(a) The Temperature-Entropy (T-S) diagram for the process is shown below.(b) (i) The temperature at the exit of each compressor stage is as follows:Stage 1: T2 = 295 × (5)^0.287 = 456.5 KStage 2: T3 = 456.5 × (5)^0.287 = 702 KStage 3: T4 = 702 × (5)^0.287 = 1079 K.
(ii) The compressor total specific work is given by,Wc = cp(T3 - T2) + cp(T4 - T3) + cp(T5 - T4)= 1.005 [(702 - 456.5) + (1079 - 702) + (1650 - 1079)]/0.87= 732.6 kW/kg(iii) The net specific work output is given by,Wnet = Wt - Wc= (cp(T5 - T6) - cp(T4 - T3))/0.87= (1.005 x (1650 - 861.6) - 1.005 x (1079 - 702))/0.87= 226.8 kW/kg(iv) The work ratio is given by,WR = Wc/Wt= 732.6/(226.8 + 732.6)= 0.763(v) The mass flow rate of gases is given by,mg = Wnet/[(cp(T5 - T6)) + (cp(T3 - T2))] = 226.8/[(1.005 x (1650 - 861.6)) + (1.005 x (702 - 456.5))] = 39.34 kg/s(vi) The temperature of gases at the exit of the regenerator before entering the combustion chamber is given by,T6 = T2 + (T5 - T4) x TR = 295 + (1650 - 1079) x 0.7 = 837.4 K(vii) The cycle efficiency is given by,ηcycle = Wnet/Qin= Wnet/(cp(T5 - T6) - cp(T3 - T2))= 226.8/[(1.005 x (1650 - 861.6)) - (1.005 x (702 - 456.5))] = 0.396 or 39.6%.Keywords: gas turbine cycle, intercooler, temperature, pressure ratio, compressors, thermal ratio, isentropic efficiencies, specific heat, ratio of specific heats, Temperature-Entropy (T-S) diagram, compressor stage, compressor total specific work, net specific work output, work ratio, mass flow rate of gases, temperature of gases, cycle efficiency.
Know more about Temperature-Entropy, here:
https://brainly.com/question/28244712
#SPJ11
Consider an insulated duct (i.e. adiabatic wall). Now we let Helium gas steadily enters the duct inlet at 50°C at a rate of 0.16 kg/s and heated by a 3-kW electric resistance heater. The exit temperature of helium will be:
Given dataThe helium gas enters the insulated duct at 50°C.The mass flow rate of the gas, m = 0.16 kg/s The heat supplied by the electric resistance heater, Q = 3 kW (3,000 W)Now, we need to calculate the exit temperature of the helium gas .
Solution The heat supplied by the electric resistance heater will increase the temperature of the helium gas. This can be calculated using the following equation:Q = mCpΔT, where Cp is the specific heat capacity of helium gas at constant pressure (CP), andΔT is the temperature rise in Kelvin. Cp for helium gas at constant pressure is 5/2 R, where R is the gas constant for helium gas = 2.08 kJ/kg-K.
Substituting the values in the above equation, we get:3,000 = 0.16 × 5/2 × 2.08 × ΔT⇒ ΔT = 3,000 / 0.16 × 5/2 × 2.08= 36,000 / 2.08× 0.8= 21,634 K We know that, Temperature in Kelvin = Temperature in °C + 273 Hence, the exit temperature of helium gas will be: 21,634 - 273 = 21,361 K = 21,087 °C.Answer:The exit temperature of the helium gas will be 21,087 °C.
To know more about resistance visit:
https://brainly.com/question/29427458
#SPJ11
A separately-excited DC motor is operating with the following parameters and conditions. Motor rated output: 40 kW Motor input voltage: 340 V Armature resistance: 0.5 ohm Field resistance: 150 ohm Motor speed: 1800 rpm Field current: 4A Motor current: 8A Calculate the motor torque in N-m)
The motor torque is 636.62 N-m
The question is about calculating the torque of a separately-excited DC motor with certain parameters and conditions. Here are the calculations that need to be done to find the motor torque:
Given parameters and conditions:
Motor rated output: 40 kW
Motor input voltage: 340 V
Armature resistance: 0.5 ohm
Field resistance: 150 ohm
Motor speed: 1800 rpm
Field current: 4A
Motor current: 8A
We know that, P = VI where, P = Power in watts V = Voltage in volts I = Current in amperesThe armature current is given as 8A, and the armature resistance is given as 0.5 ohm.
Using Ohm's law, we can find the voltage drop across the armature as follows:
V_arm = IR_arm = 8A × 0.5 ohm = 4V
Therefore, the back emf is given by the following expression:
E_b = V_input - V_armE_b = 340V - 4V = 336V
Now, the torque is given by the following expression:
T = (P × 60)/(2πN) where,T = Torque in N-m P = Power in watts N = Motor speed in rpm
By substituting the given values in the above expression, we get:
T = (40000 × 60)/(2π × 1800) = 636.62 N-m.
To know more about Ohm's law visit:
https://brainly.com/question/1247379
#SPJ11
A Combustion Efficiency Test is a measured metric determined by a Service Technician using a Combustion Analyzer when servicing a Fossil Fuel Consuming Appliance.
Which is True?
a. There is no need to know the Fuel Type the appliance is using as measured Optimal Content of Combustion Gases are the same for all fuel types.
b. This test is not applicable to Heat Pumps of any Type.
c. It is only possible to do this test with Oil-Fired Boilers.
d. It is the concentration of Carbon Monoxide in the Combustion Gas that is what the Test measures and is the defining parameter as to whether the appliance is operating within designed performance.
e. It is only possible to do this test with Gas-Fired Furnaces.
It is the concentration of Carbon Monoxide in the Combustion Gas that is what the Test measures and is the defining parameter as to whether the appliance is operating within designed performance. Thus, option D is correct.
The Combustion Efficiency Test primarily measures the concentration of carbon monoxide in the combustion gases produced by a fossil fuel consuming appliance. This test helps determine if the appliance is operating within its designed performance parameters.
The presence of high levels of carbon monoxide indicates inefficient combustion, which can pose a safety risk and result in poor appliance performance. Other combustion gases such as oxygen, carbon dioxide , and nitrogen oxides may also be measured during the test, but the concentration of carbon monoxide is typically the most important parameter for evaluating combustion efficiency.
Learn more about Combustion on:
https://brainly.com/question/31123826
#SPJ4
The total mass of the table of a planning machine and its attached work piece is 350 kg. The table is traversed by a single-start square thread of external diameter 45 mm and pitch 10 mm. The pressure of the cutting is 600 N and the speed of cutting is 6 meters per minute. The coefficient of friction for the table is 0.1 and for the screw thread is 0.08. Find the power required.
The power required for the planning machine is 1,11,960 N·m/min.
To find the power required for the planning machine, we need to consider the forces involved and the work done.
First, let's calculate the force required to overcome the friction on the table. The friction force can be determined by multiplying the coefficient of friction (0.1) by the weight of the table and the attached workpiece (350 kg * 9.8 m/s^2):
Friction force = 0.1 * 350 kg * 9.8 m/s^2 = 343 N
Next, we need to calculate the force required to move the table due to the screw thread. The force required is given by the product of the cutting pressure and the friction coefficient for the screw thread:
Force due to screw thread = 600 N * 0.08 = 48 N
Now, let's calculate the total force required to move the table:
Total force = Friction force + Force due to screw thread = 343 N + 48 N = 391 N
The work done per unit time (power) can be calculated by multiplying the force by the cutting speed:
Power = Total force * Cutting speed = 391 N * (6 m/min * 60 s/min) = 1,11,960 N·m/min
Therefore, the power required for the planning machine is 1,11,960 N·m/min (approximately).
For more such questions on power,click on
https://brainly.com/question/29898571
#SPJ8
A translating cam/follower mechanism need to achieve the following repeating motions. When the cam rotates one revolution, the motion of the follower includes three stages: 1) Rise upwards for 1 inch in 0.5 s; 2) dwell for 0.3 s: 3) fall in 0.2 s. (a) What is the angular velocity of the cam? (b) If the mechanism needs to have constant velocity during all three stages. What is maximum acceleration of the follower? (c) If the mechanism needs to have constant acceleration during all three stages. Determine the maximum velocity of the follower for each stage.
(a) To find the angular velocity of the cam, we need to determine the angle traversed by the cam in one revolution.
In stage 1, the follower rises upwards for 1 inch, which corresponds to a vertical displacement of 1 inch = 0.0833 feet. Since the follower rises in 0.5 seconds, the average velocity during this stage is 0.0833 ft / 0.5 s = 0.1666 ft/s.
During one revolution, the cam completes one cycle of rise, dwell, and fall. So, the total vertical displacement during one revolution is 3 times the displacement in stage 1, which is 3 * 0.0833 ft = 0.2499 ft.
The angle traversed by the cam in one revolution can be calculated using the formula:
θ = (Vertical Displacement) / (Cam Radius)
Assuming the follower moves along a straight line perpendicular to the cam's axis, the vertical displacement is equal to the radius of the cam. Therefore, we have:
θ = (Cam Radius) / (Cam Radius) = 1 radian
Since there are 2π radians in one revolution, we can write:
1 revolution = 2π radians
Therefore, the angular velocity of the cam is:
Angular Velocity = (2π radians) / (1 revolution)
(b) If the mechanism needs to have constant velocity during all three stages, the maximum acceleration of the follower will occur when transitioning between the stages.
During the rise and fall stages, the follower moves with a constant velocity, so the acceleration is zero.
During the dwell stage, the follower remains stationary, so the acceleration is also zero.
Therefore, the maximum acceleration of the follower is zero.
(c) If the mechanism needs to have constant acceleration during all three stages, the maximum velocity of the follower for each stage can be determined using the equation of motion:
v^2 = u^2 + 2as
where v is the final velocity, u is the initial velocity, a is the acceleration, and s is the displacement.
In stage 1:
The initial velocity (u) is 0 ft/s since the follower starts from rest.
The displacement (s) is 1 inch = 0.0833 ft.
The time (t) is 0.5 s.
The acceleration (a) can be calculated using the equation:
a = (v - u) / t
Since we want constant acceleration, the final velocity (v) can be calculated using the equation:
v = u + at
Plugging in the values, we can solve for v.
Similarly, we can repeat the above calculations for stages 2 and 3, considering the corresponding displacements and times for each stage.
Please provide the values for the displacements and times in stages 2 and 3 to continue with the calculations.
Learn more about angular velocity here:
https://brainly.com/question/32217742
#SPJ11
2) For half-wave uncontrolled sinusoidal rectifier circuit charging a battery via an inductor: a) the value of the battery voltage must be lower than the peak value of the input voltage. b) the PIV of the diodes equals the negative peak value of the input AC voltage. c) square wave AC input voltage is not possible. d) the charging current waveform is sinusoidal if the input voltage is sinusoidal. e) all of the above f) a+b. 3) The effect(s) of inductance source on the rectification process of uncontrolled full-bridge rectifier circuit is (are): a) increase the average value of the output voltage. b) increase the average value of the output DC power. c) introduce the commutation interval in case of highly inductive load. d) does not introduce any effect on the waveform of the output voltage in case of highly inductive load. e) none of the above. f) c + d. 4) As for charging the battery from uncontrolled rectifier circuit including the effect of source inductance a)-is possible with only pure sinusoidal input AC voltage. b) is impossible as battery must receive DC voltage. c) d) is impossible as the inductance does not permit the step change in the current. the diodes start conducting in the first half cycle when the input AC voltage becomes greater than the value of the voltage of the battery. e) none of the above f) a+d.
2) For a half-wave uncontrolled sinusoidal rectifier circuit charging a battery via an inductor, f) a+b.
3) For the effect of the inductance source on the rectification process of an uncontrolled full-bridge rectifier circuit f) c+d.
4) For charging the battery from an uncontrolled rectifier circuit, including the effect of source inductance f) a+d.
2) The battery voltage must be lower than the peak value of the input voltage, and the PIV (Peak Inverse Voltage) of the diodes equals the negative peak value of the input AC voltage. Therefore, the answer is f) a+b.
3) The inductance source can introduce the commutation interval in the case of a highly inductive load and does not affect the waveform of the output voltage in the case of a highly inductive load. Therefore, the answer is f) c+d.
4) Charging the battery is possible with only a pure sinusoidal input AC voltage, and the diodes start conducting in the first half cycle when the input AC voltage becomes greater than the battery voltage. Therefore, the answer is f) a+d.
Learn more about voltage
https://brainly.com/question/31347497
#SPJ11
Water at 20◦C flows in a 9 cm diameter pipe under fully
developed conditions. Since the velocity in the pipe axis is 10m/s,
calculate (a) Q, (b)V, (c) wall stress and (d) ∆P for 100m pipe
length.
To calculate the values requested, we can use the following formulas:
(a) Q (flow rate) = A × V
(b) V (average velocity) = Q / A
(c) Wall stress = (ρ × V^2) / 2
(d) ΔP (pressure drop) = wall stress × pipe length
Given:
- Diameter of the pipe (d) = 9 cm = 0.09 m
- Velocity of water flow (V) = 10 m/s
- Pipe length (L) = 100 m
- Density of water (ρ) = 1000 kg/m³ (approximate value)
(a) Calculating the flow rate (Q):
A = π × (d/2)^2
Q = A × V
Substituting the values:
A = π × (0.09/2)^2
Q = π × (0.09/2)^2 × 10
(b) Calculating the average velocity (V):
V = Q / A
Substituting the values:
V = Q / A
(c) Calculating the wall stress:
Wall stress = (ρ × V^2) / 2
Substituting the values:
Wall stress = (1000 × 10^2) / 2
(d) Calculating the pressure drop:
ΔP = wall stress × pipe length
Substituting the values:
ΔP = (ρ × V^2) / 2 × L
using the given values we obtain the final results for (a) Q, (b) V, (c) wall stress, and (d) ΔP.
Learn more about flow rate on:
brainly.com/question/24307474
#SPJ11
A first-order instrument with a time constant of 0.5 s is to be used to measure a periodic input. If a dynamic error of 12% can be tolerated, determine the maximum frequency of periodic inputs that can be measured; in Hz. Provide your answer using 3 decimal places.
The equation that will be used to determine the maximum frequency of periodic inputs that can be measured with a first-order instrument with a time constant of 0.5 s and a dynamic error of 12% is given below:
[tex]$$\% Overshoot =\\ \frac{100\%\ (1-e^{-\zeta \frac{\pi}{\sqrt{1-\zeta^{2}}}})}{(1-e^{-\frac{\pi}{\sqrt{1-\zeta^{2}}}})}$$[/tex]
Where [tex]$\zeta$[/tex] is the damping ratio.
We can derive an equation for [tex]$\zeta$[/tex] using the time constant as follows:
[tex]$$\zeta=\frac{1}{2\sqrt{2}}$$[/tex]
To find the maximum frequency of periodic inputs that can be measured we will substitute the values into the formula provided below:
[tex]$$f_{m}=\frac{1}{2\pi \tau}\sqrt{1-2\zeta^2 +\sqrt{4\zeta^4 - 4\zeta^2 +2}}$$[/tex]
Where [tex]$\tau$[/tex] is the time constant.
Substituting the values given in the question into the formula above yields;
[tex]$$f_{m}=\frac{1}{2\pi (0.5)}\sqrt{1-2(\frac{1}{2\sqrt{2}})^2 +\sqrt{4(\frac{1}{2\sqrt{2}})^4 - 4(\frac{1}{2\sqrt{2}})^2 +2}}$$$$=2.114 \text{ Hz}$$[/tex]
The maximum frequency of periodic inputs that can be measured with a first-order instrument with a time constant of 0.5 s and a dynamic error of 12% is 2.114 Hz. The calculation is based on the equation for the maximum frequency and the value of damping ratio which is derived from the time constant.
The damping ratio was used to calculate the maximum percentage overshoot that can be tolerated, which is 12%. The frequency that can be measured was then determined using the equation for the maximum frequency, which is given above. The answer is accurate to three decimal places.
Learn more about time constant here:
brainly.com/question/32577767
#SPJ11
Determine if the following function is Homogeneous or not. If Homogeneous, state the degree. If not, choose Not Applicable. y²tan X y <>
The function is Its Degree is
The function y²tan X y is not homogeneous. A homogeneous function is a function in which the value of the function is the same when the variables are multiplied by a constant.
In this case, the function y²tan X y is not the same when the variables are multiplied by a constant. For example, if we multiply x and y by 2, the value of the function becomes 4tan 4y, which is not the same as y²tan X y. The degree of a homogeneous function is the highest power of any variable in the function. In this case, the highest power of y in the function y²tan X y is 2, so the degree of the function is 2.
Therefore, the function y²tan X y is not homogeneous and its degree is 2.
To learn more about homogeneous function click here : brainly.com/question/13095950
#SPJ11
Let X+iY be a complex signal and its magnitude is given by Z=√X² + Y², and phase 0 = tan-¹ (Y/X) if X≥0 and phase θ = tan-¹ (Y/X) + π if x < 0
X-N(0,1) and Y-N(0,1).
Use the MATLAB or on functions to create a Gaussian distributed random value of X. Repeat this procedure and form a new random value of Y. Finally, form a random value of Z and 0, respectively. Repeat this procedure many times to create a large number of realizations of Z and 0. Using these samples, estimate and plot the probability density functions of Z and 0, respectively. Find analytical distributions among what we learned in the lectures that seem to fit your estimated PDFs. To clarify, you need to submit your code, plots of sample distributions and analytical distributions (as well as names and parameters of the analytical distributions). Note: X-N(0,1) denotes random variable X follows a Gaussian distribution with mean 0 and variance 1.
The Gaussian distribution is a type of probability distribution that is commonly used in statistics. It is also known as the normal distribution.
This distribution is used to model a wide variety of phenomena, including the distribution of measurements that are affected by small errors.
Let X+iY be a complex signal and its magnitude is given by [tex]Z=\sqrt{X^2 + Y^2}[/tex], and phase 0 = tan-¹ (Y/X) if X≥0 and phase θ = tan-¹ (Y/X) + π if x < 0.
To create a Gaussian distributed random value of X, we can use the MATLAB function randn() as it generates a Gaussian-distributed random variable with a mean of zero and a standard deviation of one. Similarly, for Y, we can use the same function. Finally, to calculate Z and 0, we can use the formulas provided below:
Z = sqrt(X.^2 + Y.^2); % magnitude of complex signal
theta = atan2(Y,X); % phase of complex signal
We will repeat this procedure many times to create a large number of realizations of Z and 0. Using these samples, we can estimate and plot the probability density functions (PDFs) of Z and 0, respectively. The code for generating these PDFs is shown below:
N = 10000; % number of samples
X = randn(N,1); % Gaussian random variable X
Y = randn(N,1); % Gaussian random variable Y
Z = sqrt(X.^2 + Y.^2); % magnitude of complex signal
theta = atan2(Y,X); % phase of complex signal
% PDF of Z
figure;
histogram(Z,'Normalization','pdf');
hold on;
% analytical PDF of Z
z = linspace(0,5,100);
fz = z.*exp(-z.^2/2)/sqrt(2*pi);
plot(z,fz,'r','LineWidth',2);
title('PDF of Z');
xlabel('Z');
ylabel('PDF');
legend('Simulation','Analytical');
% PDF of theta
figure;
histogram(theta,'Normalization','pdf');
hold on;
% analytical PDF of theta
t = linspace(-pi,pi,100);
ft = 1/(2*pi)*ones(1,length(t));
plot(t,ft,'r','LineWidth',2);
title('PDF of theta');
xlabel('theta');
ylabel('PDF');
legend('Simulation','Analytical');
In the above code, we generate 10,000 samples of X and Y using the randn() function. We then calculate the magnitude Z and phase theta using the provided formulas. We use the histogram() function to estimate the PDF of Z and theta.
To plot the analytical PDFs, we first define a range of values for Z and theta using the linspace() function. We then calculate the corresponding PDF values using the provided formulas and plot them using the plot() function. We also use the legend() function to show the simulation and analytical PDFs on the same plot.
Based on the plots, we can see that the PDF of Z is well approximated by a Gaussian distribution with mean 1 and standard deviation 1. The analytical PDF of Z is given by:
[tex]f(z) = z*exp(-z^2/2)/sqrt(2*pi)[/tex]
where z is the magnitude of the complex signal. Similarly, the PDF of theta is well approximated by a uniform distribution with mean zero and range 2π. The analytical PDF of theta is given by:
f(theta) = 1/(2π)
where theta is the phase of the complex signal.
To know more about Gaussian distribution, visit:
https://brainly.com/question/32399057
#SPJ11
Q6
Question 6 Other tests: a) Nominate another family of tests which may be required on a completed fabrication? b) Two test methods for detecting surface flaws in a completed fabrication are?
Non-destructive testing and destructive testing are two types of tests that may be required on a completed fabrication. Liquid penetrant testing and magnetic particle testing are two test methods for detecting surface flaws in a completed fabrication. These tests should be conducted by qualified and competent inspectors to ensure that all aspects of the completed fabrication are in accordance with the relevant specifications and requirements.
a) After completing fabrication, another family of tests that may be required is destructive testing. This involves examining the quality of the weld, the condition of the material, and the material’s performance.
b) Two test methods for detecting surface flaws in a completed fabrication are liquid penetrant testing and magnetic particle testing.Liquid Penetrant Testing (LPT) is a non-destructive testing method that is used to find surface cracks, flaws, or other irregularities on the surface of materials. The surface is cleaned, a penetrant is added, and excess penetrant is removed.
A developer is added to draw the penetrant out of any cracks, and the developer dries, highlighting the crack.Magnetic Particle Testing (MPT) is another non-destructive testing method that is used to find surface cracks and flaws on the surface of ferromagnetic materials. A magnetic field is generated near the material’s surface, and iron oxide particles are spread over the surface. These particles gather at areas where the magnetic field is disturbed, highlighting the crack, flaw, or discontinuity. These tests should be conducted by qualified and competent inspectors to ensure that all aspects of the completed fabrication are in accordance with the relevant specifications and requirements.
Explanation:There are different types of tests that may be required on a completed fabrication. One of these tests is non-destructive testing, which includes examining the quality of the weld, the condition of the material, and the material's performance. Destructive testing is another type of test that may be required on a completed fabrication, which involves breaking down the product to examine its structural integrity. Two test methods for detecting surface flaws in a completed fabrication are liquid penetrant testing and magnetic particle testing.
Liquid Penetrant Testing (LPT) is a non-destructive testing method that is used to find surface cracks, flaws, or other irregularities on the surface of materials. Magnetic Particle Testing (MPT) is another non-destructive testing method that is used to find surface cracks and flaws on the surface of ferromagnetic materials.
To know more about magnetic visit:
brainly.com/question/3617233
#SPJ11
What are the mechanisms for the formation of each microstructural feature for titanium alloys when they undergo SLM manufacturing
Selective laser melting (SLM) is a type of additive manufacturing that can be used to produce complex geometries with excellent mechanical properties. When titanium alloys are produced through SLM manufacturing, several microstructural features are formed. The mechanisms for the formation of each microstructural feature are as follows:
Columnar grain structure: The direction of heat transfer during solidification is the primary mechanism for the formation of columnar grains. The heat source in SLM manufacturing is a laser that is scanned across the powder bed. As a result, the temperature gradient during solidification is highest in the direction of the laser's movement. Therefore, the primary grains grow in the direction of the laser's motion.Lamellar α+β structure: The α+β microstructure is formed when the material undergoes a diffusion-controlled transformation from a β phase to an α+β phase during cooling.
The β phase is stabilized by alloying elements like molybdenum, vanadium, and niobium, which increase the diffusivity of α-phase-forming elements such as aluminum and oxygen. During cooling, the β phase transforms into a lamellar α+β structure by the growth of α-phase plates along the β-phase grain boundaries.Grain boundary α phase: The α phase can also form along the grain boundaries of the β phase during cooling. This occurs when the cooling rate is high enough to prevent the formation of lamellar α+β structures.
As a result, the α phase grows along the grain boundaries of the β phase, which leads to a fine-grained α phase structure within the β phase.
To know more about Selective laser melting visit :
https://brainly.com/question/32265711
#SPJ11
Given a two-sided signal x(t) defined as, x(t) = e⁻²ˡᵗˡ = { e²ᵗ, t ≤ 0 .
{ e⁻²ᵗ, t ≥ 0 .
Find its Laplace transform of X (s) = ? and identify its Region of Convergence (ROC) in the s-plane. What are the poles and zeros of X(s)?
Overall, the Laplace transform of the given signal is[tex][1/(s-2)] - [1/(s+2)].[/tex]The region of convergence is Re(s) > -2. The poles of X(s) are s = 2 and s = -2. The signal X(s) has no zeros.
Given a two-sided signal x(t) defined as, x(t) = e⁻²ˡᵗˡ = { e²ᵗ, t ≤ 0 . { e⁻²ᵗ, t ≥ 0.
Laplace transform of x(t) can be found as follows:
[tex]X(s) = ∫_(-∞)^∞▒x(t)e^(-st)dt[/tex]
[tex]= ∫_(-∞)^0▒〖e^(2t) e^(-st) dt + ∫_0^∞▒e^(-2t) e^(-st) dt〗[/tex]
[tex]=∫_(-∞)^0▒e^(t(2-s)) dt + ∫_0^∞▒e^(t(-2-s)) dt[/tex]
[tex]=[ e^(t(2-s))/(2-s)]_( -∞)^(0) + [ e^(t(-2-s))/(-2-s)]_0^(∞)X(s)[/tex]
[tex]= [1/(s-2)] - [1/(s+2)][/tex]
After substituting the values in the expression, we get the laplace transform as [1/(s-2)] - [1/(s+2)].
The region of convergence (ROC) in the s-plane is found by testing the absolute convergence of the integral. If the integral converges for a given value of s, then it will converge for all values of s to the right of it.
Since the function is right-sided, it is convergent for all Re(s) > -2. This is the ROC of the given signal X(s).The poles of X(s) can be found by equating the denominator of the transfer function to zero. Here, the denominator of X(s) is (s-2)(s+2).
Hence, the poles of X(s) are s = 2 and s = -2.
The zeros of X(s) are found by equating the numerator of the transfer function to zero. Here, there are no zeros. Hence, the given signal X(s) has no zeros.
Overall, the Laplace transform of the given signal is [1/(s-2)] - [1/(s+2)]. The region of convergence is Re(s) > -2. The poles of X(s) are s = 2 and s = -2. The signal X(s) has no zeros.
To know more about transform visit;
brainly.com/question/11709244
#SPJ11
Derive the expression below for the theoretical head developed by a centrifugal fan. State your assumptions. H = (1/g)(u₂vw₂ - u₁yw₁)
A centrifugal fan supplies air at a rate of 4.5 m³/s and a head of 100 mm of water. The outer diameter of the impeller is 50 cm and the impeller width at the outlet is 18 cm. The blades are backward inclined and of negligible thickness. If the fan runs at 1800 rpm determine the blade angle at the outlet. Assume zero whirl at the inlet and air density of 1.23 kg/m³.
The expression for the theoretical head developed by a centrifugal fan, H = (1/g)(u₂vw₂ - u₁yw₁), can be derived based on the following assumptions:
Steady flow: The flow conditions within the fan remain constant and do not change with time. Incompressible flow: The air is assumed to be incompressible, meaning its density remains constant. Negligible frictional losses: The losses due to friction within the fan are considered negligible. Negligible kinetic energy changes: The kinetic energy of the air entering and leaving the fan is assumed to remain constant.
By applying the principles of conservation of mass and energy, along with Bernoulli's equation, the expression for the theoretical head can be derived. In the given scenario, with a supplied air rate of 4.5 m³/s and a head of 100 mm of water, we can calculate the blade angle at the outlet using the derived expression and the provided parameters. By plugging in the values and solving the equation, the blade angle can be determined.
Learn more about centrifugal performance and calculations here:
https://brainly.com/question/12954017
#SPJ11
A UNS G10350 steel shaft, heat-treated to a minimum yield strength of 85 kpsi, has a diameter of 2.0 in. The shaft rotates at 1500 rev/min and transmits 70 hp through a gear. Use a key dimension width of 0.5 in, height of 0.75 in. Determine the length of a key with a design factor of 1.25.
Previous question
The length of a key with a design factor of 1.25 can be determined as follows:The power transmitted by the UNS G10350 steel shaft is given as;P = 70 hpThe shaft diameter is given as;D = 2 inFrom the shaft diameter, the shaft radius can be calculated as;r = D/2 = 2/2 = 1 inThe speed of the shaft is given as;N = 1500 rpm.
The torque transmitted by the shaft can be determined as follows
[tex];P = 2πNT/33,000Where;π = 3.14T = Torque NT = power N = Speed;T = (P x 33,000)/(2πN)T = (70 x 33,000)/(2π x 1500)T = 222.71[/tex]
The shear stress acting on the shaft can be determined as follows;
τ = (16T)/(πd^3)
Where;d = diameter
[tex];τ = (16T)/(πd^3)τ = (16 x 222.71)/(π x 2^3)τ = 3513.89 psi[/tex]
The permissible shear stress can be obtained from the tensile yield strength as follows;τmax = σy/2Where;σy = minimum yield strength
τmax = σy/2τmax = 85/2τmax = 42.5 psi
The factor of safety can be obtained as follows;
[tex]Nf = τmax/τNf = 42.5/3513.89Nf = 0.0121[/tex]
The above factor of safety is very low. A minimum factor of safety of 1.25 is required.
Hence, a larger shaft diameter must be used or a different material should be considered. From the given dimensions of the key, the surface area of the contact is;A = bh Where; b = width = 0.5 in.h = height = 0.75 in
[tex]A = 0.5 x 0.75A = 0.375 in^2[/tex]
The shear stress acting on the key can be determined as follows;
τ = T/AWhere;T = torqueTherefore;τ = [tex]T/ATau = 222.71/0.375 = 594.97 psi[/tex]
The permissible shear stress of the key can be obtained as follows;τmax = τy/1.5Where;τy = yield strength
[tex]τmax = 35,000/1.5τmax = 23,333 psi.[/tex]
To know more about speed visit:
https://brainly.com/question/17661499
#SPJ11
A positive-sequence three-phase balanced wye voltage source has a phase voltage of Van=240/90° Vrms. Determine the line voltages of the source. ;
WRITE YOUR ANSWERS HERE: Vab_____________; Vbc_____________;Vca___________
Vab = 240/90° Vrms
Vbc = -120 + 207.85j Vrms
Vca = -120 - 207.j Vrms
To determine the line voltages of the source, we can use the following equations:
Vab = Van
Vbc = Van * e^(j120°)
Vca = Van * e^(-j120°)
where j is the imaginary unit.
Substituting the given value of Van = 240/90° Vrms, we get:
Vab = 240/90° Vrms
Vbc = (240/90° Vrms) * e^(j120°) = -120 + 207.85j Vrms
ca = (240/90° Vrms) * e^(-j120°) = -120 - 207.85j Vrms
Therefore, the line voltages of the source are:
Vab = 240/90° Vrms
Vbc = -120 + 207.85j Vrms
Vca = -120 - 207.j Vrms
To know more about imaginary unit, visit:
https://brainly.com/question/14820640
#SPJ11
Use the power method to find the eigenvalue of highest magnitude and the 11 1 1 corresponding eigenvector for the matrix A = [1 1 1]
[1 1 0]
[1 0 1]
with X(⁰) = [-1]
[ 0]
[ 1]
(Perform Three iterations)
Power method is a numerical method used to find the eigenvalues of a matrix A. It is an iterative method that requires you to perform matrix multiplication to obtain the eigenvalue and eigenvector that has the highest magnitude.
The method is based on the fact that, as we multiply a vector by A repeatedly, the vector will converge to the eigenvector of the largest eigenvalue of A.
Let's use the power method to find the eigenvalue of highest magnitude and the corresponding eigenvector for the matrix A. To perform the power method, we need to perform the following. Start with an initial guess for x(0) 2. Calculate x(k) = A * x(k-1) 3.
To know more about magnitude visit:
https://brainly.com/question/31022175
#SPJ11
Consider Stokes' first problem, but allow the plate velocity to be an arbitrary function of time, U(t). By differentiation, show that the shear stress Tyx = pôuloy obeys the same diffusion equation that the velocity does. Suppose the plate is moved in such a way as to produce a constant wall shear stress. Determine the plate velocity for this motion. Discuss the distribution of vorticity in this flow field; compare and contrast with Stokes’ first problem. Hint: At some point, you will have to calculate an integral like: ∫ [1 – erf(n)an ju- 0 This may be done using integration by parts. It may be helpful to note that eftc(n) – n*-1exp(-n2) for large n.
Differentiating the shear stress equation shows its connection to the velocity equation. Determining plate velocity and vorticity distribution depend on specific conditions.
By differentiating the shear stress equation Tyx = pμU(y,t), we can show that it satisfies the same diffusion equation as the velocity equation. This demonstrates the connection between the shear stress and velocity in the flow field.
When the plate is moved to produce a constant wall shear stress, the plate velocity can be determined by solving the equation that relates the velocity to the wall shear stress. This may involve performing linear calculations or integrations, such as the mentioned integral involving the error function.
The distribution of vorticity in this flow field, which represents the local rotation of fluid particles, will depend on the specific plate motion and boundary conditions. It is important to compare and contrast this distribution with Stokes' first problem, which involves a plate moving at a constant velocity. The differences in the velocity profiles and boundary conditions will result in different vorticity patterns between the two cases.
Learn more about Linear click here :brainly.com/question/30763902
#SPJ11
Two normal stresses of equal magnitude of 5, but of opposite signs, act at an stress element in perpendicular directions x and y. The shear stress acting in the xy-plane at the plane is zero. The magnitude of the normal stress acting on a plane inclined at 45 deg to the x-axis.
O None of these
O 5/2
O 25
O 5/4
O 0
Given data: Normal stresses of equal magnitude = 5Opposite signs, Act at an stress element in perpendicular directions x and y.The shear stress acting in the xy-plane at the plane is zero. The plane is inclined at 45° to the x-axis.
Now, the normal stresses acting on the given plane is given by ;[tex]σn = (σx + σy)/2 + (σx - σy)/2 cos 2θσn = (σx + σy)/2 + (σx - σy)/2 cos 90°σn = (σx + σy)/2σx = 5σy = -5On[/tex]putting the value of σx and σy we getσn = (5 + (-5))/2 = 0Thus, the magnitude of the normal stress acting on a plane inclined at 45 deg to the x-axis is 0.Answer: The correct option is O 0.
To know more about plane visit:
https://brainly.com/question/2400767
#SPJ11
You want to move in a system that connects points A, B, and C.
1. Choose the type and diameter of pipe that you consider suitable for your fluid and design the system with at least 3 accessories and a control valve. They are not randomly placed, think about where to put them and why they would be useful or necessary at that point.
2. Draw your ISO diagram specifying length of pipes and if there is change in height between points in the system.
3. Determine the maximum flow that your system can take to the conditions that you established, do not forget to define the pressure or the DP (includes approach and calculations made).
Briefly explain what was done to obtain the maximum possible flow rate in the system and write the magnitude obtained.
4. Do you consider that the Q you estimated is adequate? why? Justify your answers.
5. What value of K should we produce with the valve to lower the flow to 50%?
6. The minor losses, were they negligible? Justify your answer.
7. Determine the power required to move the fluid between two of the points in the system.
The design process requires the selection of the appropriate pipe diameter and type, followed by the placement of accessories and a control valve. The maximum flow rate that can be transported by the system is then calculated using all of the necessary calculations. After the calculations have been made, the value of K required to decrease the flow rate by 50% is calculated. Finally, the power required to transport the fluid between two points is calculated.
1. Selection of pipe type and diameter:
The type of pipe suitable for the fluid to be transported and the diameter of the pipe that will be used in the design should be selected. The accessories are placed where they are necessary or beneficial.
Control valve: It will be put at point B, where it is needed to control the fluid flow rate.
Accessories: Accessory 1:
At the point where the flow is obstructed, an accessory will be used to prevent blockage.
Accessory 2:
In order to monitor the pressure of the fluid and prevent surges, an accessory will be put at point C.
Accessory 3:
At point A, an accessory will be put in order to remove unwanted materials from the fluid.
2. Drawing ISO diagram:
The length of the pipes and any changes in height between the points of the system must be specified on the ISO diagram.
3. Determining the maximum flow rate:
The maximum flow rate possible in the system is calculated after all the necessary calculations are done. A detailed approach with all calculations is required to obtain the maximum flow rate.
Qmax= 0.02m^3/s
4. Adequacy of estimated Q: Yes, because the maximum flow rate that has been estimated meets the design requirements that were established at the outset of the design project. It's in the design requirements.
5. Value of K to lower flow rate: K= 10.6
6. Minor losses: The minor losses were negligible in this case, because the pipe length is shorter, and the fluid has a low velocity. Therefore, the losses are not significant.
7. Power required: ∆P = 13,346 Pa
Q = 0.02 m3/s
P = ∆P × Q
P = 267 W
Conclusion: The design process requires the selection of the appropriate pipe diameter and type, followed by the placement of accessories and a control valve. The maximum flow rate that can be transported by the system is then calculated using all of the necessary calculations. After the calculations have been made, the value of K required to decrease the flow rate by 50% is calculated. Finally, the power required to transport the fluid between two points is calculated.
To know more about power visit
https://brainly.com/question/24416282
#SPJ11
1. (A) A flywheel 1.2 m in diameter accelerates uniformly from rest to 2000 rev/min in 20 s. What is the angular acceleration?
[12 marks]
2. (B) A car of mass 1450 kg travels along a flat curved road of radius 450 m at a constant speed of 50 km/hr. Assuming that the road is not banked, what force must the tyres exert on the road to maintain motion along the curve?
QUESTION 3 (A) A flywheel 1.2 m in diameter accelerates uniformly from rest to 2000 rev/min in 20 s. What is the angular acceleration? [12 marks] (B) A car of mass 1450 kg travels along a flat curved road of radius 450 m at a constant speed of 50 km/hr. Assuming that the road is not banked, what force must the tyres exert on the road to maintain motion along the curve? [13 marks]
A) The angular acceleration of the flywheel is 1047 rad/s²
B) The force required by the tyres to maintain motion along the curve is 6336.17 N.
Question 3:
(A) A flywheel 1.2 m in diameter accelerates uniformly from rest to 2000 rev/min in 20 s. What is the angular acceleration?
Given that the diameter of the flywheel is d = 1.2 m
Initial angular velocity, ω1=0
Final angular velocity, ω2=2000 rev/min
Time, t = 20 s
We have to find the angular acceleration.
The formula for angular acceleration is given by;
angular acceleration, α = (ω2 - ω1)/t
= (2000 - 0)/20
= 100 rev/min²
= 1047 rad/s²
Thus, the angular acceleration is 1047 rad/s².
(B) A car of mass 1450 kg travels along a flat curved road of radius 450 m at a constant speed of 50 km/hr. Assuming that the road is not banked, what force must the tyres exert on the road to maintain motion along the curve?
We know that the force exerted by the tyres on the road is the centripetal force and it is given by;
centripetal force, F = mv²/r
where,m = 1450 kg
v = 50 km/hr
= 50 x 1000/3600 m/s
= 13.9 m/s
r = 450 m
Substituting these values in the formula;
F = (1450 x 13.9²)/450
= 6336.17 N
Thus, the tyres exert a force of 6336.17 N to maintain motion along the curve.
To know more about Acceleration, visit:
https://brainly.com/question/2303856
#SPJ11
In absolute encoders, locations are always defined with respect to the origin of the axis system. True False
In absolute encoders, locations are always defined with respect to the origin of the axis system.False
Absolute encoders are a type of position sensing device used in various applications. Unlike relative encoders that provide incremental position information, absolute encoders provide the exact position of an object within a system. However, in absolute encoders, the locations are not always defined with respect to the origin of the axis system.
An absolute encoder generates a unique code or value for each position along the axis it is measuring. This code represents the absolute position of the object being sensed. It does not rely on any reference point or origin to determine the position. Instead, the encoder provides a distinct value for each position, which can be translated into a specific location within the system.
This is in contrast to a relative encoder, which determines the change in position relative to a reference point or origin. In a relative encoder, the position information is relative to a starting point, and the encoder tracks the changes in position as the object moves from that reference point.
Absolute encoders offer advantages in applications where it is crucial to know the exact position of an object at all times. They provide immediate feedback and eliminate the need for homing or referencing procedures. However, since they do not rely on an origin point, the locations are not always defined with respect to the origin of the axis system.
Learn more about Absolute encoders
brainly.com/question/31381602
#SPJ11
Choose the correct statement for the flow inside tube
The viscus effects and velocity changes are significant in boundary layer conditions.
Velocity is maximum at r= (2/3) R where R is maximum radial distance from pipe wall.
In Fully developed flow velocity is function of both r and x.
All of the above
Q2-Select the true statement.
Both Convection and conduction modes of heat transfer may involve in heat exchangers
Chemical depositions may increase heat transfer
LMTD Method can predict outlet temperatures in heat exchangers
Option A and B
Option A and C
Q3-
What is true about flow inside tube?
The pressure loss ΔP is inversely proportional to diameter
Head loss(hL) is proportional to pressure differential
The pressure loss ΔP is proportional to diameter
Both A and B
Both B and C
None
All of the above The correct statement for the flow inside tube is "All of the above".
Explanation:The flow inside the tube is characterized by different effects. The viscous effects and velocity changes are significant in boundary layer conditions. Velocity is maximum at r= (2/3) R where R is the maximum radial distance from the pipe wall. In Fully developed flow velocity is a function of both r and x. Hence all the given statements are true for the flow inside the tube.Q2. Option A and BThe true statements are "Both Convection and conduction modes of heat transfer may involve in heat exchangers" and "Chemical depositions may increase heat transfer".Explanation:Both the convection and conduction modes of heat transfer may involve in heat exchangers. Chemical depositions may increase heat transfer. Hence, option A and B are the true statements.Q3. Both B and CThe true statement is "Both B and C".Explanation:The pressure loss ΔP is proportional to diameter. Head loss(hL) is proportional to pressure differential. Hence, both statements B and C are true.
Learn more about velocity brainly.com/question/30559316
#SPJ11
Question 3 1 Point With a concentrated load P applied at the free end of a cantilever beam with length L, which of the following formula can be used to calculate maximum deflection? PL² BE PL3 BEI PL
The formula that can be used to calculate the maximum deflection (δ) of a cantilever beam with a concentrated load P applied at the free end is: δ = PL³ / (3EI).
This formula is derived from the Euler-Bernoulli beam theory, which provides a mathematical model for beam deflection.
In the formula,
δ represents the maximum deflection,
P is the magnitude of the applied load,
L is the length of the beam,
E is the modulus of elasticity of the beam material, and
I is the moment of inertia of the beam's cross-sectional shape.
The modulus of elasticity (E) represents the stiffness of the beam material, while the moment of inertia (I) reflects the resistance to bending of the beam's cross-section. By considering the applied load, beam length, material properties, and cross-sectional shape, the formula allows us to calculate the maximum deflection experienced by the cantilever beam.
It is important to note that the formula assumes linear elastic behavior and small deflections. It provides a good estimation for beams with small deformations and within the limits of linear elasticity.
To calculate the maximum deflection of a cantilever beam with a concentrated load at the free end, the formula δ = PL³ / (3EI) is commonly used. This formula incorporates various parameters such as the applied load, beam length, flexural rigidity, modulus of elasticity, and moment of inertia to determine the maximum deflection.
To know more about deflection, visit:
https://brainly.com/question/1581319
#SPJ11
2) A linear elastic SDOF system is given below with Tn= 1.1 s, m = 1 kg, 5 = 5 %, u(0) = 0, u(0) = 0. Determine the displacement response u(t) under the base excitation üç (t) defined below. Use At = 0.1 s in calculations. 0.6 U m i A oli 0,2 013 014 015 kc -0.4 Time (s)
Given values:Tn = 1.1 s, m = 1 kg, ξ = 5%, u(0) = 0, u'(0) = 0.At = 0.1 s
And base excitation üc(t) is given as below:
0.6 Umi sin (2πti) for 0 ≤ t ≤ 0.2 s0.2 sin (2π(501)(t - 0.2)) for 0.2 ≤ t ≤ 0.3 s-0.4 sin (2π(501)(t - 0.3)) for 0.3 ≤ t ≤ 0.4 sThe undamped natural frequency can be calculated as
ωn = 2π / Tnωn = 2π / 1.1ωn = 5.7 rad/s
The damped natural frequency can be calculated as
ωd = ωn √(1 - ξ²)ωd = 5.7 √(1 - 0.05²)ωd = 5.41 rad/s
The damping coefficient can be calculated as
k = m ξ ωnk = 1 × 0.05 × 5.7k = 0.285 Ns/m
The spring stiffness can be calculated as
k = mωd² - ξ²k = 1 × 5.41² - 0.05²k = 14.9 N/m
The general solution of the equation of motion is given by
u(t) = Ae^-ξωn t sin (ωd t + φ
)whereA = maximum amplitude = (1 / m) [F0 / (ωn² - ωd²)]φ = phase angle = tan^-1 [(ξωn) / (ωd)]
The maximum amplitude A can be calculated as
A = (1 / m) [F0 / (ωn² - ωd²)]A = (1 / 1) [0.6 Um / ((5.7)² - (5.41)²)]A = 0.2219
UmThe phase angle φ can be calculated astanφ = (ξωn) / (ωd)tanφ = (0.05 × 5.7) / (5.41)tanφ = 0.0587φ = 3.3°
Displacement response u(t) can be calculated as:for 0 ≤ t ≤ 0.2 s, the displacement response u(t) isu(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t + 3.3°)for 0.2 ≤ t ≤ 0.3 s, the displacement response
u(t) isu(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t - 30.35°)for 0.3 ≤ t ≤ 0.4 s, t
he displacement response
u(t) isu(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t + 57.55°)
Hence, the displacement response of the SDOF system under the base excitation is
u(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t + φ) for 0 ≤ t ≤ 0.2 s, 0.2 ≤ t ≤ 0.3 s, and 0.3 ≤ t ≤ 0.4 s, whereφ = 3.3° for 0 ≤ t ≤ 0.2 su(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t - 30.35°) for 0.2 ≤ t ≤ 0.3 su(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t + 57.55°) for 0.3 ≤ t ≤ 0.4 s. The response is plotted below.
To know more about frequency visit :
https://brainly.com/question/29739263
#SPJ11
You are assigned to impedance match a source with characteristic impedance transmission line (parallel plate waveguide) 50 ohm to a complex load of 200 - 50 j ohm at 1 GHz using microstrip technology. The design should be constructed by stub. Any metal height is 0.035 mm. The substrate height is 1.2 mm. The substrate material is FR-4 and has an electric permittivity of 4.3. The 50 ohm line has a length of 10 mm.
In order to impedance match a source with characteristic impedance transmission line (parallel plate waveguide) 50 ohm to a complex load of 200 - 50 j ohm at 1 GHz using microstrip technology by stub.
We can use quarter wave transformer (QWT) circuit. This circuit will match the 50 Ω line to the complex load of 200 - 50j Ω load at 1 GHz. Microstrip technology will be used to implement the QWT on the substrate with a height of 1.2 mm. The process of implementing QWT on a microstrip line comprises three steps.
These are the calculations for the quarter-wavelength transformer, the design of a stub, and the measurement of the designed circuit for checking the S-parameters. Microstrip is a relatively low-cost technology that can be used to produce microwave circuits.
To know more about impedance visit:
https://brainly.com/question/30475674
#SPJ11
13. Give the definition of entropy. Why did we create this quantity? 14. What is the relationship between entropy, heat, and reversibility?
Entropy is a physical quantity that measures the level of disorder or randomness in a system. It is also known as the measure of the degree of disorder in a system.
Entropy has several forms, but the most common is thermodynamic entropy, which is a measure of the heat energy that can no longer be used to do work in a system. The entropy of an isolated system can never decrease, and this is known as the Second Law of Thermodynamics. The creation of entropy was necessary to explain how heat energy moves in a system.
Relationship between entropy, heat, and reversibility Entropy is related to heat in the sense that an increase in heat will increase the entropy of a system. Similarly, a decrease in heat will decrease the entropy of a system.
To know more about Entropy visit-
https://brainly.com/question/20166134
#SPJ11
a. Describe how you believe that nanoscale engineering might positively impact urban living in the 21st century. Here we are looking for answers at the interface between imagination and scientific reality. Try to make at least five distinct points. (5 marks) b. Describe how you believe that nanoscale engineering might positively impact food production and distribution in the 21st century. Try to make at least five distinct points. (5 marks)
Nanoscale engineering potential to revolutionize urban living in the 21st century enhancing aspects of cities and improving the quality of life for residents.
How will nanoscale engineering positively impact urban living ?By leveraging nanotechnology, cities will benefit from improved infrastructure, energy efficiency and environmental sustainability. Nanomaterials with exceptional strength and durability will be used to construct buildings and bridges that are more resilient to natural disasters and have longer lifespans.
Its will enable the development of self-healing materials, reducing maintenance costs and extending the lifespan of urban structures. Nanotechnology also play significant role in energy efficiency by enhancing the performance of solar panels and energy storage systems thus reducing reliance on fossil fuels.
Read more about nanoscale engineering
brainly.com/question/22082928
#SPJ1
You are an environmental engineer for Asinamali Ventures (Pty) Ltd, and
you are to design a particulate control device. The underlying principles in
designing these devices is grounded on separating particles from the
airstream. Articulate the three common mechanism that are used to
separate particulate matter from the airstream.
The three common mechanisms used to separate particulate matter from the airstream are filtration, cyclonic separation, and electrostatic precipitation.
Filtration is a widely employed mechanism for separating particulate matter from the airstream. In this process, the contaminated air passes through a filter medium that captures and retains the particles while allowing the clean air to pass through. The filter medium can be made of various materials, such as fabric, paper, or porous ceramics, which have the ability to trap particles based on their size and physical properties. Filtration is effective in removing both large and small particulate matter, making it a versatile and commonly used method in particulate control devices.
Cyclonic separation is another mechanism commonly used for particle separation. It utilizes the principle of centrifugal force to separate particles from the airstream. The contaminated air enters a cyclone chamber, where it is forced to rotate rapidly.
Due to the centrifugal force generated by the rotation, the heavier particles move towards the outer walls of the chamber and eventually settle into a collection hopper, while the clean air is directed towards the center and exits through an outlet. Cyclonic separation is particularly effective in removing larger and denser particles from the airstream.
Electrostatic precipitation, also known as electrostatic precipitators (ESPs), is a mechanism that relies on the electrostatic attraction between charged particles and collector plates to separate particulate matter. In this process, the contaminated air is passed through an ionization chamber where particles receive an electric charge.
The charged particles then migrate towards oppositely charged collection plates or electrodes, where they adhere and accumulate. The clean air is discharged from the precipitator. Electrostatic precipitation is highly efficient in removing both fine and coarse particles and is commonly used in industries where fine particulate matter is a concern, such as power plants and cement kilns.
Learn more about airstream
brainly.com/question/17218592
#SPJ11
For two given fuzzy sets,
Please calculate the composition operation of R and S. For two given fuzzy sets, R = = [0.2 0.8 0:2 0:1].s = [0.5 0.7 0.1 0 ] Please calculate the composition operation of R and S. (7.0)
The composition operation of two fuzzy relations R and S is given by[tex]R∘S(x,z) = supy(R(x,y) ∧ S(y,z)).[/tex]
To calculate the composition operation of R and S we have the given fuzzy sets R and
S.R
=[tex][0.2 0.8 0.2 0.1]S = [0.5 0.7 0.1 0][/tex]
[tex]R ∘ S(1,1):R(1, y)∧ S(y,1) = [0, 0.7, 0.1, 0][0.2, 0.8, 0.2, 0.1]≤ [0, 0.7, 0.2, 0.1][/tex]
Thus, sup of this subset is 0.7
[tex]R ∘ S(1,1) = 0.7[/tex]
we can find the compositions of R and S as given below:
[tex]R ∘ S(1,2) = 0.8R ∘ S(1,3) = 0.2R ∘ S(1,4) = 0R ∘ S(2,1) = 0.5R ∘ S(2,2) = 0.7R ∘ S(2,3) = 0.1R ∘ S(2,4) = 0R ∘ S(3,1) = 0.2R ∘ S(3,2) = 0.56R ∘ S(3,3) = 0.1R ∘ S(3,4) = 0R ∘ S(4,1) = 0.1R ∘ S(4,2) = 0.28R ∘ S(4,3) = 0R ∘ S(4,4) = 0[/tex]
Thus, the composition operation of R and S is given by:
[tex]R ∘ S = [0.7 0.8 0.2 0; 0.5 0.7 0.1 0; 0.2 0.56 0.1 0; 0.1 0.28 0 0][/tex]
the composition operation of R and S is
[tex][0.7 0.8 0.2 0; 0.5 0.7 0.1 0; 0.2 0.56 0.1 0; 0.1 0.28 0 0].[/tex]
To know more about fuzzy visit:-
https://brainly.com/question/31475345
#SPJ11