Explanation:
It is given that,
The velocity of football is 18 m/s
It is projected at an angle of 20 degrees
We need to find the ball's acceleration in the horizontal direction as it flies through the air.
When it is projected with some velocity, it has two rectangular components i.e. horizontal and vertical.
In vertical direction, it will move under the action of gravity. There is no change in velocity in horizontal direction. So, ball's acceleration in the horizontal direction is equal to 0.
A 60 mAs results in an exposure of 85 mGya, with all factors remaining the same, what would the new exposure be if 120 mAs is used?
Answer: d₂ = 170 mGya
Explanation:
the relationship between absonbed 'd' and exposure 'E' is given as;
D(Gv) = F . x (AS/xB)
F is a conversion coefficient depending on medium
so we can simply write
d₁/d₂ = x₁/x₂
Given that;
our x₁ = 60 mAs, x₂ = 120 mAs, d₁ = 85 mGya, d₂ = ?
from the given formula,
d₂ = (x₂d₁ / x₁)
now we substitute
d₂ = (120 × 85) / 60
d₂ = 170 mGya
∴ if 120 mAa is used, the new exposure will be 170 mGya
What is the de Broglie wavelength of an object with a mass of 2.50 kg moving at a speed of 2.70 m/s? (Useful constant: h = 6.63×10-34 Js.)
Answer:
9.82 × [tex]10^{-35}[/tex] Hz
Explanation:
De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:
λ = [tex]\frac{h}{mv}[/tex]
where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.
Given that: h = 6.63 ×[tex]10^{-34}[/tex] Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;
λ = [tex]\frac{h}{mv}[/tex]
= [tex]\frac{6.63*10^{-34} }{2.5*2.7}[/tex]
= [tex]\frac{6.63 * 10^{-34} }{6.75}[/tex]
= 9.8222 × [tex]10^{-35}[/tex]
The wavelength of the object is 9.82 × [tex]10^{-35}[/tex] Hz.
A concrete slab shown in Figure 5 is being lifted by using three cables connected to the slab at points A, B and C. The slab is in the xy plane. The vertical force required to lift this slab is 60 kN (F 60 kN). Find the tensions in cables DA, DB and DC (show all your workings that you do to find these)
Answer:
Fad = 28.8 kN
Fbd = 16.4 kN
Fcd = 28.1 kN
Explanation:
First, find the length of each cable.
AD = √((2 m)² + (0.5 m)² + (2.5 m)²)
AD = √10.5 m
AD ≈ 3.24 m
BD = √((1.5 m)² + (1 m)² + (2.5 m)²)
BD = √9.5 m
BD ≈ 3.08 m
CD = √((1 m)² + (1 m)² + (2.5 m)²)
CD = √8.25 m
CD ≈ 2.87 m
Next, use similar triangles to find the x, y, and z components of each tension force.
Fadx = 2/3.24 Fad = 0.617 Fad
Fady = 0.5/3.24 Fad = 0.154 Fad
Fadz = 2.5/3.24 Fad = 0.772 Fad
Fbdx = 1.5/3.08 Fbd = 0.487 Fbd
Fbdy = 1/3.08 Fbd = 0.324 Fbd
Fbdz = 2.5 / 3.08 Fbd = 0.811 Fbd
Fcdx = 1/2.87 Fcd = 0.348 Fcd
Fcdy = 1/2.87 Fcd = 0.348 Fcd
Fcdz = 2.5/2.87 Fcd = 0.870 Fcd
Now sum the forces in the x, y, and z directions:
∑Fx = ma
-0.617 Fad + 0.487 Fbd + 0.348 Fcd = 0
∑Fy = ma
-0.154 Fad − 0.324 Fbd + 0.348 Fcd = 0
∑Fz = ma
60 kN − 0.772 Fad − 0.811 Fbd − 0.870 Fcd = 0
To solve this system of equations algebraically, start by subtracting the first two equations, eliminating Fcd.
-0.463 Fad + 0.811 Fbd = 0
0.811 Fbd = 0.463 Fad
Fbd = 0.571 Fad
Substitute into either of the first two equations:
-0.617 Fad + 0.487 (0.571 Fad) + 0.348 Fcd = 0
-0.617 Fad + 0.278 Fad + 0.348 Fcd = 0
-0.339 Fad + 0.348 Fcd = 0
0.348 Fcd = 0.339 Fad
Fcd = 0.975 Fad
Now substituting into the third equation:
60 kN − 0.772 Fad − 0.811 Fbd − 0.870 Fcd = 0
60 kN − 0.772 Fad − 0.811 (0.571 Fad) − 0.870 (0.975 Fad) = 0
60 kN − 0.772 Fad − 0.463 Fad − 0.849 Fad = 0
60 kN − 2.083 Fad = 0
Fad = 28.8 kN
Solving for the other two tension forces:
Fbd = 0.571 Fad = 16.4 kN
Fcd = 0.975 Fad = 28.1 kN
Answer:
Tensions of:
DA = 28.81 KN
DB = 16.45 KN
DC = 28.07 KN
Explanation:
see attached
hi guys!!! i have no more points, can someone nice guess all of these for me? :)
1.What happens to the ocean water before the precipitation part of the water cycle
2.During which stage of the water cycle does water from the ocean form clouds?
3.what is a runoff??
4.Which statement about oceans is incorrect? A.Evaporation occurs when water is warmed by the sun. B.Most evaporation and precipitation occur over the ocean. C.97 percent of Earth's water is fresh water from the ocean. D.Water leaves the ocean by the process of evaporation
5.How does most ocean water return to the ocean in the water cycle
tysm to u who answers :)
1. The ocean water collects back in the ocean.
2. Condensation is the process by which water vapor in the air is changed into liquid water. Condensation is crucial to the water cycle because it is responsible for the formation of clouds.
3. an excessive amount of water flowing from downslope along earths surface
4. A.Evaporation occurs when water is warmed by the sun.
5. The water returns into the ocean by the water cycle . It evaporates , then it condensates , then it participates ( Rains ) and then goes back into the ocean.
Hope this answer correct ✌️
Megan accelerates her skateboard from 0 m/s to 8 m/s in 2 seconds. What is the magnitude of the acceleration of the skateboard?
O 8 m/s^2
O 16 m/s^2
O 2 m/s^2
O 4 m/s^2
Answer:
chk picture for eqn
Explanation:
A bicyclist moves along a straight line with an initial velocity vo and slows downs. Which of the following the best describes the signs set for the initial position, initial velocity and the acceleration ?
The sign set after the slowdown of the bicycle will be positive for the position, negative for velocity, and negative for acceleration.
What is velocity?The rate at which an object's position changes when observed from a specific point of view and when measured against a specific unit of time is known as its velocity.
According to Que, when a bicyclist moves in a straight line and slows down, then the velocity decrease as displacement is decreasing, and the acceleration also decreases only displacement increases.
Therefore, the sign set for the position is +ve, for velocity it is -ve, and for acceleration also -ve
To know more about Velocity:
https://brainly.com/question/19979064
#SPJ1
A biker slows down after traveling in a long, straight line at initial velocity v0. Which of the following the best \sdescribes the signs set for the initial position, initial velocity and the acceleration? Initial position Initial velocity Acceleration
A. Positive Negative Negative
B. Positive Positive Negative
C. Negative Positive Negative
D. Negative Negative Positive
E. Negative Negative Negative
The main purpose of a written report may be to _____. A. revise a hypothesis B. summarize other scientists' results C. design a procedure for an experiment D. analyze data without drawing conclusions
PLZZZ HURRY TIMED MARK BRAINLIEST
Answer:
analyze data without drawing conclusions
Explanation:
Research reports are written in order to communicate clearly, information obtained primarily from research and analysis of data.
Typical reports of scientific research endeavours are written in such a way that they convey the research process succinctly without excessive extraneous information. A report is typically made up of; summary of the contents, introduction/ background, methods, results, discussion, conclusion and recommendations.
Hence a report does not really make inferences from the research findings.
A 25g rock is rolling at a speed of 5 m/s. What is the kinetic energy of the rock?
Answer:
The answer is 312.5j
Explanation:
The kinetic energy (KE):
KE=1/2*m*v^2
M= mass of the object
v= velocity of the object
We have;
m=25g
v=5m/s
KE=1/2*25g*5^2m/s
KE =312.5j
a 2.0 kg block slides on the horizontal, frictionless surface until it counters a spring force constant with
Complete question:
a 2.0 kg block slides on the horizontal, frictionless surface until it counters a spring with force constant of 955 N/m. The block comes to rest after compressing the spring a distance of 4.6 cm. Find the initial speed (in m/s) of the block.
Answer:
The initial speed of the block is 1.422 m/s
Explanation:
Given;
mass of the block, m = 2.0 kg
force constant of the spring, K = 955 N/m
compression of the spring, x = 4.6 cm = 0.046 m
Apply Hook's law to determine applied force on the spring;
F = Kx
F = (955 N/m)(0.046 m)
F = 43.93 N
Apply Newton's 2nd law to determine the magnitude of deceleration of the block when it encounters the spring;
F = ma
a = F / m
a = 43.93 / 2
a = 21.965 m/s²
Apply kinematic equation to determine the initial speed of the block;
v² = u² + 2ax
where;
v is the final speed of the block = 0
u is the initial speed of the block
x is the distance traveled by the block = compression of the spring
a is the block deceleration = -21.965 m/s²
0 = u² + 2(-21.965 )(0.046)
0 = u² - 2.021
u² = 2.021
u = √2.021
u = 1.422 m/s
Therefore, the initial speed of the block is 1.422 m/s
A linear accelerator can be used to accelerate which of the following?
Question 3 options:
protons and electrons
protons and neutrons
protons only
protons, electrons, and neutrons
Convert 76.2 kilometers to meters?
Answer
76200meters
Explanation:
we know that 1km=1000meters
to convert km into meters we we divide km by meters
=76.2/1000
=76200meters
You shine unpolarized light with intensity 52.0 W/m2 on an ideal polarizer, and then the light that emerges from this polarizer falls on a second ideal polarizer. The light that emerges from the second polarizer has intensity 15.0 W/m2. Find the intensity of the light that emerges from the first polarizer.
Answer:
The intensity of light from the first polarizer is [tex]I_1 = 26 W/m^2[/tex]
Explanation:
The intensity of the unpolarized light is [tex]I_o = 52.0 \ W/m^2[/tex]
Generally the intensity of light that emerges from the first polarized light is
[tex]I_1 = \frac{I_o}{2 }[/tex]
substituting values
[tex]I_1 = \frac{52. 0}{2 }[/tex]
[tex]I_1 = 26 W/m^2[/tex]
Which of the units of the following physical quantities are derived
Answer:
You have not provided options but so long as the option is none of these, it's the right answer:
Electric current, Thermodynamic temperature,mass,time amount of substance,length, luminous intensity
An electron has an initial velocity to the south but is observed to curve upward as the result of a magnetic field. This magnetic field must have a component:___________
a) north
b) upwards
c) downwards
d) east
e) west
Answer:
e) west
Explanation:
According to Lorentz left hand rule, the left hand is used to represent the motion of an electron in a magnetic field. Hold out the left hand with the fingers held out parallel to the palm, and the thumb held at right angle to the other fingers. If the thumb represents the motion of the electron though the field, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the particle.
In this case, if we point the thumb to the south (towards your body), with the palm facing up, then the fingers will point west.
A double-slit experiment is performed with light of wavelength 620 nm. The bright interference fringes are spaced 2.3 mm apart on the viewing screen. What will the fringe spacing be if the light is changed to a wavelength of 360 nm?
Answer:
1.34 mm
Explanation:
A double slit experiment is conducted with a light which has a wavelength of 620 nm
The fringes are separated 2.3 mm apart
The light is changed to a wavelength length of 360 nm
Let x represent the fringe spacing as a result of the change in wavelength
Therefore,the fringe spacing can be calculated as follows
2.3mm/x= 620nm/360nm
Multiply both sides
x × 620= 2.3×360
620x= 828
x= 828/620
x= 1.34 mm
The kinetic energy of an object with a mass of 6.8 kg and a velocity of 5.0 m/s is J. (Report the answer to two significant figures.)
Answer:
[tex] \boxed{\sf Kinetic \ energy \ (KE) = 85 \ J} [/tex]
Given:
Mass (m) = 6.8 kg
Speed (v) = 5.0 m/s
To Find:
Kinetic energy (KE)
Explanation:
Formula:
[tex] \boxed{ \bold{\sf KE = \frac{1}{2} m {v}^{2} }}[/tex]
Substituting values of m & v in the equation:
[tex] \sf \implies KE = \frac{1}{2} \times 6.8 \times {5}^{2} [/tex]
[tex] \sf \implies KE = \frac{1}{ \cancel{2}} \times \cancel{2} \times 3.4 \times 25 [/tex]
[tex] \sf \implies KE =3.4 \times 25 [/tex]
[tex] \sf \implies KE = 85 \: J[/tex]
The kinetic energy of the object reported to two significant figures is: 85 Joules.
Given the following data:
Mass = 6.8 kg Velocity = 5.0 m/s.To find the kinetic energy of the object:
Kinetic energy refers to an energy that is possessed by a physical object or body due to its motion.
Mathematically, kinetic energy is calculated by using the formula;
[tex]K.E = \frac{1}{2} MV^2[/tex]
Where:
K.E is the kinetic energy. M is the mass of an object. V is the velocity of an object.Substituting the parameters into the formula, we have;
[tex]K.E = \frac{1}{2}[/tex] × [tex]6.8[/tex] × [tex]5^2[/tex]
[tex]K.E = 3.4[/tex] × [tex]25[/tex]
Kinetic energy = 85 Joules.
Therefore, the kinetic energy of the object is 85 Joules.
Read more: https://brainly.com/question/23153766
Suppose you want a telescope that would allow you to see distinguishing features as small as 3.5 km on the Moon some 384,000 km away. Assume an average wavelength of 550 nm for the light received.Required:What is the minimum diameter mirror on a telescope?
Explanation:
[tex]\theta=1.22 \frac{\lambda}{D}[/tex]
And, from equation ( 2 ), we get
[tex]\theta=\frac{x}{d}[/tex]
Thus,
[tex]\frac{x}{d} &=1.22 \frac{\lambda}{D}[/tex]
[tex]D &=1.22 \frac{\lambda d}{x}[/tex]
[tex]=1.22 \frac{550 \times 10^{-9} 3.84 \times 10^{8}}{5 \times 10^{3}}[/tex]
[tex]=0.0515 \mathrm{m}[/tex]
Thus, the diameter of the telescope's mirror that would allow us to see details as small as is
1. Rank the transformers on the basis of their rms secondary voltage. Rank from largest to smallest.
Vp = 240 V; Np = 1000 turns; Ns = 2000 turns
Vp = 480 V; Np = 4000 turns; Ns = 2000 turns
Vp = 480 V; Np = 2000 turns; Ns = 1000 turns
Vp = 120 V; Np = 500 turns; Ns = 2000 turns
Vp = 240 V; Np = 1000 turns; Ns = 500 turns
2. 100 A of rms current is incident on the primary side of each transformer. Rank the transformers on the basis of their rms secondary current. Rank from largest to smallest.
Vp = 240 V; Np = 1000 turns; Ns = 2000 turns
Vp = 480 V; Np = 2000 turns; Ns = 1000 turns
Vp = 240 V; Np = 1000 turns; Ns = 500 turns
Vp = 120 V; Np = 500 turns; Ns = 2000 turns
Vp = 480 V; Np = 4000 turns; Ns = 2000 turns
Answer:
1. Transformer 3> Transformer 1 and 2 > Transformer 4
2. Transformer 2,3,5 > Transformer 1 > Transformer 4
Explanation:
From;
Vs/Vp = Ns/Np
Where;
Vp= voltage in primary coil
Vs= voltage in secondary coil
Ns= number of turns in secondary coil
Np= number of turns in primary coil.
Vs= Ns×Vp/Np
Vs= 480 ×2000/4000
Vs= 240 V
Vs= 480 ×1000/2000
Vs=240 V
Vs= 120 × 2000/500
Vs= 480 V
Vs= 240 × 500/1000
Vs= 120 V
2. Ns/Np= Ip/Is
Is= Np×Ip/Ns
Is= 1000 × 100/2000
Is= 50 A
Is= 2000 × 100/1000
Is= 200 A
Is= 1000 × 100/500
Is= 200 A
Is= 500 × 100/2000
Is= 25 A
Is= 4000 × 100/2000
Is= 200 A
In which example is kinetic friction most involved? a sled stuck on a snowy hill a bottle of water wedged in a vending machine an explorer unsuccessfully pushing on a massive stone that is blocking the entrance to a cave a volleyball player sliding across the court while diving for the ball
Answer:
I believe the answer is A volleyball player sliding across the court while diving for the ball.
Explanation:
Kinetic friction is a body moving on the surface experiences a force in the opposite direction of its movement.
Hope this helps! (づ ̄3 ̄)づ╭❤~
An organ pipe open at both ends has two successive harmonics with frequencies of 220 Hz and 240 Hz. What is the length of the pipe? The speed of sound is 343 m/s in air.
Answer:
The length is [tex]l = 8.6 \ m[/tex]
Explanation:
From the question we are told that
The frequencies of the two successive harmonics are [tex]f_1 = 220 \ Hz[/tex] , [tex]f_2 = 240 \ Hz[/tex]
The speed of sound in the air is [tex]v_s = 343 \ m/s[/tex]
Generally the frequency of a given harmonic is mathematically represented as
[tex]f_n = \frac{n v }{2l}[/tex]
Here n defines the position of the harmonics
Now since the position of both harmonic is not know but we know that they successive then we can represented them mathematically as
[tex]220 = \frac{n v}{2l}[/tex]
and
[tex]240 = \frac{(n+1) v}{2l}[/tex]
So
[tex]\frac{(n + 1 ) v}{2l} - \frac{n v}{2l} = 240-220[/tex]
=> [tex]\frac{v}{2l} = 20[/tex]
=> [tex]l = 8.6 \ m[/tex]
A mass is tired to spring and begins vibration periodically the distance between it's lowest position is 48cm what is the Amplitude of the vibration
Answer:
The amplitude of vibration of the spring is "24 cm"
The periodic vibrating body's motion follows a sinusoidal path. This sinusoidal path is illustrated in the attached picture.
From the picture, it can be clearly seen that the amplitude of the periodic vibration motion is the distance from its mean position to the highest point.
Since the distance of both the highest and the lowest points from the mean position is the same. Therefore, the distance between the lowest and the highest point must be equal to two times the amplitude of the wave.
Amplitude = 24 cm
calculate the rate of loss of heat through a glass window of area 200 CM square and thickness 0.5 CM where temperature inside is 35 degree Celsius and outside is -5 degree Celsius conductivity of Glass is 2.2 into 10 to the power 3 cal per s per cm per k .
Answer:
The inner and outer surfaces of a 0.5-cm thick 2-m by 2-m window glass in winter are 10°C and 3°C, respectively. If the thermal conductivity of the glass
Explanation:
Calcular la resistencia de una varilla de grafito de 170 cm de longitud y 60 mm2. Resistividad grafito 3,5 10-5 Ωm
Answer:
R = 0.992 Ω
Explanation:
En esta pregunta, dada la información que contiene, debemos calcular la resistencia de la varilla de grafito.
Matemáticamente,
Resistencia = (resistividad * longitud) / Área De la pregunta;
Resistividad = 3,5 * 10 ^ -5 Ωm
longitud = 170 cm = 1,7 m
Área = 60 mm ^ 2 = 60/1000000 = 6 * 10 ^ -5 m ^ 2
Conectando estos valores a la ecuación anterior, tenemos;
Resistencia = (3.5 * 10 ^ -5 * 1.7) / (6 * 10 ^ -5) =
(3.5 * 1.7) / 6 = 0.992 Ω
A sinusoidal electromagnetic wave is propagating in a vacuum in the +z-direction. If at a particular instant and at a certain point in space the electric field is in the +x-direction and has a magnitude of 4.00 V/m, what is the magnitude of the magnetic field of the wave at this same point in space and instant in time?
Answer:
B = 1.33 10⁻⁸ T , the magnetic field must be in the y + direction
Explanation:
In an electromagnetic wave the electric and magnetic fields are in phase
c = E / B
B = E / c
let's calculate
B = 4.00 / 3 10⁸
B = 1.33 10⁻⁸ T
To determine the direction we use that the electric and magnetic fields and the speed of the wave are perpendicular.
If the wave advances in the + Z direction and the electric field is in the + x direction, the magnetic field must be in the y + direction
A fish in an aquarium with flat sides looks out at a hungry cat. To the fish, does the distance to the cat appear to be less than the actual distance, the same as the actual distance, or more than the actual distance? Explain.
Answer:
p = -q
he distance is equal to the current distance, so the distance does not change
Explanation:
For this exercise we can solve it using the equation of the constructor
1 / f = 1 / p + 1 / q
where f is the focal length, p the distance to the object and q the distance to the image
For a flat surface the radius is at infinity, therefore 1 / f = 0, which implies
1 / p = - 1 / q
p = -q
Therefore the distance is equal to the current distance, so the distance does not change
When the atmosphere is not quite clear, one may sometimes see colored circles concentric with the Sun or the Moon. These are generally not more than a few diameters of the Sun or Moon and invariably the innermost ring is blue. The explanation for these phenomena involves:_________
A) reflection
B) refraction
C) interference
D) diffraction
E) Doppler effect
Answer:
D) diffraction
Explanation:
Corona is an optical phenomenon produced by the diffraction of sunlight or moonlight, as light moves through water droplets in the atmosphere.
This phenomenon produces one or more diffuse concentric rings of light around the Sun or Moon, usually seen as colored circles.
Therefore, the explanation for these phenomena of colored concentric circles, sometimes seen with the Sun or the Moon involves diffraction.
an electron travels at 0.3037 times the speed of light through a magnetic field and feels a force of 1.2498 pN. What is the magnetic field in teslas
Answer:
Explanation:
Charge on an electron (q) = 1.6 * 10 ^ -19 C
Velocity of electron (v) = 0.3037 * 300,000,000 = 91,110,000 m/sec
We know that, Force exerted on moving particle moving through a magnetic field :
[tex]F= q * v * B ( q,v\ and\ B\ are\ mutually\ perpendicular)[/tex]
1.2498 * 10 ^ -12 = 1.6 * 10^ -19 * 91110000 * B
B = 0.08573 T
A mass is hanging from the end of a horizontal bar that pivots around an axis through its center, but it is being held stationary. The bar is then released and begins to rotate. As the bar rotates from horizontal to vertical, the magnitude of the torque on the bar: ________
Answer:
The torque decreases because as the hanging mass goes down, the moment arm about the pivot point decreases. Since the torque is directly proportional to the length of the moment arm, torque decreases.
The torque decreases because as the hanging mass goes down, the moment arm about the pivot point decreases. Since the torque is directly proportional to the length of the moment arm, torque decreases.
What is the difference between atomic number and atomic mass ?Atomic number of an element is defined as total number of protons present in the nucleus, neutrons carry no net electrical charge, so it is the charge number of the nucleus.
atomic mass of an element can be defined as the atomic weight is measured total mass of an element’s atom, the total number of neutrons and protons in the nucleus of an atom.
Both Atomic mass and an atomic number of elements are closely related if atomic number is high, then the atomic mass is also said to be high.
For more details regarding fire mass , visit
brainly.com/question/16858932
#SPJ2
To celebrate a victory, a pitcher throws her glove straight upward with an initial speed of 5.0 m/s. How much time does it take for the glove to return to the pitcher
Answer:
The glove takes 1.02s to return to the pitchers hand.
Explanation:
Given;
initial velocity the pitcher's glove, u = 5 m/s
Apply kinematic equation
s = ut - ¹/₂gt²
where;
g is acceleration due to gravity = 9.8 m/s²
t is the time takes the glove to return to the pitchers hand
s is the displacement of the glove, which will be equal to zero when the glove returns to the pitchers hand. (s = 0)
0 = ut - ¹/₂gt²
ut = ¹/₂gt²
u = ¹/₂gt
gt = 2u
t = (2u) / g
t = (2 x 5) / 9.8
t = 1.02 s
Therefore, the glove takes 1.02s to return to the pitchers hand.
Describe the forces that act on a skydiver before
and after the parachute is opened.
I will give brainliest!!!!
Answer:
Before the parachute opens: Immediately on leaving the aircraft, the skydiver accelerates downwards due to the force of gravity. There is no air resistance acting in the upwards direction, and there is a resultant force acting downwards. The skydiver accelerates towards the ground.
Once the parachute is opened, the air resistance overwhelms the downward force of gravity. The net force and the acceleration on the falling skydiver is upward. An upward net force on a downward falling object would cause that object to slow down. The skydiver thus slows down.
I HOPE THIS WILL HELP YOU IF NOT THEN SORRYHAVE A GREAT DAY :)