A fluid in a fire hose with a 46.8 mm radius, has a velocity of 0.59 m/s. Solve for the power, hp, available in the jet at the nozzle attached at the end of the hose if its diameter is 28.65 mm. Express your answer in 4 decimal places.

Answers

Answer 1

Given data: Radius, r1 = 46.8 mmVelocity, v1 = 0.59 m/sDiameter, D2 = 28.65 mmPower available = ?Let's begin by calculating the velocity at the end of the hose (v2).From the continuity equation, we know that,A1v1 = A2v2Where A1 is the cross-sectional area of the hose where the fluid enters (pi * r1^2)A2 is the cross-sectional area of the nozzle at the end of the hose (pi * D2^2 / 4)Substituting the given values, we get,pi * r1^2 * v1 = pi * (D2^2 / 4) * v2v2 = (4 * r1^2 * v1) / D2^2v2 = (4 * (46.8 x 10^-3)^2 * 0.59) / (28.65 x 10^-3)^2v2 = 7.176 m/sNow, we can calculate the power available from the jet.P = (1/2) * rho * A2 * v2^3 * (1/746)where rho is the density of water and 1/746 is used to convert watts to horsepower (hp).Substituting the given values,P = (1/2) * 1000 * pi * (D2^2 / 4) * v2^3 * (1/746)P = (1/2) * 1000 * pi * (28.65 x 10^-3)^2 / 4 * (7.176)^3 * (1/746)P = 5.5867 hpRounding off to 4 decimal places,Power available in the jet = 5.5867 hp

Answer 2

Power is the rate at which work is done or energy is transferred or converted per unit of time. It is a measure of how quickly a physical system can perform work or deliver energy. Hence the power developed is 0.0301 hp.

radius (r₁) = 30.2mm = 30.2 × 10 3 m/s

velocity (v₁) = 0.48m/s

diameter (d) = 17.50 mm

so, r₂ = 17.50/2 = 8.75mm = 8-75×103 m/s

Now,

we have to apply mass conservation.

m₁ = m₂

Sa₁v₁ = Sa₂v₂

πr₁²v₁ = πr₂²v₂

78,2 11 = 722 v2

(30.2)² x 0.48 = (8.75)² v²

v₂ = 5.7179 m/s

Assume S = 1000 kg/m³]

power (P) = 1/2 mv₂²

=1/2 Sa₁v₁) v₁²

= 1/2×1000×π×r₁²v₁.v₁² w

=1/2ₓπₓ(30.2ₓ10⁻³)²ₓ0.48ₓ(5.7179)²kw

=0.02248268kw

so,

P = 0.02248268/ 0.746 = 0.0301 hp

{1hp=0.748Kw}

Hence power developed 0.0301 h.

To know more about velocity:

https://brainly.com/question/30559316

#SPJ4


Related Questions

our practical report must have an introduction where you will introduce your experiments topics and it need to be divided into 3 paragraphs,
1. Paragraph one, give a brieve definition of your topics 2. Paragraph two, give a brieve history on motor failure analyses and link it to todays applications and methods used in this day and age. 3. Paragraph three, introduce your work, (Name the paragraph the: AIM) by stating what is required from you on this assignment. [THIS IS A VERY IMPORTANT PARAGRAPH] [This paragraph and your conclusion must relate to each other]

Answers

When writing a practical report, you will need to have an introduction where you introduce your experimental topics and it should be divided into 3 paragraphs.

The following is an outline of how the introduction should be structured:

This paragraph should give a brief definition of your topics. Here, you should explain what your experimental topics are and why they are important. It is important to be clear and concise in this paragraph.  This paragraph should provide a brief history of motor failure analyses and link it to today's applications and methods used in this day and age.

Here, you should explain how motor failure analyses have evolved over time and how they are used today. You should also discuss the methods used in this day and age and how they are different from the methods used in the past. This paragraph should introduce your work and state what is required from you on this assignment. You should name the paragraph the AIM.

To know more about practical visit:

https://brainly.com/question/32439310

#SPJ11

Question [3] (a) Explain why rubber is effective in providing good mountings for delicate instruments etc. (6) (b) A delicate instrument with a mass of 1.2kg is mounted onto a vibrating plate using rubber mounts with a total stiffness of 3kN/m and a damping coefficient of 200Ns/m. (1) If the plate begins vibrating and the frequency is increased from zero to 650Hz. Sketch a graph of the amplitude of vibrations of the instrument versus the plate frequency highlighting any significant features. (5) (ii) Indicate on the graph what the effect of changing the rubber mounts with equivalent steel springs of similar stiffness would have on the response. (2) (c) Determine the maximum amplitude of vibrations of the instrument when the plate is vibrated with an amplitude of 10mm. (4) (d) Determine the maximum velocity and acceleration of the instrument (3) (e) Describe in detail 3 ways of reducing the amplitude of vibrations of the instrument (5)

Answers

Rubber is effective in providing good mountings for delicate instruments due to its unique properties, such as high elasticity, flexibility, and damping capabilities. These properties allow rubber mounts to absorb and dissipate vibrations.

(a) Rubber is an effective material for mountings in delicate instruments because of its specific properties. Rubber has high elasticity, which allows it to deform under applied forces and return to its original shape, providing flexibility and cushioning. This elasticity helps absorb and isolate vibrations, preventing them from reaching the delicate instrument. Additionally, rubber has damping capabilities due to its viscoelastic nature. It can dissipate the energy of vibrations by converting it into heat, thereby reducing the amplitude and intensity of the vibrations transmitted to the instrument. (b) When the plate begins vibrating and the frequency increases.

Learn more about dissipate vibrations here:

https://brainly.com/question/29148671

#SPJ11

In the instant lottery with 30°, winning tickets, if x is equal to the number of winning tickets among n = 8 that are purchased, then the probability of purchasing two winning tickets is a 0.2965 b 0.2936 c 0.1488 d None of the other options

Answers

The correct option is None of the other options. Instant lottery with 30°, winning tickets is considered to calculate the probability of purchasing two winning tickets. Here, the total winning tickets are given by 30° and x represents the number of winning tickets that are purchased from n = 8.

Now, we have to calculate the probability of purchasing two winning tickets. Probability of purchasing two winning tickets can be calculated as,

P (X = 2) = $\frac{\binom{x}{2}\binom{30 - x}{6}}{\binom{30}{8}}$Where, $\binom{x}{2}$ represents the number of ways of choosing 2 winning tickets from x winning tickets.$\binom{30 - x}{6}$

[tex]P (X = 2) = $\frac{\binom{x}{2}\binom{30 - x}{6}}{\binom{30}{8}}$$\implies P(X=2)=\frac{\binom{x}{2}\binom{30-x}{6}}{\binom{30}{8}}$$[/tex]

[tex]\implies P(X=2)=\frac{x(x-1)\binom{30-x}{6}}{\frac{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25 \cdot 24 \cdot 23}{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}}$$[/tex]

[tex]\implies P(X=2)=\frac{x(x-1)\cdot (30-x)(29-x)(28-x)(27-x)(26-x)(25-x)}{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25 \cdot 24 \cdot 23}$$\[/tex]

[tex]implies P(X=2)=\frac{x(x-1)(30-x)(29-x)(28-x)(27-x)(26-x)(25-x)}{(30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25)^2}$$[/tex]

[tex]\implies P(X=2)=\frac{6! \cdot x(x-1)(30-x)(29-x)(28-x)(27-x)(26-x)(25-x)}{(30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25)^2}$$[/tex]

[tex]\implies P(X=2)=\frac{6! \cdot x(x-1)(30-x)(29-x)(28-x)(27-x)(26-x)(25-x)}{30^8-30^7 \cdot x + 30^6 \cdot \binom{x}{2} - 30^5 \cdot \binom{x}{3} + 30^4 \cdot \binom{x}{4} - 30^3 \cdot \binom{x}{5} + 30^2 \cdot \binom{x}{6} - 30 \cdot \binom{x}{7} + \binom{x}{8}}$[/tex]

Now, substitute the given value of n = 8, and the total winning tickets are 30°, we have;

[tex]P (X = 2) = $\frac{\binom{8}{2}\binom{22}{6}}{\binom{30}{8}}$$\implies P(X=2)=\frac{\binom{8}{2}\binom{22}{6}}{\binom{30}{8}}$$[/tex]

[tex]\implies P(X=2)=\frac{28 \cdot 74613}{5852925}$$\implies P(X=2)=\frac{2090644}{5852925}$$\implies P(X=2) \approx 0.35691$[/tex]

Therefore, the probability of purchasing two winning tickets is 0.35691, which is not available in the given options.

To know more about probability visit:-

https://brainly.com/question/31828911

#SPJ11

A fuel consist of 87% carbon, 9% hydrogen, 1% sulphur, 1.5% oxygen and the remainder incombustibles. the actual air/fuel ratio is 18,5: 1.calculate mass of oxygen, theoretical mass of air required , mass of excess air , mass of excess air

Answers

1. Theoretical mass of air required is 9.484375 units

2. Actual air/fuel ratio is 0.0948

3. Mass of excess air is 18.4052

How to calculate the value

1. Theoretical mass of air required = Mass of carbon/12 + Mass of hydrogen/4 + Mass of sulphur/32 - Mass of oxygen/32

Theoretical mass of air required = (87/12) + (9/4) + (1/32) - (1.5/32)

Theoretical mass of air required = 7.25 + 2.25 + 0.03125 - 0.046875

Theoretical mass of air required = 9.484375 units

2 Actual air/fuel ratio = Theoretical mass of air required / Total fuel mass

Actual air/fuel ratio = 9.484375 / 100

Actual air/fuel ratio ≈ 0.0948

3 Mass of excess air = Actual air/fuel ratio - Stoichiometric air/fuel ratio (assuming stoichiometric ratio of 18.5)

Mass of excess air = 18.5 - 0.0948

Mass of excess air ≈ 18.4052

Learn more about mass on

https://brainly.com/question/86444

#SPJ4

2. Consider a silicon JFET having an n-channel region of donor concentration 1x10¹⁶ cm. (a) Determine the width of the n-channel region for a pinch-off voltage of 12 V. (b) What would the necessary drain voltage (VD) be if the gate voltage is -9 V? (c) Assume the width of the n-channel region to be 40 μm. If no gate voltage is applied, what is the minimum necessary drain voltage for pinch-off to occur? (d) Assume a rectangular n-channel of length 1 mm. What would be the magnitude of the electric field in the channel for case (c) above?

Answers

The electric field in the channel is 12,000 V/m.

a) Pinch off occurs when the VGS = Vp. for silicon JFETs, Vp = |2 |V for n-channel JFETs. The channel width can be determined with the equation W = Φ/Vp, where Φ is the donor concentration in the channel. W = 1x10¹⁶ cm³/V·s/12 V = 8.3×10¹⁴ cm.

b) To maintain pinch-off with VGS = -9 V, the drain voltage (VD) must be greater than or equal to -12 V.

c) For a given channel width, the minimum VD necessary for pinch-off to occur, is Vp or 12 V.

d) The electric field in the channel can be calculated with the equation E = VD/L, where L is the length of the channel. E = 12V/1mm = 12,000 V/m.

Therefore, the electric field in the channel is 12,000 V/m.

Learn more about the electric field here:

https://brainly.com/question/11482745.

#SPJ4

Find the root of the equation e⁻ˣ²−x³=0 using Newton-Raphson algorithm. Perform three iterations from the starting point x₀=1. (3 grading points). Estimate the error. (1 grading point). Solution of all problems MUST contain general formula and all intermediate results. Perform numerical computations using 4 digits after decimal point.

Answers

We also have to estimate the error and perform three iterations from the starting point x₀ = 1 using 4 digits after decimal point.1.

The general formula for Newton-Raphson Algorithm is given by:x1= x0-f(x0)/f'(x0)2. The equation is e⁻ˣ²−x³ = 0. Let us find the derivative of the equation, f(x) = e⁻ˣ²−x³ with respect to x. Using the chain rule, we get :f'(x) = (-2xe⁻ˣ²) - 3x²The equation becomes: f(x) = e⁻ˣ²−x³f'(x) = (-2xe⁻ˣ²) - 3x²3.

From the given starting point x₀ = 1, let us find x1 using the above formula.x1= x0-f(x0)/f'(x0)= 1 - (e⁻¹²-1)/(2e⁻¹²-3)= 0.9615Let us estimate the error. Error, E = |x₁ - x₀| = |0.9615 - 1| = 0.03854. Now, we can find x2 using the formula: x2 = x1 - f(x1)/f'(x1)= 0.9615 - (e⁻⁰.⁹²⁶⁷⁹⁷⁸⁴⁵⁶⁴⁸⁰⁸ - 0.9615)/(-0.0693)= 0.9425 Estimating the error, E = |x₂ - x₁| = |0.9425 - 0.9615| = 0.01905.

To know more about estimate visit:-

https://brainly.com/question/32645675

#SPJ11

A 40-mm thick AISI 1050 steel plate is sandwiched between two 2024-T3 aluminium plates with thickness of 20-mm and 30-mm. The plates are compressed with a bolt and nut with no washers. The bolt is M14 X 2, property class 4.8. (a) Determine a suitable length for the bolt, rounded up to the nearest 5 mm. (b) Determine the bolt stiffness. (e) Determine the stiffness of the members.

Answers

A. The suitable length of bolt is 240 mm (rounded up to nearest 5 mm).

B.  Stiffness of AISI 1050 steel plate (k1) = 1313.8 N/mm

Stiffness of 1st 2024-T3 aluminium plate (k2) = 287.5 N/mm

Stiffness of 2nd 2024-T3 aluminium plate (k3) = 664.1 N/mm

(a) Suitable length of bolt: For calculating the suitable length of bolt, the thickness of the 2024-T3 aluminium plates, thickness of AISI 1050 steel plate, thickness of nut and threaded length of bolt must be considered.

Based on the given dimensions:

Thickness of AISI 1050 steel plate (t1) = 40 mmThickness of 1st 2024-T3 aluminium plate (t2)

= 20 mm Thickness of 2nd 2024-T3 aluminium plate (t3)

= 30 mm Threaded length of bolt (l)

= l1 + l2Threaded length of bolt (l)

= 2 × (t1 + t2 + t3) + 6 mm (extra for nut)l

= 2(40 + 20 + 30) + 6

= 232 mm

The suitable length of bolt is 240 mm (rounded up to nearest 5 mm).

(b) Bolt stiffness: Bolt stiffness (kb) can be calculated by the following formula: kb=π × d × d × Eb /4 × l

where,d = bolt diameter

Eb = modulus of elasticity of the bolt material

l = length of the bolt

The diameter of the bolt

(d) is 14 mm. Modulus of elasticity of the bolt material (Eb) is given as 200 kN/mm².

Substituting the given values in the formula:

kb= 3.14 × 14 × 14 × 200 / 4 × 240 = 1908.08 N/mm(e)

Stiffness of members:

The stiffness (k) of a member can be calculated by the following formula :k = π × E × I / L³

where,E = modulus of elasticity of the material of the member

I = moment of inertia of the cross-sectional area of the member

L = length of the member

For AISI 1050 steel plate:

E = 200 kN/mm²t = 40 mm

Width of plate = b = 1 m

Moment of inertia of the plate can be calculated using the formula:

I = (b × t³) / 12I

= (1000 × 40³) / 12

= 6.67 × 10^7 mm^4

Stiffness of the AISI 1050 steel plate can be calculated as:

k1 = 3.14 × 200 × 6.67 × 10^7 / (1000 × 1000 × 1000 × 1000)

= 1313.8 N/mm

For 1st 2024-T3 aluminium plate:

E = 73.1 kN/mm²

t = 20 mm

Width of plate = b = 1 m

Moment of inertia of the plate can be calculated using the formula:

I = (b × t³) / 12I = (1000 × 20³) / 12

= 1.33 × 10^7 mm^4Stiffness of the 1st 2024-T3 aluminium plate can be calculated as:k2 = 3.14 × 73.1 × 1.33 × 10^7 / (1000 × 1000 × 1000 × 1000) = 287.5 N/mm

For 2nd 2024-T3 aluminium plate:

E = 73.1 kN/mm²

t = 30 mm

Width of plate = b = 1 m

Moment of inertia of the plate can be calculated using the formula:

I = (b × t³) / 12I = (1000 × 30³) / 12

= 2.25 × 10^7 mm^4

Stiffness of the 2nd 2024-T3 aluminium plate can be calculated as:

k3 = 3.14 × 73.1 × 2.25 × 10^7 / (1000 × 1000 × 1000 × 1000)

= 664.1 N/mm

Therefore, Stiffness of AISI 1050 steel plate (k1) = 1313.8 N/mm

Stiffness of 1st 2024-T3 aluminium plate (k2) = 287.5 N/mm

Stiffness of 2nd 2024-T3 aluminium plate (k3) = 664.1 N/mm

To know more about suitable length, Visit :

https://brainly.com/question/4059783

#SPJ11

An ideal Otto engine with an air compression ratio of 9 starts
with an air pressure of 90kpa and a temperature of 25 C. what is
the temperature after compression?

Answers

the temperature after compression is 2682 K. In an ideal Otto engine with an air compression ratio of 9 starts with an air pressure of 90kpa and a temperature of 25 C,

the temperature after compression can be determined using the ideal gas law. The ideal gas law is given as;PV=nRTWhere P is the pressure, V is the volume, n is the number of moles of the gas, R is the gas constant, and T is the temperature.In the problem above, we are interested in finding the final temperature (T2) after compression given initial conditions of pressure (P1)

temperature (T1) which are; P1 = 90 kPa and T1 = 25 °C = 298 K respectively. The air compression ratio is given as; r = 9. Therefore, the volume at the end of compression (V2) will be 1/9th of the initial volume (V1) that is;V2 = V1 / 9.From the ideal gas law, we have;P1V1 / T1 = P2V2 / T2Where;P2 = P1rV2 = V1/9Substituting the values gives;P1V1 / T1 = P1rV1 / 9T2 = T1r9T2 = 298 K x 9T2 = 2682 KT

To know more about temperature  visit :-

https://brainly.com/question/14532989

#SPJ11

The speed of a particle traveling along a straight line within a liquid is measured as a function of its position as v = (130 s) mm/s, where s is in millimeters. Part A Determine the particle's deceleration when it is located at point A, where SA = 90 mm. Express your answer to three significant figures and include the appropriate units. a = -40.0 mm/s²

Answers

To determine the particle's deceleration when it is located at point A, we need to differentiate the velocity function with respect to time. Given that the velocity function is v = (130 s) mm/s, where s is in millimeters:

v = 130s

To find the deceleration, we differentiate the velocity function with respect to time (s):

a = dv/dt = d(130s)/dt

Since the particle is traveling along a straight line within a liquid, we can assume that its velocity is a function of time only.

Differentiating the velocity function, we get:

a = 130 ds/dt

To find the deceleration at point A, where SA = 90 mm, we substitute the position value into the equation:

a = 130 d(90)/dt

Since the position is not given as a function of time, we assume that it is constant at SA = 90 mm.

Therefore, the deceleration at point A is:

a = 130 * 0 = 0 mm/s²

The deceleration at point A is 0 mm/s².

Learn more about velocity here

https://brainly.com/question/30505958

#SPJ11

A 0.02 m³ tank contains 1.6 kg of argon gas at a temperature of 120 K. Using the van de Waal's equation, what is the pressure inside the tank? Express your answer in kPa.

Answers

The pressure inside the tank is approximately 909.12 kPa using the van der Waals equation.

To determine the pressure inside the tank using the van der Waals equation, we need to consider the van der Waals constants for argon:

a = 1.3553 N²/m⁴

b = 0.0320 m³/kg

The van der Waals equation is given by:

P = (R * T) / (V - b) - (a * n²) / (V²)

where:

P is the pressure

R is the gas constant (8.314 J/(mol·K))

T is the temperature

V is the volume

n is the number of moles of the gas

First, we need to determine the number of moles of argon gas in the tank. We can use the ideal gas law:

PV = nRT

Rearranging the equation, we have:

n = PV / RT

Given:

V = 0.02 m³

m (mass) = 1.6 kg

M (molar mass of argon) = 39.95 g/mol

T = 120 K

Converting the mass of argon to moles:

n = (m / M) = (1.6 kg / 0.03995 kg/mol) = 40.10 mol

Now we can substitute the values into the van der Waals equation:

P = (R * T) / (V - b) - (a * n²) / (V²)

P = (8.314 J/(mol·K) * 120 K) / (0.02 m³ - 0.0320 m³/kg * 1.6 kg) - (1.3553 N²/m⁴ * (40.10 mol)²) / (0.02 m³)²

Calculating the pressure:

P ≈ 909.12 kPa

Therefore, the pressure inside the tank is approximately 909.12 kPa.

To know more about pressure, visit

https://brainly.com/question/30902944

#SPJ11

Find the production cost per 1000 kg steam in a steam plant when the evaporation rate is
7.2 kg steam per kg coal; initial cost of plant, $150,000; annual operational cost exclusive
of coal, $15,000. Assume life of 20 years; no final value; interest on borrowed capital, 4%;
on sinking fund, 3%. Average steam production is 14,500 kg per hr; cost of coal, $8.00 per
ton.

Answers

The production cost per 1000 kg steam in a steam plant when the evaporation rate is 7.2 kg steam per kg coal is $18.03. This is obtained as follows;

Step-by-step explanation:

The steam produced from the combustion of coal in a steam plant can be evaluated by first finding the amount of steam generated per kg of coal burned. This is called the evaporation rate.The evaporation rate is given as 7.2 kg steam per kg coal.The cost of coal is given as $8.00 per ton.The steam plant has an average steam production of 14,500 kg per hr.Annual operational cost exclusive of coal is $15,000.The initial cost of plant is $150,000.The life of the steam plant is 20 years.

The interest on borrowed capital is 4% while the interest on the sinking fund is 3%.To find the cost of steam production per 1000 kg, the following calculations are made;

Total amount of steam produced in one year = 14,500 * 24 * 365 = 126,540,000 kg

Annual coal consumption = 126,540,000 / 7.2 = 17,541,666.67 kg

Total cost of coal in one year = (17,541,666.67 / 1000) * $8.00 = $140,333.33

Total cost of operation per year = $140,333.33 + $15,000 = $155,333.33

Annual equivalent charge = AEC = 1 + i/n - 1/(1+i/n)^n*t

Where i = interest n = number of years for which the sum is invest

dt = total life of the investment AEC = 1 + 0.04/1 - 1/(1+0.04/1)^(1*20) = 1.7487

Annual equivalent disbursement = AED = S / a

Where S = initial cost of plant + sum of annual cost (AEC) for n y

earsa = annuity factor obtained from the tables

.AED = $150,000 / 3.8879 = $38,595.69

Annual sinking fund = AS = AED * i / (1 - 1/(1+i/n)^n*t)AS = $38,595.69 * 0.03 / (1 - 1/(1+0.03/1)^(1*20)) = $1,596.51

Total annual cost of the steam plant

= $155,333.33 + $1,596.51

= $156,929.84

Cost of steam production per 1000 kg = 1000 / (126,540,000 / 14,500) * $156,929.84 = $18.03Therefore, the cost of steam production per 1000 kg is $18.03.

To know more about evaporation visit :

https://brainly.com/question/28319650

#SPJ11

Steam is the working fluid in an ideal Rankine cycle. Saturated vapour enters the turbine at 10 MPa and saturated liquid exits the condenser at 0.01 MPa. The net power output is 100 MW. Determine the mass flow rate of steam. Enter your answers in kg/s.

Answers

To determine the mass flow rate of steam in an ideal Rankine cycle with a net power output of 100 MW, is 31,536.8 kg/s

m = P / (h1 - h2)

Where m is the mass flow rate of steam, P is the net power output, and h1 and h2 are the specific enthalpies of the steam at the input of the turbine and the exit of the condenser, respectively.

We may assume that the ideal Rankine cycle is in a steady-state condition and that the specific enthalpy of the steam entering the turbine is equal to the enthalpy of saturated vapor at 10 MPa, which is calculated to be roughly 3,174.9 kJ/kg using a steam table.

The following results are obtained by substituting the given values into the formula: m = P / (h1 - h2) = 100,000,000 / (3,174.9 - 41.9) = 31,536.8 kg/s.

Learn more about on mass flow, here:

https://brainly.com/question/30763861

#SPJ4

A 12 1/8 inch hole is drilled 2,652 feet into the earth. Casing that has a 9 3/4 inch outside diameter is run to the bottom of the hole. 62 barrels of a spacer fluid is pumped down the casing and up the space between the casing and the hole. If each joint of casing is 30 feet long. How far out of the drilled hole will the casing be when it is resting on the bottom of the hole? a 89 b 2634 c 30 d 18

Answers

To determine the distance out of the drilled hole the casing will be when it is resting on the bottom of the hole.

Let's begin by identifying the given values before making use of the casing movement calculation. Provided values are:Hole diameter: 12 1/8 inchDistance drilled: 2,652 feetCasing diameter: 9 3/4 inchNumber of barrels of a spacer fluid pumped down the casing: 62Length of each joint of casing: 30 feet Calculation of the casing movementThe first thing to do is to determine the total length of the casing to be run from the surface to the bottom of the drilled hole. The casing will be run in sections of 30 feet length, so the total length of the casing to be run is the quotient of the distance drilled and the length of each joint of casing.

So:Total length of casing = Distance drilled / Length of each joint of casing = 2,652 feet / 30 feet = 88.4 ≈ 89 joints of casingNext, to calculate the length of the space between the casing and the hole, we subtract the diameter of the casing from the diameter of the hole and divide by 2. Then multiply by the number of joints of casing run to the bottom of the hole, and multiply again by 12 to convert feet to inches.So: Length of space between casing and hole = [(12 1/8 inch - 9 3/4 inch) / 2] × 89 × 12= (2 3/8 inch / 2) × 89 × 12= 2.375 × 89 × 12= 2,652 ≈ 2634 inch

Finally, to calculate the distance out of the drilled hole the casing will be when it is resting on the bottom of the hole, we subtract the length of the space between the casing and the hole from the distance drilled. So: Distance out of the drilled hole = Distance drilled - Length of space between casing and hole= 2,652 feet - (2634 inch / 12)= 2,652 feet - 219.5 feet= 2,432.5 feetTherefore, the distance out of the drilled hole the casing will be when it is resting on the bottom of the hole is approximately 2,432.5 feet, which is option C.

To know more about drilled hole visit:

brainly.com/question/31140236

#SPJ11

When torsion subjected to long shaft, we can noticeable elastic twist. Equilibrium of a body requires both a balance of forces and balance of moments. Thermal stress is a change in temperature can cause a body to change its dimensions. Beams are classified to four types. If the beam is supported at only one end and in such a manner that the axis of the beam cannot rotate at that point. 1-:-A

Answers

Thermal stress is the stress that develops in a body due to a change in temperature, causing it to change its dimensions.

Given:When torsion subjected to long shaft, we can noticeable elastic twist. Equilibrium of a body requires both a balance of forces and balance of moments. Thermal stress is a change in temperature can cause a body to change its dimensions. Beams are classified to four types. If the beam is supported at only one end and in such a manner that the axis of the beam cannot rotate at that point.To classify the beams to four types, there are different criteria such as;1. based on supports or boundary conditions.

2. based on geometry and shape3. based on loading1. Based on supports or boundary conditions:a) Simply supported beamb) Cantilever beanc) Overhanging beamd) Fixed beam2. Based on geometry and shape:a) Rectangular beamb) T-section beamc) I-section beamd) Circular section beam3. Based on loading:a) Concentrated or point loadb) Uniformly distributed loadc) Uniformly varying loadd) Combination of the above loads.

4. Based on material properties:a) Homogeneous beamb) Composite beamc) Reinforced concrete beamd) Steel beamIf the beam is supported at only one end and in such a manner that the axis of the beam cannot rotate at that point, it is known as a cantilever beam.Torsion subjected to long shaftIf a long shaft is subjected to torsion, the torque causes a twisting effect to be induced along the axis of the shaft. The angle of twist is proportional to the torque and length of the shaft and is inversely proportional to the fourth power of the shaft radius. For torsion to be elastic, it is required that the value of the applied torque should be less than the torsional yield strength of the material.

Equilibrium of a body Equilibrium of a body is a state of balance in which no net force or net torque is acting. It requires both a balance of forces and balance of moments

Thermal stress is the stress that develops in a body due to a change in temperature, causing it to change its dimensions. It occurs when a temperature gradient exists within a body and is a result of the differential expansion or contraction of the material.

To know more about stress  visit

https://brainly.com/question/33140251

#SPJ11

4. The following is the pattern of x-rays emitted according to the x-ray tube voltage when the Mo target is used.
1. Why do continuous x-rays occur?
2.Why does the swl move to the left as the tube voltage increases?
3. Why the x-ray intensity increases as the tube voltage increases
4.Why is the x-ray emitted not symmetric?

Answers

1. Continuous x-rays occur when a high energy electron strikes a metal atom in the target, causing the innermost electrons of the atom to be removed from their orbits. This process leaves an electronic vacancy in the inner shell, which can be filled by an electron from an outer shell. When an outer shell electron fills the inner shell vacancy, it releases energy in the form of an x-ray. However, because each electron shell has a different binding energy, the energy of the released x-ray varies.

2. The swl (short wavelength limit) moves to the left as the tube voltage increases because the x-ray energy and wavelength are inversely proportional. When the tube voltage increases, the energy of the emitted x-rays also increases, and the wavelength decreases. the swl shifts to the left on the graph as the tube voltage increases.

3. The x-ray intensity increases as the tube voltage increases because higher tube voltage results in more electron acceleration, which generates more x-rays. When the tube voltage is increased, more electrons are accelerated across the anode, resulting in more x-rays produced and higher x-ray intensity.

4. The x-ray emitted is not symmetric because of the characteristic x-rays and bremsstrahlung x-rays. Characteristic x-rays occur when an electron drops down to fill an inner shell vacancy, releasing energy in the form of an x-ray. The energy of characteristic x-rays is fixed because the energy difference between the two shells is fixed. Bremsstrahlung x-rays, on the other hand, are emitted when an electron is deflected by the positive charge of the nucleus.

The energy of bremsstrahlung x-rays can vary depending on the extent of electron deflection, resulting in a continuous spectrum of x-ray energies. This combination of characteristic and bremsstrahlung x-rays results in a non-symmetric distribution of x-ray energy.

To know about electron visit:

https://brainly.com/question/12001116

#SPJ11

Question 1: Answer all questions Write any two important difference between friction wheel and gear. [1 mark] Question 2: Write a short note on gear drives giving their merits and demerits. 11.5 marks

Answers

Wheel and Gear Friction Wheel and Gear both are used to transmit power. Friction wheel is a simple device that is commonly used in low power applications. It is also known as a belt drive and can be found in home appliances such as washing machines, mixers, etc.

Friction wheels work by using the friction between the wheel and the belt to transmit power. On the other hand, gear drives are more commonly used in high power applications. Gears can be found in cars, trains, wind turbines, and many other machines. They transmit power by meshing together and transferring torque. Two important differences between Friction Wheel and Gear are: Friction wheels are easy to maintain while gears require more maintenance. Friction wheels are less expensive than gears.

Merits of Gear Drives:High efficiency: Gear drives have high efficiency as compared to other drives like belt drives.No slippage: Gear drives have no slippage, making them suitable for high power transmission and critical applications.Long life: Gear drives have a longer life than belt drives as they are made of metal. Hence they are more reliable and can be used for a longer duration of time. Smooth operation: Gear drives provide smooth operation as they don't slip and produce less noise.

To know more about transmit visit:

https://brainly.com/question/32340264

#SPJ11

Square loop with sides a and wire radius b: LA = 2μo a/π=[In (a/b) - 0.774]

Answers

A square loop with sides a and wire radius b: LA = 2μo a/π=[In (a/b) - 0.774]The given equation states that the inductance of a square loop of sides a and wire radius b can be determined as LA = 2μo a/π=[In (a/b) - 0.774].

Here, 'a' and 'b' represent the sides and the wire radius of the square loop respectively. LA represents the inductance of the square loop.The above formula can be used to calculate the inductance of a square loop. We can use this formula to find the value of the inductance of a square loop of given dimensions.Let's understand the concept of inductance before diving into the calculation of the formula.What is Inductance?Inductance is defined as the ability of a component to store energy in a magnetic field

.Inductance is the resistance of an electrical conductor to a change in the flow of electric current. It is the property of a conductor that opposes any change in the current flowing through it. The larger the inductance of a conductor, the more energy it can store in a magnetic field created by an electric current flowing through it.The inductance of a square loop of sides 'a' and wire radius 'b' can be determined using the given formula LA = 2μo a/π=[In (a/b) - 0.774].

To know more about radius visit:

https://brainly.com/question/13449316

#SPJ11

A velocity compounded impulse turbine has two rows of moving blades with a row of fixed blades between them. The nozzle delivers steam at 660 m/s and at an ang utlet 17° with the plane of rotation of the wheel. The first row of moving blades has an outlet angle of 18° and the second row has an outlet angle of 36°. The row of fixed blades has an outlet angle of 22°. The mean radius of the blade wheel is 155 mm and it rotates at 4 000 r/min. The steam flow rate is 80 kg/min and its velocity is reduced by 10% over all the blades.
Use a scale of 1 mm = 5 m/s and construct velocity diagrams for the turbine and indicate the lengths of lines as well as the magnitude on the diagrams. Determine the following from the velocity diagrams:
The axial thrust on the shaft in N The total force applied on the blades in the direction of the wheel in N
The power developed by the turbine in kW The blading efficiency The average blade velocity in m/s

Answers

The axial thrust on the shaft is 286.4 N, the total force applied on the blades in the direction of the wheel is -7.874 N, the power developed by the turbine is 541.23 kW, the blading efficiency is 84.5%, and the average blade velocity is 673.08 m/s.

Velocity of steam at nozzle outlet, V1 = 660 m/s

Angle of outlet of steam from the nozzle, α1 = 17°

Blades outlet angle of first moving row of turbine, β2 = 18°

Blades outlet angle of second moving row of turbine, β2 = 36°

Blades outlet angle of the row of fixed blades, βf = 22°

Mean radius of the blade wheel, r = 155 mm = 0.155 m

Rotational speed of the blade wheel, N = 4000 rpm

Steam flow rate, m = 80 kg/min

Reduction in steam velocity over all the blades, i.e., (V1 − V2)/V1 = 10% = 0.1

Scale used, 1 mm = 5 m/s (for drawing velocity diagrams)

The length of the blade in the first and second rows of the turbine blades can be determined using the velocity diagram.

Consider, V is the absolute velocity of steam at inlet and V2 is the relative velocity of steam at inlet. Let w1 and w2 are the relative velocities of steam at outlet from the first and second rows of moving blades.

Hence, using the law of cosines, we get

V2² = w1² + V1² – 2w1V1 cos (α1 – β1)

For the first row of blades, β1 = 18°V2² = w1² + 660² – 2 × 660w1 cos (17° – 18°)

w1 = 680.62 m/s

The length of the velocity diagram is proportional to w1, i.e., 680.62/5 = 136.124 mm

Similarly, for the second row of moving blades, β1 = 36°V2² = w2² + 660² – 2 × 660w2 cos (17° – 36°)

w2 = 690.99 m/s

The length of the velocity diagram is proportional to w2, i.e., 690.99/5 = 138.198 mm

Let w1′ and w2′ be the relative velocities of steam at outlet from the first and second rows of blades, respectively.Using the law of cosines, we get

V2² = w1′² + V1² – 2w1′V1 cos (α1 – βf)

For the row of fixed blades, β1 = 22°

V2² = w1′² + 660² – 2 × 660w1′ cos (17° – 22°)

w1′ = 695.32 m/s

The length of the velocity diagram is proportional to w1′, i.e., 695.32/5 = 139.064 mm

The axial thrust on the shaft is given by difference between axial forces acting on the first and second moving row of blades.

Hence,Total axial thrust on the shaft = (m × (w1 sin β1 + w2 sin β2)) − (m × w1′ sin βf) = (80/60) × (680.62 sin 18° + 690.99 sin 36°) – (80/60) × 695.32 sin 22° = 286.4 N

The tangential force acting on each blade can be given by,f = (m (w1 − w1′)) / N

Length of the blade wheel = 2πr = 2 × 3.14 × 0.155 = 0.973 m

Total tangential force on the blade = f × length of blade wheel = ((80/60) × (680.62 − 695.32)) / 4000 × 0.973 = −7.874 N (negative sign implies the direction of force is opposite to the direction of wheel rotation)

Power developed by the turbine can be given by,P = m(w1V1 − w2V2) / 1000 = 80 × (680.62 × 660 − 690.99 × 656.05) / 1000 = 541.23 kW

The blade efficiency can be given by,ηb = (actual work done / work done if steam is entirely used in nozzle) = ((w1V1 − w2V2) / (w1V1 − V2)) = 84.5%

The average blade velocity can be determined by,πDN = 2πNr

Average blade velocity = Vavg = (2w1 + V1)/3 = (2 × 680.62 + 660)/3 = 673.08 m/s

Learn more about velocity at

https://brainly.com/question/33293748

#SPJ11

A tank with an inlet and an outlet initially contains 200 gal of water in which 40 lb of salt are dissolved. Then five gal of brine, each containing 10 lb of dissolved salt, run into the tank per minute through the inlet, and the mixture, kept uniform by stirring, runs out of the tank through the outlet at the same rate. (a) Find the amount of salt y(t) in the tank at any time t. (b) Find the limit of the salt in the tank.

Answers

The amount of salt in the tank at any time t is y(t) = 2000 - 50 e^(-t/40), the limit of the salt in the tank is 2000 pounds.

(a) The amount of salt y(t) in the tank at any time t:Initially, the tank contains 200 gallons of water with 40 pounds of salt. As brine is entering at a rate of 5 gallons per minute, then the amount of salt in this brine is 10 pounds per gallon. Let x(t) denote the number of gallons of brine that has entered the tank. Then, at any time t, the amount of salt in the tank is y(t).Thus, the differential equation of the amount of salt in the tank over time can be derived as:dy/dt = (10 lb/gal)(5 gal/min) - y/200 (5 gal/min)dy/dt = 50 - y/40

Rearranging the differential equation: dy/dt + y/40 = 50. The integrating factor is: e^(∫1/40dt) = e^(t/40)Multiplying both sides by the integrating factor: e^(t/40) dy/dt + (1/40) e^(t/40) y = (50/1) e^(t/40)Simplifying the left-hand side: (e^(t/40) y)' = (50/1) e^(t/40)Integrating both sides: e^(t/40) y = (50/1) ∫e^(t/40)dt + C, where C is the constant of integration.Rewriting the equation: y = 2000 - 50 e^(-t/40)

(b) The limit of the salt in the tank:The limit of y(t) as t approaches infinity can be found by taking the limit as t approaches infinity of the expression 2000 - 50 e^(-t/40).As e^(-t/40) approaches 0 as t approaches infinity, the limit of y(t) is 2000.

To know more about stirring visit :

https://brainly.com/question/31406450

#SPJ11

Course: Power Generation and Control
Please ASAP I will like and rate your work.
if we impose a transmission line limit of 500 MW on line 1-3, a new constraint should be added as 500 MW = (Base Power)*(01-03)/X13- Select one: O True O False

Answers

A new constraint should be added as 500 MW = (Base Power)*(01-03)/X13 when a transmission line limit of 500 MW is imposed on line 1-3.

A transmission line limit is the maximum amount of power that can be transmitted through a transmission line. The transmission line's capacity is determined by the line's physical attributes, such as length, voltage, and current carrying capacity.

Transmission lines are the backbone of the electrical grid, allowing electricity to be transported over long distances from power plants to where it is required. The transmission line limits must be properly managed to prevent overloading and blackouts.

To know more about constraint visit:

https://brainly.com/question/17156848

#SPJ11

Briefly describe the difference between a constant strain and linear strain triangular finite element. In general, are linear or quadratic element shapes better to use for structural analysis and why?

Answers

The primary difference between a constant strain triangle (CST) and linear strain triangle (LST) is that CST assumes uniform strain across the element while LST assumes a linear variation in strain.

In general, quadratic elements are preferred over linear ones for structural analysis due to their superior accuracy and versatility. Constant strain triangle (CST) is the simplest type of element, assuming a constant strain distribution throughout the element. This leads to less accurate results in complex problems. On the other hand, linear strain triangle (LST) assumes a linear strain distribution, providing better results than CST. Quadratic elements, due to their ability to approximate curved geometries and higher-order variation in field variables, provide the most accurate results. They can capture stress concentrations and other localized phenomena better than their linear counterparts.

Learn more about finite element analysis here:

https://brainly.com/question/13088387

#SPJ11

Air with mass of 12 kg expands polytropically (n=1.50) in a closed system from 720 °C to 20 °C. Calculate in MJ both the work and the heat exchanged with the surroundings

Answers

By applying these calculations with the given values, we can determine both the work and the heat exchanged in megajoules during the polytropic expansion of air.

To calculate the work and heat exchanged during the polytropic expansion of air, we can use the first law of thermodynamics. The first law states that the change in internal energy (ΔU) of a system is equal to the heat (Q) added to the system minus the work (W) done by the system:

ΔU = Q - W

In this case, we need to calculate the work done and the heat exchanged. The work done during the polytropic expansion can be expressed as:

W = ∫ P1V1 to P2V2 P dV / (1 - n)

Where P1 and P2 are the initial and final pressures, V1 and V2 are the initial and final volumes, n is the polytropic index (given as 1.50), and P is the pressure at any given point during the expansion.

To calculate the heat exchanged, we can use the relationship:

Q = ΔU + W

Given the initial and final temperatures, we can calculate the change in internal energy using the specific heat capacity of air at constant volume (Cv). The change in internal energy can be calculated as:

ΔU = m * Cv * (T2 - T1)

Where m is the mass of air.

Once we have ΔU, we can calculate the heat exchanged (Q) using the equation Q = ΔU + W.

Finally, we convert the work and heat from Joules to megajoules by dividing the results by 1,000,000.

To know more about polytropic visit

https://brainly.com/question/33284577

#SPJ11

A 0.02 m³ tank contains 1.6 kg of argon gas at a temperature of 110 K. Using the van de Waal's equation, what is the pressure inside the tank? Express your answer in kPa.

Answers

The pressure inside the tank is approximately 28.63 kPa by using van der Waal's equation.

The van der Waals equation for a real gas is given by:

(P + a(n/V)²)(V - nb) = nRT

Where:

P is the pressure

V is the volume

n is the number of moles of gas

R is the ideal gas constant

T is the temperature

a and b are the van der Waals constants specific to the gas

First, we need to determine the number of moles (n) of argon gas. We can use the ideal gas equation to do this:

PV = nRT

Rearranging the equation, we have:

n = PV / RT

Given:

V = 0.02 m³

T = 110 K

m (mass of argon) = 1.6 kg

molar mass of argon = 39.95 g/mol

First, we convert the mass of argon to moles:

n = (1.6 kg / 39.95 g/mol)

Now, we can substitute the values into the van der Waals equation to calculate the pressure (P):

(P + a(n/V)²)(V - nb) = nRT

To solve for P, we rearrange the equation:

P = (nRT / (V - nb)) - (a(n/V)²)

Substituting the values, we get:

P = [(1.6 kg / 39.95 g/mol) * (8.314 J/(molK)) * (110 K)] / (0.02 m³ - 0.0266 m³/mol * (1.6 kg / 39.95 g/mol)) - (1.355 Jm³/(mol²))

Calculating this expression gives us:

P ≈ 28627.89 Pa

Converting Pa to kPa:

P ≈ 28.63 kPa

To know more about pressure visit

https://brainly.com/question/30638002

#SPJ11

60. A V. in. round steel shaft Innsmit. hp at 1.750 rpm while being subjected to an mal force of 100 lbs. What is the revuliant compressive stresse? A 905 4 psa €405.9 psi B. 909 4 psi 990.4 psi

Answers

The resilient compressive stress, given the round shaft, is A. 905.4 pounds per square inch or psi.

How to find the resilient compressive stress ?

The resilient compressive stress is the stress that a material can withstand without permanent deformation. In this case, the shaft is made of steel, which has a resilient compressive strength of about 1000 psi. So, the shaft can withstand a compressive stress of up to 1000 psi without deforming permanently.

Stress = Force / Area

Stress = 100 lbs / (3.14 * (0.25 in) ²)

Stress = 905.4 psi

The actual stress on the shaft is only 905.4 psi, so the shaft is not under any risk of permanent deformation.

Find out more on compressive stress at https://brainly.com/question/28813620

#SPJ4

Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10MPa and 5008C and is cooled in the condenser at a pressure of 10kPa. Sketch the cycle on a T-s diagram with respect to saturation lines, and determine: (a) the quality of the steam at the turbine exit, (b) the thermal efficiency of the cycle, (c) the mass flow rate of the steam. (d) Repeat Prob. (a)-(c) assuming an isentropic efficiency of 85 percent for both the turbine and the pump.

Answers

Given data:Pressure of steam entering turbine (P1) = 10 MPaTemperature of steam entering turbine (T1) = 500 degree CPressure of steam at the condenser (P2) = 10 kPaPower generated (W) = 210 MWNow, let's draw the T-s diagram with respect to saturation lines below:

1. The quality of steam at the turbine exit:From the T-s diagram, we can see that at the turbine exit, the state point lies somewhere between the two saturation lines.Using the steam tables, we can find the saturation temperature and pressure at the exit state:Pressure at the exit (P3) = 10 kPaSaturated temperature corresponding to P3 = 46.9 degree CEnthalpy of saturated liquid corresponding to P3 (h_f) = 191.81 kJ/kgEnthalpy of saturated vapor corresponding to P3 (h_g) = 2676.5 kJ/kgThe quality of steam (x) at the exit state is given by:x = (h - h_f)/(h_g - h_f)Where, h is the specific enthalpy at the exit state.

h = 191.81 + x(2676.5 - 191.81)h = 191.81 + 2421.69x= (h - h_f)/(h_g - h_f)x = (191.81 + 2421.69 - 191.81)/(2676.5 - 191.81)x = 0.91The quality of steam at the turbine exit is 0.91.2. Thermal efficiency of the cycle:For an ideal Rankine cycle, thermal efficiency is given by:eta_th = 1 - (T2/T1)Where, T2 and T1 are the temperatures of the steam at the condenser and the turbine inlet respectively.

To know more about Pressure  visit:

https://brainly.com/question/24719118

#SPJ11

(5) Please give out the strength conditions of tight tension joints under preload F' only. (4 scores) (6) What are called friction, wear and lubrication? And according to the lubrication states, how to classify the types of friction? (6 scores)

Answers

(5) Strength conditions of tight tension joints under preload F' onlyIn engineering, preload is defined as the process of applying a load or force before applying the actual load or force on a structure. Preloading is mostly used in the joining of mechanical structures and assemblies by nuts, bolts, and other similar components.

The tight tension joints that are preloaded by preload F' are the ideal and efficient type of joints used in engineering applications.  For tight tension joints, the following conditions must be met:1. The preloaded tension must exceed the external force applied to the joint.

2. The material used must be of the right quality and free from defects that could cause it to fail under preloaded tension.

3. The geometry of the joint must be correct, with the right clearances and tolerances for the bolt and nut.

4. The joint must be free from contaminants such as oil, grease, and other foreign particles that could cause the preload to reduce.

5. The preload force must be applied uniformly across the bolt's length, without any sudden or excessive fluctuations.

(6) Friction, wear and lubricationFriction, wear, and lubrication are the primary factors that affect the performance of mechanical components in engineering applications. Friction is the resistance that two surfaces experience when they come into contact with each other. Wear is the process of gradual erosion of the surfaces of components due to friction and other external factors.

Lubrication is the process of applying a lubricant such as oil, grease, or another fluid between the contacting surfaces to reduce friction and wear. The type of lubrication used depends on the degree of motion, surface conditions, and other factors that could affect the joint's performance.According to the lubrication states, the types of friction are classified as follows:

1. Dry friction - This type of friction occurs when the contacting surfaces are dry and without any lubrication. The friction force is usually high, and the surfaces experience significant wear.

2. Boundary friction - This type of friction occurs when a thin layer of lubricant is applied between the contacting surfaces. The friction force is lower than dry friction, and the wear is reduced.

3. Fluid friction - This type of friction occurs when a continuous layer of fluid separates the contacting surfaces. The friction force is the lowest, and the wear is almost negligible.

To know more about tension visit:

https://brainly.com/question/10169286

#SPJ11

Q5) Given the denominator of a closed loop transfer function as expressed by the following expression: S² + 8S-5Kₚ + 20 The symbol Kₚ denotes the proportional controller gain. You are required to work out the following: 5.1) Find the boundaries of Kₚ for the control system to be stable.
5.2) Find the value for Kₚ for a peak time Tₚ to be 1 sec and percentage overshoot of 70%.

Answers

5.1)The boundaries for Kₚ to ensure stability are Kₚ > 2.5.

5.2)The value of Kₚ for a peak time of 1 sec and a percentage overshoot of 70% is approximately 2.949.

5.1) To determine the stability boundaries for the control system, we need to analyze the denominator of the closed-loop transfer function:

S² + 8S - 5Kₚ + 20

For stability, all the roots of the denominator polynomial should have negative real parts. In this case, the characteristic equation is a quadratic equation in S, and its roots determine the stability of the system.

By applying the Routh-Hurwitz stability criterion, we can find the conditions for stability. The Routh array for the characteristic equation is:

1       -5Kₚ

8       20

To ensure stability, all the elements in the first column of the Routh array must be positive:

1 > 0 (condition 1)

8Kₚ - 20 > 0 (condition 2)

From condition 1, we have 1 > 0, which is always true.

From condition 2, we can solve for the boundaries of Kₚ:

8Kₚ - 20 > 0

8Kₚ > 20

Kₚ > 2.5

5.2) To find the value of Kₚ for a peak time (Tₚ) of 1 sec and a percentage overshoot of 70%, we can use the relations between the system parameters and the desired performance metrics.

The peak time Tₚ is related to the damping ratio (ζ) and natural frequency (ωn) as follows:

Tₚ = π / (ζ * ωn)

The percentage overshoot (PO) is related to the damping ratio (ζ) as follows:

PO = exp((-ζ * π) / sqrt(1 - ζ²)) * 100

Given Tₚ = 1 sec and PO = 70%, we can solve these equations simultaneously to find the values of ζ and ωn. Once we have ζ, we can determine the value of Kₚ using the following relation:

Kₚ = (ωn² - 8) / 5

By solving the equations, we find that ζ ≈ 0.456 and ωn ≈ 3.535.

Substituting these values into the expression for Kₚ, we get:

Kₚ = (3.535² - 8) / 5 ≈ 2.949

To know more about closed-loop transfer function, visit:

https://brainly.com/question/13002430

#SPJ11

An amplifier with 20dB gain is connected to another with 10dB gain by means of a transmission line with a loss of 4dB. If a signal with a power level of -14dBm were applied to the system, calculate the power output.

Answers

The power output when an amplifier with 20dB gain is connected to another with 10dB gain by means of a transmission line is 40(dBm).

How to calculate the value

From the information, an amplifier with 20dB gain is connected to another with 10dB gain by means of a transmission line with a loss of 4dB. If a signal with a power level of -14dBm were applied to the system.

According to question if input signal power is Pin(dBm) =14(dBm)

Pout(dBm) =Pin(dBm) +G1(dB) –L(dB) +G2(dB)

=14(dBm) +20(dB)–4(db) +10(dB)

=40(dBm)

Learn more about power on

https://brainly.com/question/1634438

#SPJ4

Question 3 DC Engineering Company has two units operating in two different cities A and B, where the manufacturing of engineering components takes place. Both the units employ young graduates as well as mid-career engineers. The company pays attractive salary to recruit competent workforce. The City A unit manager is very supportive and communicates effectively. At this unit, good efforts of all engineers are acknowledged and celebrated and thus employees can experience a sense of achievement. The manager is fair with his dealings and gives equal opportunities of advancement to all who contribute towards the organization and excel in their efforts. Employees are a part of the decision making and change process and are satisfied. The unit seldom experiences absenteeism or employee turnover. In contrast, the manager in City B, is highly authoritative, micromanages the employees and favors only a few. Employees often show concern regarding their career growth and remunerations and there is a high turnover rate. Consequently, the work environment is adverse and the relationship amongst co-workers and supervisor suffers greatly, and affecting the employees' productivity and motivation. (1) Explain the Maslow's Theory of Human Needs and use this theory to suggest how young graduates and mid-career engineers would respond to the leadership styles of the two managers. (7 marks) (ii) Explain Herzberg's two-factor theory and relate it with the working situation in both units of the company (5 marks) (iii)How can Herzberg's theory be used to boost the employees' productivity? (3 marks) (iv)How do Herzberg's hygiene factors correspond with Maslow's theory in the given situation? (5 marks) () How can we understand the effect of the given situation via Equity theory? (5 marks)

Answers

(i) Maslow's hierarchy of needs is a theory of human needs that helps to understand the various factors that influence the motivation of individuals.

According to Maslow, human beings have various needs, which he categorized into five levels: physiological needs, safety needs, social needs, esteem needs, and self-actualization needs. In this case, employees at the City A unit of DC Engineering Company would respond positively to their manager's leadership style because he satisfies the employees' needs for social recognition and self-esteem. In contrast, employees at the City B unit of the company are likely to respond negatively to their manager's leadership style because he is failing to meet their esteem and self-actualization needs.

(ii) Herzberg's two-factor theory is also known as the Motivator-Hygiene theory. Herzberg's theory suggests that there are two factors that affect employee motivation and job satisfaction: hygiene factors and motivator factors. Hygiene factors include working conditions, salary, job security, and company policies. Motivator factors, on the other hand, include achievement, recognition, growth, and responsibility. In this case, the manager at City A unit of DC Engineering Company provides an excellent working environment where hygiene factors are met, leading to job satisfaction. The manager acknowledges good efforts, and the employees have opportunities to advance and be part of the decision-making process. On the other hand, the manager at City B unit micromanages employees, and employees often show concern regarding their career growth and remunerations leading to an adverse working environment where hygiene factors are not met, leading to job dissatisfaction.

(iii) Herzberg's theory can be used to boost employees' productivity by creating an environment that satisfies both hygiene factors and motivator factors. Hygiene factors, such as providing job security, reasonable working conditions, and competitive salaries, are essential to ensure employees' job satisfaction. Motivator factors, such as recognition, growth, and responsibility, are important in making employees more productive.

(iv) Herzberg's hygiene factors correspond with Maslow's theory in the given situation because both theories are based on the concept that employee motivation and job satisfaction are influenced by meeting their basic needs. Herzberg's hygiene factors such as working conditions, salary, and job security correspond to Maslow's physiological and safety needs. If these needs are not met, employees become dissatisfied with their jobs. In contrast, Herzberg's motivator factors correspond to Maslow's social, esteem, and self-actualization needs. If these needs are met, employees become motivated and productive.

(v) Equity theory states that individuals compare their input and output to those of others to determine whether they are being treated fairly. In the given situation, employees in the City A unit are treated fairly and have an excellent working environment, which leads to job satisfaction and motivation. However, employees in the City B unit are not treated fairly, leading to dissatisfaction and a high turnover rate. Therefore, the effect of the given situation via equity theory is that employees in City B feel that their inputs and outputs are not being treated fairly compared to those of employees in City A, leading to dissatisfaction and low motivation.

To know more about Maslow's theory, visit:

https://brainly.com/question/33539726

#SPJ11

Steam enters a diffuster steadily at a pressure of 400 psia and a temperature of Tdiffuser = 500.0 °F. The velocity of the steam at the inlet is Veldiffuser 80.0 ft s =  and the mass flow rate is 5 lbm/s. What is the inlet area of the diffuser? ANS: 11.57in^2

Answers

The inlet area of the diffuser is 11.57 in^2.

To determine the inlet area of the diffuser, we can use the mass flow rate and the velocity of the steam at the inlet. The mass flow rate is given as 5 lbm/s, and the velocity is given as 80.0 ft/s.

The mass flow rate, denoted by m_dot, is equal to the product of density (ρ) and velocity (V) times the cross-sectional area (A) of the flow. Mathematically, this can be expressed as:

m_dot = ρ * V * A

Rearranging the equation, we can solve for the cross-sectional area:

A = m_dot / (ρ * V)

Given the values for mass flow rate, velocity, and the properties of steam at the inlet (pressure and temperature), we can calculate the density of the steam using steam tables or thermodynamic properties of the fluid. Once we have the density, we can substitute the values into the equation to find the inlet area of the diffuser.

To learn more about  diffuser.

brainly.com/question/14852229

#SPJ11

Other Questions
DO NOT ANSWER - TEST QUESTIONTranslate into English: (a) Vx(E(x) E(x + 2)). (b) Vxy(sin(x) = y). (c) Vy3x(sin(x) = y). 3 (d) \xy(x = y x = y). 4.6Consider the functions f(x) = - 3x + 1 and g(x)=x+5. Determine each of the following. fog(x) = Give the domain of fo g(x). go f(x) Give the domain of g o f(x). Which of the following has a bactericidal (kills bacteria) effect and prevents invasion or colonization of the skin?Select one:a.Langerhan's cellsb.sebumc.melanind.merocrine secretionse.karatin 39. All of the following are true about leprosy except It is rarely fatal if treated b. Patients with leprosy must be isolated C. It is transmitted by direct contact with exudates d. Lepromatous form results in tissue necrosis 40. Legionella is transmitted by a. Airborne transmission b. Food-borne transmission C. Person-to-person contact d. Vectors a. 41. Which of the following is NOT cause by Staphylococcus aureus? Scalded skin syndrome b. Newborn impetigo C. Scarlet fever d. toxic shock syndrome An auditorium seating 1800 people in three consecutive sitting for 6 hours, is to be maintained at 25 C dry bulb and 20 C wet bulb temperatures with outdoor air at 35 C dry bulb and 60% relative humidity. Conditioned air enters the auditorium at 15 C. Ventilation requirement is 8 m 3/hr per person. Solar and other heat loads amount to 108,000KJ/hr. The sensible and latent heat loads from the occupants is 275KJ/hr per person and 150KJ/hr per person, respectively. The total latent heat load from the occupants is nearest to what value? 75,000KJ/hr 270,000KJ/hr 225,000KJ/hr 90,000KJ/hr You borrow \( \$ 1,000 \) from your friend and agree to pay back the loan with interest in one year's time. Your friend wants to earn a real rate of interest equal to \( 7 \% \) on this loan and charg An engineer is planning to use vacuum preloading together with a 4-m high fill embankment to treat a 14-m thick soft clay layer, which is underlain by bedrock. His equipment and set up can achieve 85% vacuum (1 atmosphere - 100 kPa). Prefabricated vertical drains (100 mm by 5 mm) will be installed using a rectangular shape mandrel of 200 mm by080 mm. The drains will be installed prior to the preloading scheme and will fully penetrate the clay layer. The groundwater level is about 2 m above the top of the clay layer. Preliminary ground investigation works and laboratory tests yielded the following information to facilitate his design: Fill bulk unit weight = 20 kN/m Clay initial void ratio = 2.5 bulk unit weight = 15 kN/m horizontal coefficient of consolidation, Ch = 3 m /yr vertical coefficient of consolidation, cv = 2 m /yr recompression index = 0.15 compression index = 1.1 overconsolidation ratio = 1.7 sensitivity = 10 C/Cc = 0.05 The engineer decides to install drains in a triangular pattern at 1.5 m spacing. If he accounts for smear but ignores vertical flow through the soil and well resistance of the drain in his design, what will be the estimated settlement of the marine clay layer 40 year after the commencement of preloading? (18) An engineer is planning to use vacuum preloading together with a 4-m high fill embankment to treat a 14-m thick soft clay layer, which is underlain by bedrock. His equipment and set up can achieve 85% vacuum (1 atmosphere - 100 kPa). Prefabricated vertical drains (100 mm by 5 mm) will be installed using a rectangular shape mandrel of 200 mm by 80 mm. The drains will be installed prior to the preloading scheme and will fully penetrate the clay layer. The groundwater level is about 2 m above the top of the clay layer. Preliminary ground investigation works and laboratory tests yielded the following information to facilitate his design: Clay Fill initial void ratio = 2.5 bulk unit weight = 20 kN/m bulk unit weight -15 kN/m horizontal coefficient of consolidation, Ch = 3 m?/yr vertical coefficient of consolidation, Cv = 2 m/yr recompression index = 0.15 compression index = 1.1 overconsolidation ratio = 1.7 sensitivity = 10 C/Cc = 0.05 (a) The engineer decides to install drains in a triangular pattern at 1.5 m spacing. If he accounts for smear but ignores vertical flow through the soil and well resistance of the drain in his design, what will be the estimated settlement of the marine clay layer 40 year after the commencement of preloading? Belle, a 12 pound cat, is suffering from joint pain. How much medicine should the veterinarian prescribe if the dosage is 1.4 mg per pound? Belle was prescribed mg of medicine. You notice that in regions of your system that lack microorganisms, there is a high concentration of ferrous iron (Fe2+), but where you observe your organisms, the concentration is much lower, so you conclude that the ferrous iron is most likely being used by the microorganisms. Given this information and what you know about the research site, the organisms are most likely using this compound as ________. (Hint think about all the uses for iron and whether this is an oxidized/reduced form).A) An electron acceptor for anaerobic respiration.B) An electron donor during chemolithotrophy.C) An electron acceptor during assimilatory iron reductionD) An electron donor during chemoorganotrophy.E) An electron acceptor during dissimilatory iron reduction Problem 1 Line Broadening II Which cause for line broadening is dominant in the following cases? (a) Starlight moves through a cloud of hydrogen atoms of particle density n = 105/m and temper- ature T 10 K. Is the natural line width AwN, the Doppler width Awp or the collision width Awc the dominant cause for the broadening of the hyperfine transition and the Lyman a-line? The decay time for the hyperfine transition 1S1/2 (F= 0 F = 1) at = 21 cm is to = 109 s and the collision cross section to 10-9 s and o= 10-15 cm. = 10-22 cm, whereas for the Lyman a-line A = 121.6 nm, 5 (3+2) points (b) A laser beam of wavelength = 3.39 m and a beam diameter of 1 cm is sent through a methane cell, in which CH4-molecules at T = 300 K absorb on the transition ik (tok = 20 ms). Is the natural line width Awy, the Doppler width Awp, or the flight time width AwFT the largest? 4. (06.05 MC) Which of the following is a means of controlling eukaryotic gene expression? (3 points) a. Methylation of DNA b. DNA packing c. Transcriptional regulation a, b, c a only b only O a and c All changes saved 6. (06.05MC) What would happen if the repressor of an Inducible operon were mutated so it could not bind the operator? (3 points) O Continuous transcription of the operon's genes O Irreversible binding of the repressor to the promoter O Buildup of a substrate for the pathway controlled by the operan O Reduced transcription of the operon's genes 7. (06.05 MC) How are genes coordinately controlled in eukaryotic cells? (3 points) a. Coordinately controlled genes in eukaryotic cells are activated by the same chemical signals. b. Coordinately controlled genes in eukaryotic cells share a set of control elements. c. Coordinately controlled genes in eukaryotic cells are located together on the same chromosome. O ab O a only O conly Obc Aregraded potential local to the dendrites anf soma of a neuron? Yesor no? No explanation needed Use an iterative numerical technique to calculate a valueAssignmentThe Mannings Equation is used to find the Flow Q (cubic feet per second or cfs) in an open channel. The equation isQ = 1.49/n * A * R^2/3 * S^1/2WhereQ = Flowrate in cfsA = Cross Sectional Area of Flow (square feet)R = Hydraulic Radius (Wetted Perimeter / A)S = Downward Slope of the Channel (fraction)The Wetted Perimeter and the Cross-Section of Flow are both dependent on the geometry of the channel. For this assignment we are going to use a Trapezoidal Channel.If you work out the Flow Area you will find it isA = b*y + y*(z*y) = by + z*y^2The Wetted Perimeter is a little trickier but a little geometry will show it to beW = b + 2y(1 + z^2)^1/2where b = base width (ft); Z = Side slope; y = depth.Putting it all together gives a Hydraulic Radius ofR = (b*y + Z*y^2)/(b + 2y*(1+Z^2))^1/2All this goes into the Mannings EquationsQ = 1/49/n * (b*y + z*y^2) * ((b*y + Z*y^2)/(b + 2y(1+Z^2))^1/2)^2/3 * S^1/2Luckily I will give you the code for this equation in Python. You are free to use this code. Please note that YOU will be solving for y (depth in this function) using iterative techniques.def TrapezoidalQ(n,b,y,z,s):# n is Manning's n - table at# https://www.engineeringtoolbox.com/mannings-roughness-d_799.html# b = Bottom width of channel (ft)# y = Depth of channel (ft)# z = Side slope of channel (horizontal)# s = Directional slope of channel - direction of flowA = b*y + z*y*yW = b + 2*y*math.sqrt(1 + z*z)R = A/WQ = 1.49/n * A * math.pow(R, 2.0/3.0) * math.sqrt(s)return QAs an engineer you are designing a warning system that must trigger when the flow is 50 cfs, but your measuring systems measures depth. What will be the depth where you trigger the alarm?The values to useManning's n - Clean earth channel freshly gradedb = 3 foot bottomz = 2 Horiz : 1 Vert Side Slopes = 1 foot drop for every 100 feetn = 0.022(hint: A depth of 1 foot will give you Q = 25.1 cfs)Write the program code and create a document that demonstrates you can use the code to solve this problem using iterative techniques.You should call your function CalculateDepth(Q, n, w, z, s). Inputs should be Q (flow), Manning's n, Bottom Width, Side Slope, Longitudinal Slope. It should demonstrate an iterative method to converge on a solution with 0.01 foot accuracy.As always this will be done as an engineering report. Python does include libraries to automatically work on iterative solutions to equations - you will not use these for this assignment (but are welcome to use them in later assignments). You need to (1) figure out the algorithm for iterative solutions, (2) translate that into code, (3) use the code to solve this problem, (4) write a report of using this to solve the problem. Direct current (dc) engine with shunt amplifier, 24 kW, 240 V, 1000 rpm with Ra = 0.12 Ohm, field coil Nf = 600 turns/pole. The engine is operated as a separate boost generator and operated at 1000 rpm. When the field current If = 1.8 A, the no load terminal voltage shows 240 V. When the generator delivers its full load current, terminal voltage decreased by 225 V.Count :a). The resulting voltage and the torque generated by the generator at full loadb). Voltage drop due to armature reactionNOTE :Please explain in detail ! Please explain The Theory ! Make sure your answer is right!I will give you thumbs up if you can answer in detail way 7. What comments can you conceming the heart? 8. What comments can you make regarding the lungs? This is a question about writing a research proposal. You have contacted a world-renowned university professor and researcher in a given area of biotechnology and plan to pursue a PhD project that will benefit your country and help solve a current health or agricultural problem in your country. The professor has asked you to put together a proposal of what you intend to do. In bullet point format, briefly but critically, outline a typical research proposal in either health or agriculture, which you will send to this professor. Note that this must include justification for why this piece of research will be important and how you intend to cover the costs of the full-time research study over 4 years. Consider the series resonant circuit shown in the figure with L=80H, R=14.14, and C=1000pF.Compute the resonant frequency, bandwidth, lower half-power frequency, higher half-power frequency, Assuming that the frequency of the source is the same as the resonant frequency, find the phasor voltage VC, Assuming that the frequency of the source is the same as the resonant frequency, find the phasor voltage VL, Assuming that the frequency of the source is the same as the resonant frequency, find the phasor voltage VR. For this problem, you may use Desmos to get approximations for your values)A water balloon is tossed vertically with an initial height of 7ft from the ground.An observer sees that the balloon reaches its maximum height of 23ft 1 second after being launched.What is the height of the balloon after 2 seconds? How do you know?What model best describes the height of the balloon after t seconds?When does the balloon hit the ground? Use the following table with simulated data for days to pollen shed for 3 inbred lines of maize in order to estimate the genetic variance (Vg) v=1/n (x-x) Inbred lines A B C Mean Environment 1 42 44 46 44Environment 2 44 46 48 46 Environment 3 46 48 50 48 Mean 44 46 48 46 Select the right answer and show your work on your scratch paper for full credit. a. 5.33 b. 14.67 c. 2.67 d. 12 44 Question 1How many hotels are according to a study from 2012 built closer to the sea than accepted by national regulation on Zanzibar?1 point60%20%40%2.Question 2Peter Sthr and his colleges conducted a water quality baseline survey around the Unguja Island in 2015. Where did they find the highest level of coliform bacteria?1 pointAround Stone Town, suggesting a strong impact from the densely populated town, including tourist activitiesOff the northern and north-eastern part, suggesting a strong impact from the resorts located along the coastline3.Question 3The vast majority of hotels on Zanzibar1 point use septic tanks orthe official sewage treatment plant use septic tanks orthe local sewage treatment plants use septic tanks or discharge the sewage directly into the sea4.Question 4Peter Sthr and his colleges have found that almost half of the marine litter they found as part of their research consisted of plastic. According to the United Nations Development Programme, how many pieces of plastic litter are on average found on every square kilometer of ocean? Please write the exact number below.1 point5.Question 5One of the targets within Sustainable Development Goal 14 Life below Water is to "increase the economic benefits to Small Island developing States and least developed countries from the sustainable use of marine resources" Is sustainable management of tourism seen as part of the solution?1 pointNoYes(PART B)1.Question 1Why are coral reefs considered to be of major importance to conserve? Because coral reefs (Select the five correct answers).1 point support one quarter of all marine species are among the most bio-diverse ecosystems on the planet sustain human society, such as fishermens livelihoods protects against coastal erosion are a key asset for the tourist industry are a major source of building material protects against climate change2.Question 2Coral reefs are not only suffering from coral bleaching linked with rising sea temperatures but also from tourism and recreational impacts. Which so called stressors are according to Reef Resilience Network, stressing the coral reefs (multiple correct answers).1 pointSnorkel, Scuba and TramplingAnchor DamageVessel GroundingsChanges in the Behavior of Marine LifeWater PollutionInvasive SpeciesOcean AcidificationOil spill3.Question 3Researcher Ali Ussi explained that corals looking like these in the middle of the picture is an example of:1 pointFast growing coralsCorals that have died as a result of coral bleachingSoft corals, with algae growth due to excessive levels of nutrients in the marine environment4.Question 4An important quote from the interview with Dr. Arias-Gonzlez was:1 point"Climate change happens long term" () "The massive development happening right now is much more dangerous.""Climate change happens long term" () "The massive development happening right now is not documented to be dangerous.""Climate change happens long term" () "The massive development happening right now is far from that dangerous."5.Question 51 pointThe number of cruise ship arrivals can precipitate a shift from a healthy reef system to a degraded state characterized by low coral cover and dominance of alga.The number of cruise ship arrivals seems to have no significant impact on the reef system and a degraded state characterized by low coral cover and dominance of alga.The number of cruise ship arrivals cannot precipitate a shift from a healthy reef system to a degraded state characterized by low coral cover and dominance of alga.