Answer:
Explanation:
It is still using F = m*a -- just in a disguised form.
Givens
F = 900 N
vf = 360 m/s
vi = 0
t = 40 second
Formulas
a = (vf - vi)//t
F = m * a
Solution
a = (360 - 0)/ 40
a = 9
F = m * a
900 = m * 9
m = 900/9
m - 100 kg. Doesn't seem high enough.
Answer:
a= V- u/t
a= 360 - 0 /40 = 9 m/sec2
F = MA
900 = M * 9
M = 900/9
M= 100 kg
Physical values in the real world have two components: magnitude and
Answer:
Dimension.
Explanation:
A train travels with a speed of 115km/hr. How much time does it take to cover a distance of 470km.
It would take approximately 4 hours for the train to cover a distance of 470km.
4 hours 5 minutes 13.04 seconds
Calculate the kinetic energy of a 50 kg cart moving at a speed of 18.6 m/s.
Answer:
8649 J
Explanation:
KE = 1/2mv^2
1/2(50)(18.6)^2
1/2(50)(345.96) = 8649 J
Shows a car travelling around a bend in the road. The car is travelling at a constant speed. There is a resultant force acting on the car. This resultant force is called the centripetal force. (i) In which direction, A, B, C or D, does the centripetal force act on the car? Tick ( ) one box. A B C D (1) (ii) State the name of the force that provides the centripetal force.
Answer:
This question is incomplete
Explanation:
This question is incomplete but the missing figure is in the attachment below.
When an object is travelling around a circular path, there is a force that tends to draw that object towards the center of the circular path and keep the object moving in the curved path, that force is called the centripetal force. From this description, it can be deduced that the direction of the centripetal force that acts on the car (in the attachment below) is D.
The name of the force that provides this centripetal force is frictional force. This is the force that prevents the car from slipping off the road; keeping it moving in the curved path.
Can u anser 5,6 on the picture
Answer: Number 6 is Periods
Explanation:
Which of the following is NOT one of the essential components of an exercise program?
Answer:
i dont know dude but ask someone who is in your grade lol
Explanation:
A pinball bangs against a bumper of a pinball machine with a speed of 0.46 m/s. If the ball has a mass of 0.058 kg, what is the ball's kinetic energy?
Answer:
either its 12 or 0.402
Explanation:
A 75kg bicyclist (including the bicycle), initially at rest at the top of a hill, coasts down the hill, reaching a speed of 14.6m/s at the bottom of the hill. The distance and height of the hill are shown. Neglect any friction impeding the motion and the rotational energy of the wheels. List the energy types at the initial and final time and whether work and loss (due to non-conservative forces) occur as well as the corresponding amounts of energy.
The energy type at the initial time is potential energy and the energy at the final time or position is kinetic energy.
What is the law of conservation of energy?The law of conservation of energy states that energy can neither be created nor destroyed but can be transformed from one form to another.
Based on the law of conservation of mechanical energy, the formula for the change in the kinetic energy and the potential energy of the bicyclist is given as;
K.Ei + P.Ei = K.Ef + P.Ef
where;
K.Ei is the initial kinetic energy of the bicyclistK.Ef is the final kinetic energy of the bicyclistP.Ei is the initial potential energy of the bicyclistP.Ef is the final potential energy of the bicyclistThe kinetic energy of the bicyclist increases with increase in the velocity of the bicyclist while the potential energy increases with increase in the height of the bicyclist.
At the initial position when the bicyclist is at rest, the kinetic energy is zero, so the only energy at the initial position is potential energy because the height is maximum.
In addition, at the final position, the velocity of the bicyclist is maximum and the height is zero, so the only energy at the final position is kinetic energy.
Learn more about conservation of energy here: https://brainly.com/question/166559
#SPJ1
A 1500 kg car has an applied forward force of 5000 N and experiences an air resistance of 1250 N. What is the car's acceleration?
Answer:
[tex]2.33\ m/s^2[/tex]
Explanation:
Net Force
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
Fn = m.a
Where a is the acceleration of the object. The net force is the sum of the individual vector forces applied to the object.
The m=1500 Kg car has two horizontal forces applied: the forward force of 5000 N that causes the movement and the air resistance force of 1250 N that opposes motion.
The net force is Fn = 5000 N - 1500 N = 3500 N
To find the acceleration, we solve the equation for a:
[tex]\displaystyle a=\frac{Fn}{m}[/tex]
[tex]\displaystyle a=\frac{3500}{1500}[/tex]
[tex]\boxed{a = 2.33\ m/s^2}[/tex]
The car's acceleration is [tex]a = 2.33\ m/s^2[/tex]
- During a certain period, the angular position of a rotating object is given by: = − + , where is in radian and t is in seconds. Determine the angular position, angular speed, and angular acceleration of the rotating object at = Sec.
The question is not complete. The complete question is :
During a certain period of time, the angular position of a rotating object is given by [tex]$\theta =2t^2 +10t+5$[/tex], where θ is in radians and t is in seconds. Determine the angular position, angular speed, and angular acceleration of the door (a) at t = 0.00 seconds, (b) at t = 3.00 seconds.
Solution :
Given :
Displacement or angular position of the object, [tex]$\theta =2t^2 +10t+5$[/tex]
∴ Angular speed is [tex]$\omega = \frac{d \theta}{dt}$[/tex]
ω = 10 + 4t
And angular acceleration is [tex]$\alpha = \frac{d \omega}{dt}$[/tex]
α = 4
a). At time, t = 0.00 seconds :
Angular displacement is [tex]$\theta =2t^2 +10t+5$[/tex]
[tex]$\theta =2(0)^2 +10(0)+5$[/tex]
= 5 rad
Angular speed is ω = 10 + 4t
ω = 10 + 4(0)
= 10 rad/s
Angular acceleration is α = 4 [tex]$rad/s^2$[/tex]
b). At time, t = 3.00 seconds :
Angular displacement is [tex]$\theta =2t^2 +10t+5$[/tex]
[tex]$\theta =2(3)^2 +10(3)+5$[/tex]
= 53 rad
Angular speed is ω = 10 + 4t
ω = 10 + 4(3)
= 22 rad/s
Angular acceleration is α = 4 [tex]$rad/s^2$[/tex]
Alex wants to learn how to surf, but he is not a strong swimmer. He knows he needs to increase his ability to paddle out in order to catch the best waves. Which piece of advice would you give to help him get started on reaching his goal? He should swim at least three times a week at the community pool to build stamina. He should tread water every day to get more comfortable in the water. He should purchase the best surfboard he can afford because it will help him paddle faster. He should watch your friend who is a competitive surfer practice to learn her technique.
Answer:
He should swim at least three times a week at the community pool to build stamina.
Explanation:
a squirrel runs at a speed of 9.9 m/s with 25 J of kinetic energy
What is the squirrels mass
Answer:
yeet yeet yeet yeet
Explanation:
Kinetic energy (K.E):-
So, the Mass of the Squirrel is 0.51 Kg (or) 510 grams.
A squirrel runs at a speed of 9.9 m/s with 25 J of kinetic energy.
What is the squirrel’s mass?
Answer: 0.51 kg
If the velocity of an object changed from 30 m/s to 60 m/s over a period of 10 seconds what would the average acceleration be ?
how many teeth shows signs of decay?
Answer:
what do you mean
Explanation: