/h, must be supplied to maintain an oil outlet temperature of 105∘C ? What is the corresponding heat transfer rate, in W?

Answers

To solve this problem, we need to use the equation:

q = m * Cp * ∆T Where, q = Heat transfer rate m = Mass flow rate Cp = Specific heat capacity ∆T = Temperature difference

We know that the oil preheater is maintained at 180°C and the engine oil enters at 70°C. The outlet temperature of the oil should be 105°C. Hence, ∆T = 105 - 70 = 35°C

We need to find the mass flow rate of the oil to maintain the outlet temperature of 105°C.To calculate the mass flow rate, we use the equation:

ṁ = q / (Cp * ∆T) Here, Cp for oil is taken as 2.2 kJ/kg K

ṁ = q / (Cp * ∆T)

ṁ = (q / 1000) / (Cp * ∆T) (converting the units to kg/h)

Now, we need to calculate the heat transfer rate, q = m * Cp * ∆T Substituting the values, q = (ṁ * Cp * ∆T)q = [(ṁ / 1000) * Cp * ∆T] (converting the units to W) Given that, diameter (d) of the tube = 10 mm = 0.01 m Length (L) of the tube = 6 m Surface area (A) of the tube = π * d * L = 0.1884 m2

Heat transfer coefficient (h) is not given, we can assume the value of 400 W/m2 K to calculate the heat transfer rate.

So, the heat transfer rate can be calculated as:

q = h * A * ∆T Substituting the values, q = 400 * 0.1884 * (180 - 105)q = 5718.72 W

Flow rate, m = (q / 1000) / (Cp * ∆T)m = (5.71872 / 1000) / (2.2 * 35)m = 0.007 kg/h

Hence, the flow rate required to maintain the outlet temperature of 105°C is 0.007 kg/h and the heat transfer rate is 5718.72 W.

Learn more about flow rates: https://brainly.com/question/30618961

#SPJ11

A vapor compression refrigeration cycle with refrigerant-134a as the working fluid operates between pressure limit of 1.2MPa for condenser and 200kPa for evaporator. The refrigerant leaves the condenser at 36∘ C before entering the throttle valve. The mass flow rate of the refrigerant is 12 kg/min and it leaves the evaporator at 0∘ C. The isentropic efficiency of the compressor can be taken as 85%. Assume, there is no pressure drop across the condenser and evaporator.
i) Sketch the cycle on a pressure-enthalpy (P−h) diagram with respect to the saturation line. ii) Determine the quality at the evaporator inlet. iii) Calculate the refrigerating effect, kW. iv) Determine the COP of the refrigerator. v) Calculate the COP if the system acts as a heat pump.

Answers

(i) Sketch the cycle on a pressure-enthalpy (P−h) diagram with respect to the saturation line The cycle's thermodynamic properties may be demonstrated using the pressure-enthalpy (P-h) chart for refrigerant 134a.

The P-h chart, which is plotted on a logarithmic scale, allows the process to be plotted with respect to the saturation curve and makes the analysis of the cycle more convenient.(ii) Determine the quality at the evaporator inlet Given that the refrigerant evaporates completely in the evaporator, the refrigerant's state at the evaporator inlet is a saturated liquid at 0°C, as shown in the P-h diagram. The quality at the inlet of the evaporator is zero.(iii) Calculate the refrigerating effect, kW The refrigerating effect can be calculated using the following formula:

Refrigerating Effect (in kW) = Mass Flow Rate * Specific Enthalpy Difference = m*(h2 - h1)Where, h1 = Enthalpy of refrigerant leaving the evaporatorh2 = Enthalpy of refrigerant leaving the condenser Let's use the equation to solve for the refrigerating effect. Refrigerating Effect [tex](in kW) = 12 kg/min*(271.89-13.33) kJ/kg = 3087.12 W or 3.087 kW(iv)[/tex]Determine the COP of the refrigerator .The COP of the refrigeration cycle can be calculated using the following formula :COP of Refrigerator = Refrigerating Effect/Work Done by the Compressor COP of Refrigerator =[tex]3.087 kW/6.712 kW = 0.460 or 46.0%(v)[/tex]Calculate the COP if the system acts as a heat pump.

To know more about  pressure-enthalpy visit:

brainly.com/question/32676117

#SPJ11

Small oil droplets with a specific gravity of 85 rise in a 30°C water bath. Determine the terminal speed of a droplet as a function of droplet diameter D assuming the drag force is given by the relation for Stokes flow (Re < 1). Determine the maximum droplet diameter for which Stokes flow is a reasonable assumption. For Stoke flow, = 3

Answers

To determine the terminal speed of a small oil droplet as a function of droplet diameter D, we can use the Stokes' law equation for drag force in the laminar flow regime (Re < 1): F_drag = 6πμvD

Where:

F_drag is the drag force acting on the droplet,

μ is the dynamic viscosity of the fluid (water),

v is the velocity of the droplet, and

D is the diameter of the droplet.

In this case, we want to find the terminal speed, which occurs when the drag force equals the buoyant force acting on the droplet:

F_drag = F_buoyant

Using the equations for the drag and buoyant forces:

6πμvD = (ρ_w - ρ_o)Vg

Where:

ρ_w is the density of water,

ρ_o is the density of the oil droplet,

V is the volume of the droplet, and

g is the acceleration due to gravity.

Since the specific gravity of the droplet is given as 85, we can calculate the density of the droplet as:

ρ_o = 85 * ρ_w

Substituting this into the equation, we have:

6πμvD = (ρ_w - 85ρ_w)Vg

Simplifying the equation, we find:

v = (2/9)(ρ_w - 85ρ_w)gD² / μ

Now, to determine the maximum droplet diameter for which Stokes flow is a reasonable assumption, we need to consider the Reynolds number (Re). In Stokes flow, Re < 1, indicating that the flow is highly viscous and dominated by the drag forces.

The Reynolds number is defined as:

Re = ρ_wvD / μ

Assuming Re < 1, we can rearrange the equation:

D < μ / (ρ_wv)

Since μ, ρ_w, and v are constants, we can conclude that Stokes flow is a reasonable assumption as long as the droplet diameter D is less than μ / (ρ_wv).

By analyzing the given information, you can substitute the appropriate values for density (ρ_w), dynamic viscosity (μ), and other parameters into the equations to calculate the terminal speed and determine the maximum droplet diameter for which Stokes flow is a reasonable assumption in your specific case.

For more information on terminal speed  visit https://brainly.com/question/31644262

#SPJ11

d. For small-signal operation, an n-channel JFET must be biased at: 1. VGS-VGS(off). 2. -VGS(off) < VGS <0 V. 3. 0 V

Answers

For small-signal operation, an n-channel JFET must be biased at VGS-VGS(off).The biasing of the junction field-effect transistor (JFET) is accomplished by setting the gate-to-source voltage (VGS) to a fixed value while keeping the drain-to-source voltage (VDS) constant.

The device can function as a voltage-controlled resistor if the VGS is biased appropriately for small-signal operation.A voltage drop is established between the gate and source terminals of a JFET by applying an external bias voltage, resulting in an electric field that extends from the gate to the channel. This electric field causes the depletion region surrounding the gate to expand, reducing the cross-sectional area of the channel.

As the depletion region expands, the resistance of the channel between the drain and source increases, and the flow of current through the device is reduced.For small-signal operation, an n-channel JFET must be biased at VGS-VGS(off). This is done to keep the current flow constant in the device. The gate-source voltage is reduced to a level that is less than the cut-off voltage when the device is operated in the active region. This is known as the quiescent point.

To know more about JFET visit :

https://brainly.com/question/31512956

#SPJ11

A gear has the following characteristics: Number of teeth = 20; Diametral Pitch = 16/in; pressure angle = 20°. The gear is turning at 50 rpm, and has a bending stress of 20 ksi. How much power (in hp) is the gear transmitting? (Assume velocity factor = 1)

Answers

The gear is transmitting approximately 1.336 hp.

To calculate the power transmitted by the gear, we can use the formula:

Power (in hp) = (Torque × Speed) / 5252

First, let's calculate the torque. The torque can be determined using the bending stress and the gear's characteristics. The formula for torque is:

Torque = (Bending stress × Module × Face width) / (Diametral pitch × Velocity factor)

In this case, the number of teeth (N) is given as 20, and the diametral pitch (P) is given as 16/in. To find the module (M), we can use the formula:

Module = 25.4 / Diametral pitch

Substituting the given values, we find the module to be 1.5875. The pressure angle (θ) is given as 20°, and the velocity factor is assumed to be 1. The face width can be estimated based on the gear's application.

Now, let's calculate the torque:

Torque = (20 ksi × 1.5875 × face width) / (16/in × 1)

Next, we need to convert the torque from inch-pounds to foot-pounds, as the speed is given in revolutions per minute (rpm) and we want the final power result in horsepower (hp). The conversion is:

Torque (in foot-pounds) = Torque (in inch-pounds) / 12

After obtaining the torque in foot-pounds, we can calculate the power:

Power (in hp) = (Torque (in foot-pounds) × Speed (in rpm)) / 5252

Substituting the given values, we find the power to be approximately 1.336 hp.

Learn more about Torque

brainly.com/question/31323759

#SPJ11

Question 3 [10 Total Marks] Consider a silicon pn-junction diode at 300K. The device designer has been asked to design a diode that can tolerate a maximum reverse bias of 25 V. The device is to be made on a silicon substrate over which the designer has no control but is told that the substrate has an acceptor doping of NA 1018 cm-3. The designer has determined that the maximum electric field intensity that the material can tolerate is 3 × 105 V/cm. Assume that neither Zener or avalanche breakdown is important in the breakdown of the diode. = (i) [8 Marks] Calculate the maximum donor doping that can be used. Ignore the built-voltage when compared to the reverse bias voltage of 25V. The relative permittivity is 11.7 (Note: the permittivity of a vacuum is 8.85 × 10-¹4 Fcm-¹) (ii) [2 marks] After satisfying the break-down requirements the designer discovers that the leak- age current density is twice the value specified in the customer's requirements. Describe what parameter within the device design you would change to meet the specification and explain how you would change this parameter.

Answers

Doping involves adding small amounts of specific atoms, known as dopants, to the crystal lattice of a semiconductor. The dopants can either introduce additional electrons, creating an n-type semiconductor, or create "holes" that can accept electrons, resulting in a p-type semiconductor.

(i) The maximum donor doping that can be used can be calculated by using the following steps

:Step 1:Calculate the maximum electric field intensity using the relation = V/dwhere E is the electric field intensity, V is the reverse bias voltage, and d is the thickness of the depletion region.The thickness of the depletion region can be calculated using the relation:W = (2εVbi/qNA)1/2where W is the depletion region width, Vbi is the built-in potential, q is the charge of an electron, and NA is the acceptor doping concentration.Substituting the given values,W = (2×(11.7×8.85×10-14×150×ln(1018/2.25))×1.6×10-19/(1×1018))1/2W ≈ 0.558 µmThe reverse bias voltage is given as 25 V. Hence, the electric field intensity isE = V/d = 25×106/(0.558×10-4)E ≈ 4.481×105 V/cm

Step 2:Calculate the intrinsic carrier concentration ni using the following relation:ni2 = (εkT2/πqn)3/2exp(-Eg/2kT)where k is the Boltzmann constant, T is the temperature in kelvin, Eg is the bandgap energy, and n is the effective density of states in the conduction band or the valence band. The bandgap energy of silicon is 1.12 eV.Substituting the given values,ni2 = (11.7×8.85×10-14×3002/π×1×1.6×10-19)3/2exp(-1.12/(2×8.62×10-5×300))ni2 ≈ 1.0044×1020 m-3Hence, the intrinsic carrier concentration isni ≈ 3.17×1010 cm-3

Step 3:Calculate the maximum donor doping ND using the relation:ND = ni2/NA. Substituting the given values,ND = (3.17×1010)2/1018ND ≈ 9.98×1011 cm-3Therefore, the maximum donor doping that can be used is 9.98×1011 cm-3.

ii)The parameter that can be changed within the device design to meet the specification is the thickness of the depletion region. By increasing the thickness of the depletion region, the leakage current density can be reduced. This can be achieved by reducing the reverse bias voltage V or the doping concentration NA. The depletion region width is proportional to (NA)-1/2 and (V)-1/2, hence, by decreasing the doping concentration or the reverse bias voltage, the depletion region width can be increased.

Learn more about Doping

https://brainly.com/question/11706474

#SPJ11

Sewage flows at 4m/s with a BODs of 60mg/L and a dissolved oxygen (DO) value of 1.8mg/L, into a river. Upstream of the sewage outfall the river flows at 20m/s with a BODs value of 4mg/L and it is saturated with dissolved oxygen. The saturated DO level in the river is 12mg/L. a) Calculate the BODs and DO values in the river at the confluence. Downstream the river flows with a mean velocity 1.5m/s. The BOD reaction rate constant is 0.4 day and the re-aeration constant is 0.6 day! b) Calculate the maximum dissolved oxygen deficit, D, in the river and how far downstream of the outfall that it occurs. Additionally, suggest how this figure may differ in the real-world from your modelled calculations c) In up to 8 sentences, define 4 different types of water pollutants and describe their common sources, and consequences.
d) Describe the role of water temperature in aggravating pollutant impact, and suggest how this could be controlled from an industrial point of view.

Answers

Sewage flow rate (q) = 4m/s BOD concentration (C) = 60mg/L Dissolved Oxygen (DO) = 1.8mg/L BOD concentration upstream (Co) = 4mg/L DO level upstream (Do) = 12mg/L Mean velocity downstream (vd) = 1.5m/sBOD reaction rate constant (K) = 0.4/day

Re-aeration constant (k) = 0.6/daya) Calculation of BODs and DO value in the river at the confluence. BOD calculation: BOD removal rate (k1) = (BOD upstream - BOD downstream) / t= (60-4) / (0.4) = 140mg/L/day

Assuming the removal is linear from the outfall to the confluence, we can calculate the BOD concentration downstream of the outfall using the following equation:

BOD = Co - (k1/k2) (1 - exp(-k2t))BOD

= 60 - (140 / 0.4) (1 - exp(-0.4t))

= 60 - 350 (1 - exp(-0.4t))

Where t is the time taken for sewage to travel from the outfall to the confluence. Using the flow rate (q) and distance from the outfall (x), we can calculate the time taken (t = x/q).

If the distance from the outfall to the confluence is 200m, then t = 50 seconds (time taken for sewage to travel 200m at a velocity of 4m/s).

BOD at the confluence = 60 - 350 (1 - exp(-0.4 x 50)) = 14.5mg/L

DO calculation:

DO deficit (D) = Do - DcDc = Co * exp(-k2t) + (k1 / k2) (1 - exp(-k2t))

= 4 * exp(-0.6 x 50) + (140 / 0.6) (1 - exp(-0.6 x 50))

= 5.58mg/L

DO at the confluence = Do - Dc = 1.8 - 5.58 = -3.78mg/L (negative value indicates that DO levels are below zero)

BOD concentration at the confluence = 14.5mg/LDO concentration at the confluence = -3.78mg/L (below zero indicates that DO levels are deficient)b) Calculation of maximum dissolved oxygen deficit (D) in the river and how far downstream of the outfall that it occurs.

DO deficit (D) = Do - DcDc = Co * exp(-k2t) + (k1 / k2) (1 - exp(-k2t))= 4 * exp(-0.6 x 200) + (140 / 0.6) (1 - exp(-0.6 x 200))= 11.75mg/LD = 12 - 11.75 = 0.25mg/L

The maximum dissolved oxygen deficit (D) occurs 200m downstream of the outfall. In the real-world, the modelled calculations may differ due to variations in flow rate, temperature, and chemical composition of the sewage.c) 4 Different types of water pollutants and their sources:

1. Biological Pollutants: Biological pollutants are living organisms such as bacteria, viruses, and parasites. They are mainly derived from untreated sewage, manure, and animal waste. The consequences of exposure to biological pollutants include stomach upsets, skin infections, and respiratory problems.

2. Nutrient Pollutants: Nutrient pollutants include nitrates and phosphates. They are derived from fertilizer runoff and human sewage. They can cause excessive growth of aquatic plants, which reduces oxygen levels in the water and negatively affects aquatic life.

3. Chemical Pollutants: Chemical pollutants are toxic substances such as heavy metals, pesticides, and organic solvents. They are derived from industrial waste, agricultural runoff, and untreated sewage. Exposure to chemical pollutants can cause cancer, birth defects, and other health problems.

4. Thermal Pollutants: Thermal pollutants are heat energy discharged into water bodies by industrial processes such as power generation. Elevated water temperatures can reduce dissolved oxygen levels, which can negatively affect aquatic life. They also cause thermal shock, which can lead to death of aquatic organisms.

d) Water temperature plays an important role in aggravating the impact of pollutants on aquatic life. Elevated temperatures can reduce the solubility of oxygen in water, leading to oxygen depletion in water bodies. This can affect the growth and reproduction of aquatic life. Industrial processes can control the impact of temperature on pollutants by using cooling towers to lower the temperature of wastewater before discharge into water bodies.

Learn more about BOD concentration here:

brainly.com/question/13443333

#SPJ11

A 3-phase, 208–V, 50-Hz, 35 HP, 6-pole, Y-connected induction motor is operating with a line current of I1 = 95.31∟-39.38° A, for a per-unit slip of 0.04.
R1 = 0.06 Ω , R2 = 0.04 Ω , X1 = 0.32 Ω , X2 = 0.4 Ω , XM = 9.4 Ω
The total friction, windage, and core losses can be assumed to be constant at 3 KW.
What is the Air-Gap power?
Select one:
a.PAG = 26.0 KW
b.PAG = 24.9 KW
c.None
d.PAG = 32.7 KW

Answers

The air-gap power of the given 3-phase, 208–V, 50-Hz, 35 HP, 6-pole, Y-connected induction motor

That is operating with a line current of I1 = 95.31∟-39.38° A, for a per-unit slip of 0.04 is  P AG = 24.9 KW The formula for air-gap power (P AG) is given as.

P AG = (1 - s) * ((V^2)/((R1 + R2/s)^2 + (X1 + X2)^2)) = (1 - 0.04) * ((208^2)/((0.06 + 0.04/0.04)^2 + (0.32 + 0.4)^2))= 24.9 KW  the correct answer is option b. P AG = 24.9 KW.

To know more about power visit:

https://brainly.com/question/29575208

#SPJ11

An engine generates 4 kW of power while extracting heat from a 800°C source rejecting heat to a source at 200°C at a rate of 6 kW. Determine the following:
a) The thermal efficiency of the cycle. b) The maximum theoretical efficiency of the cycle c) The entropy generation rate of the cycle

Answers

From the given data, we can determine the thermal efficiency of the cycle, maximum theoretical efficiency of the cycle, and the entropy generation rate of the cycle.

A) The thermal efficiency of the cycle is -50%.

B) The maximum theoretical efficiency of the cycle is = 0.75 or 75%

C)  The entropy generation rate of the cycle is 1.85 x  10⁻³ KW/K.

Given Data:

             Power generated, W = 4 kW

             Heat rejected, Qr = 6 kW

            Source temperature, T1 = 800°C

           Sink temperature, T2 = 200°C

A) Thermal efficiency of the cycle is given as the ratio of net work output to the heat supplied to the system.

The thermal efficiency of the cycle is given by:

                                     η = (W/Qh)

                                        = (Qh - Qr)/Qh

Where, Qh is the heat absorbed or heat supplied to the system.

Hence, the thermal efficiency of the cycle is:

                                   η = (Qh - Qr)/Qh

                                  η = (4 - 6)/4

                                 η = -0.5 or -50%

Therefore, the thermal efficiency of the cycle is -50%.

B) The maximum theoretical efficiency of the cycle is given by Carnot's theorem.

The maximum theoretical efficiency of the cycle is given by:

                                   ηmax = (T1 - T2)/T1

Where T1 is the temperature of the source

           T2 is the temperature of the sink.

Therefore, the maximum theoretical efficiency of the cycle is:

                                  ηmax = (T1 - T2)/T1

                                  ηmax = (800 - 200)/800

                                   ηmax = 0.75 or 75%

C) Entropy generation rate of the cycle is given by the following formula:

                                    ΔSgen = Qr/T2 - Qh/T1

Where, Qh is the heat absorbed or heat supplied to the system

            Qr is the heat rejected by the system.

Therefore, the entropy generation rate of the cycle is:

                                ΔSgen = Qr/T2 - Qh/T1

                                ΔSgen = 6/473 - 4/1073

                                ΔSgen = 1.85 x 10⁻³ KW/K

Thus, the entropy generation rate of the cycle is 1.85 x  10⁻³ KW/K.

To know more about Carnot's theorem, visit:

https://brainly.com/question/32207651

#SPJ11

A spherical tank used for the storage of high-temperature gas has an outer radius of 5 m and is covered in an insulation 250 mm thick. The thermal conductivity of the insulation is 0.05 W/m-K. The temperature at the surface of the steel is 360°C and the surface temperature of the insulation is 40°C. Calculate the heat loss. Round off your final answer to two (2) decimal places. (20 pts.)

Answers

A spherical tank is used for the storage of high-temperature gas. It has an outer radius of 5 m and is covered with insulation 250 mm thick. The thermal conductivity of the insulation is 0.05 W/m-K. The temperature at the surface of the steel is 360°C and the surface temperature of the insulation is 40°C.



[tex]q = 4πk (T1 - T2) / [1/r1 - 1/r2 + (t2 - t1)/ln(r2/r1)][/tex]

Here,
q = heat loss
k = thermal conductivity = 0.05 W/m-K
T1 = temperature at the surface of the steel = 360°C
T2 = surface temperature of insulation = 40°C
r1 = outer radius of the tank = 5 m
r2 = radius of the insulation = 5 m + 0.25 m = 5.25 m
t1 = thickness of the tank = 0 m (as it is neglected)
t2 = thickness of the insulation = 0.25 m

Substituting these values in the above equation, we get:

q = 4π(0.05)(360 - 40) / [1/5 - 1/5.25 + (0.25)/ln(5.25/5)]
q = 605.52 W

Therefore, the heat loss is 605.52 W.

To know more about temperature visit:

https://brainly.com/question/11464844

#SPJ11

Inside a 110 mm x 321 mm rectangular duct, air at 28 N/s, 20 deg
C, and 106 kPa flows. Solve for the volume flux if R = 29.1 m/K.
Express your answer in 3 decimal places.

Answers

The volume flux inside the rectangular duct is approximately 0.011 m[tex]^3/s[/tex]

To solve for the volume flux, we can use the formula:

Volume Flux = (Mass Flow Rate * R * T) / (P * A)

Given:

- Mass Flow Rate (m_dot) = 28 N/s

- Temperature (T) = 20 deg C = 293.15 K

- Pressure (P) = 106 kPa = 106,000 Pa

- Gas Constant (R) = 29.1 m/K

- Dimensions of the rectangular duct: width (w) = 110 mm = 0.11 m, height (h) = 321 mm = 0.321 m

First, we need to calculate the cross-sectional area of the duct:

A = w * h = 0.11 m * 0.321 m

Next, we can calculate the volume flux using the formula:

Volume Flux = (Mass Flow Rate * R * T) / (P * A)

Substituting the given values:

Volume Flux = (28 N/s * 29.1 m/K * 293.15 K) / (106,000 Pa * 0.11 m * 0.321 m)

Calculating the volume flux:

Volume Flux ≈ 0.011 m[tex]^3[/tex]/s

Therefore, the volume flux is approximately 0.011 m[tex]^3/s.[/tex]

Learn more about  rectangular duct

brainly.com/question/13258897

#SPJ11

Other Questions
You are opening a small specialized grocery store in your neighborhood, and are using your own funds to source equity capital. You're trying to estimate an appropriate cost of capital and find the following information: What is the best range estimate for your business's cost of capital? 14%-17% 8%-11% 12%-14% 17%-20% Jessica recently struggled with remembering at university and failed all of her tests. An MRI scan was ordered, which revealed that her hippocampus had been infected with an unknown virus.Using your synaptic transmission knowledge1) Describe the synaptic transmission processes and identify the structures involved.2) How would an excitatory neuromodulator impact her ability to remember if the virus has lowered the amount of AMPA receptors? Justify your decision. A point mutation would have highest chance of being important for natural selection if A. It occurred at a synonymous sight in an intron B. It occurred at a nonsynonymous site of an exon C. It occurred at a 3rd codon position in an exon D. It occurred anywhere in an intron constraint 1: the axes of driver and driven shafts are inclined to one another and intersect when producedconstraint 2: the driving and driven shafts have their axes at right angles and are non co planar.name the best possible gear system that the engineer should choose to overcome each constrain seperately and explain its characteristics with sketch 1. A 48-year-old woman comes to the emergency department because of a 3-hour history of periumbilical pain radiating to the right lower and upper of the abdomen. She has had nausea and loss of appetite during this period. She had not had diarrhea or vomiting. Her temperature is 38C (100.4 F). Abdominal examination show diffuse guarding and rebound tenderness localized to the right lower quadrant. Pelvic examination shows no abnormalities. Laboratory studies show marked leukocytosis with absolute neutrophils and a shift to the left. Her serum amylase active is 123 U/L, and serum lactate dehydrogenase activity is an 88 U/L. Urinalysis within limits. An x-ray and ultrasonography of the abdomen show no free air masses. Which of the following best describes the pathogenesis of the patient's disease?A. Contraction of the sphincter of Oddi with autodigestion by trypsin, amylase, and lipaseB. Fecalith formation of luminal obstruction and ischemiaC. Increased serum cholesterol and bilirubin concentration with crystallization and calculi formationD. Intussusception due to polyps within the lumen of the ileum E. Multiple gonococcal infections with tubal plical scaring Question 1 a. Power systems can also be subjected to power frequency overvoltage. Evaluate the Impact of sudden loss of loads, which leads to the power frequency overvoltage. (3 marks) b. A 3-phase single circuit transmission line is 150 km long. If the line is rated for 200 kV and has the parameters, R = 1 02/km, L= 2 mH/km, C = 0.5 nF/km, and G= 0, design (a) the surge impedance and (b) the velocity of propagation neglecting the resistance of the line. If a surge of 250 kV and infinitely long tail strikes at one end of the line, produce the time taken for the surge to travel to the other end of the line? (4 marks) Assume a 4800 nT/min geomagnetic storm disturbance hit the United States. You are tasked with estimating the economic damage resulting from the storm. a. If there were no power outages, how much impact (in dollars) would there be in the United States just from the "value of lost load?" Explain the assumptions you are making in your estimate. [ If you are stuck, you can assume 200 GW of lost load for 10 hours and a "value of lost load" of $7,500 per MWh.] b. If two large power grids collapse and 130 million people are without power for 2 months, how much economic impact would that cause to the United States? Explain the assumptions you are making in your estimate. Solve the system by substitution. 6x+3y=9x+7y=47 Select the correct choice below and, if necessary, fill in the answer be A. There is one solution. The solution set is (Type an ordered pair. Simplify your answer.) B. There are infinitely many solutions. The solution set is the set (Type an expression using x as the variable. Simplify your ans: C. The solution set is the empty set. A medical office troats two different types of patients, new patients and existing patients. The new patients require(s) threet steps: new patient registration, examination and treatment. The existing patients only require(s) two steps: examination and treatment. The new patient registration step has a capacity of 6 patients per hour. The examination step has a capacity of 14 patients per hour. The treatment step has a capacity of 8 patients per hour. The demand for new potients is 14 patients per hour and the demand for existing patients is 14 patients per houf. thstuction. Round to the nearost integer percentage. What is the inpled utilization of the botbeneck resource? In an instrumentation system, there is a need totake the difference between two signals, one of v1 =2sin(2 60t) + 0.01sin(2 1000t) volts and anotherof v2 = 2sin(2 60t) 0.01sin(2 1000t) volts. Drawa circuit that finds the required difference using two op ampsand mainly 100-k resistors. Since it is desirable to amplifythe 1000-Hz component in the process, arrange to provide anoverall gain of 100 as well. The op amps available are idealexcept that their output voltage swing is limited to 10 V. You're riding on a train to Clarksville with a 4:30 arrival time. It just so happens to be the last one of the day. Alon the way, you watch a freight train backing up and it got you thinking. What would happen the back car fell off the train when it stopped backing up? You look at the train car and notice the bumpers and deduce they must be some sort of shock absorber. You estimate the mass to be about 20 Mg and the train to be traveling at most 2 mph. Determine the impulse need to stop the car if: a.) k = 15 kN m KN b.) k = 30 m c.) the impulse for both k = co and k = 0 v = 2 mph In which cases are prezygotic isolating mechanisms expected to strengthen primarily due to the indirect effects of linkage or pleiotropy, or by genetic drift, rather than by the direct effect of natural selection for prezygotic barriers? [Choose all answers that apply.] a. the populations are allopatric. b. mating between the members of populations occurs readily in nature, but the hybrids are sterile. c. members of each population do not mate with members of the other population because mating occurs at different times of year. d. introgression occurs between members of populations at a secondary hybrid zone, but the hybrids are less fit than either parent. Question 3 Not yet answered Marked out of 1.00 Flag question Hypovolemic shock occurs when: Select one: O a. The clotting ability of the blood is enhanced O b. The body cannot compensate for rapid fluid loss O c. The patient's systolic BP is less than 100 mm Hg O d. At least 10% of the patient's blood volume is lost 13) Which of the following has a lower concentration outside of the cell compared to inside of the cell.A) Ca++B) K+C) Cl-D) Na+14) Which of the following is an antiport transporter?A) The Glucose/Sodium PumpB) The acetylcholine ion transporter.C) The Calcium PumpD) The Sodium/Potassium pump D-branching, glycogen phosphorylase, phosphoglucomutase, and transferase are four enzymes involved in glycogen breakdown. What are their functions? (a) The angular momentum operator in the direction is given in spherical polar coordinates as == -i Find the eigenfunctions and eigenvalues of this operator, and hence show that L is quantised. (b) You are looking at the Balmer-a line (the n = 3 2 transition) from a sample of hydrogen with a spectrometer with a resolving power of R 1000. Will you be able to tell if there is deuterium in your sample or not? Explain your answer fully, with any necessary calculations. - You may assume without proof that the Bohr energy is given by Eo = e 32 where = mM/(me + M) is the reduced mass, me is the electron mass, M is the nuclear mass, and all other symbols have their usual meanings. What will die sizes of a blanking operation that has to beperformed on a 3 mm thick cold rolled steel( half hard). Considerthat the part is circular with diameter = 70 mm Ac=0,075 1) 1) The centromere is a region in which A) new spindle microtubules form at either end. B) chromosomes are grouped during telophase. the nucleus is located prior to mitosis. D) chromatids remain attached to one another until anaphase. E) metaphase chromosomes become aligned at the metaphase plate. 2) 2) If there are 20 chromatids in a cell, how many centromeres are there? A) 80 B) 10 C) 30 D) 40 E) 20 3) 3) Which is the longest of the mitotic stages? A) anaphase B) telophase prometaphase D) metaphase E) prophase 4) 4) A cell containing 92 chromatids at metaphase of mitosis would, at its completion, produce two nuclei each containing how many chromosomes? A) 92 B) 16 C) 23 D) 46 E) 12 5) Cytokinesis usually, but not always, follows mitosis. If a cell completed mitosis but not cytokinesis, 5) the result would be a cell with A) two nuclei but with half the amount of DNA. B) a single large nucleus. two nuclei. D) two abnormally small nuclei. E) high concentrations of actin and myosin. 6) The formation of a cell plate is beginning across the middle of a cell and nuclei are re-forming at opposite ends of the cell. What kind of cell is this? A) an animal cell undergoing cytokinesis B) an animal cell in telophase C) an animal cell in metaphase D) a plant cell undergoing cytokinesis E) a plant cell in metaphase 7) 7) Chromosomes first become visible during which phase of mitosis? A) metaphase B) prometaphase 9) telophase D) prophase E) anaphase Find \( f+g, f-g, f g \), and \( \frac{f}{g} \). Determine the domain for each function. \[ f(x)=x+6, g(x)=5 x^{2} \] \( (f+g)(x)=\quad \) (Simplify your answer.) What is the domain of \( f+g \) ? A. plsanswer all! i have no more questions remaining w my subscription!thank u!!Use the References to access important values if needed for this question. What is the binding energy in kJ/mol nucleons for lanthanum-139? kJ/mol nucleons 57 H+ 82 n 39 La The required masses (g/mo