A flight leaves New York City traveling at 520 miles per hour. After 3 hours in the air, how far will that plane have traveled? (A) 1,040 miles (B) 1,560 miles (C) 1,875 miles (D) 2,056 miles

Answers

Answer 1

The plane will have traveled to a distance of 1,560 miles after 3 hours in the air at 520 miles per hour.

The given flight leaves New York City traveling at a speed of 520 miles per hour. The question is asking how far the plane will travel after 3 hours in the air.

Therefore, we can find the distance using the formula:

Distance = speed x time

Given that the speed of the flight = 520 miles per hour and the time for which it flies is 3 hours

Distance = Speed × Time= 520 × 3= 1560 miles

Hence, the distance that the plane will have traveled in 3 hours is 1,560 miles.

Option (B) 1,560 miles is the correct answer.

To know more about distance refer here:

https://brainly.com/question/15256256

#SPJ11


Related Questions

Evaluate the following integrals
(a) ∫3 3t sin(2t^2 - π) dt,

Answers

(1/4) ∫(16-π) 16-π (-cos(2t^2 - π)) / t + C This is the final result of the integral. To evaluate the integral ∫3 3t sin(2t^2 - π) dt, we can use integration techniques, specifically integration by substitution.

Let's denote u = 2t^2 - π. Then, differentiating both sides with respect to t gives du/dt = 4t.

Rearranging the equation, we have dt = du / (4t). Substituting this expression for dt in the integral, we get:

∫3 3t sin(2t^2 - π) dt = ∫3 sin(u) du / (4t)

Next, we need to substitute the limits of integration. When t = 3, u = 2(3)^2 - π = 16 - π, and when t = -3, u = 2(-3)^2 - π = 16 - π.

Now, the integral becomes:

∫(16-π) 16-π sin(u) du / (4t)

We can simplify this by factoring out the constant terms:

(1/4) ∫(16-π) 16-π sin(u) du / t

Now, we can integrate sin(u) with respect to u:

(1/4) ∫(16-π) 16-π (-cos(u)) / t + C

Finally, substituting u back in terms of t, we have:

(1/4) ∫(16-π) 16-π (-cos(2t^2 - π)) / t + C

This is the final result of the integral.

To learn more about  integral click here:

brainly.com/question/31862795

#SPJ11

The displacement (in meters) of a certain partice moving in a straight line is given by the following function, where t is measured in seconds. s(t)=3t ^2
Part 1 - Average Velocity Find the average velocity of the object over the given time intervals. Part 2 - Instantaneous Velocity Find the instantaneous velocity of the object at time t=2sec. - v(2)= m/s

Answers

Part 1-The average velocity of the object over the given time intervals is 6m/s.

Part 2- The instantaneous velocity of the object at time t=2sec is 12 m/s.

Given, The displacement of a particle moving in a straight line is given by the function s(t) = 3t².

We have to calculate the following -

Average velocity

Instantaneous velocity

Part 1 - Average Velocity

Average Velocity is the change in position divided by the time it took to change. The formula for the average velocity can be represented as:

v = Δs/Δt

Where v represents the average velocity,

Δs is the change in position and

Δt is the change in time.

Determine the displacement of the particle from t = 0 to t = 2.

The change in position can be represented as:

Δs = s(2) - s(0)Δs = (3(2)² - 3(0)²) mΔs = 12 m

Determine the change in time from t = 0 to t = 2.

The change in time can be represented as:

Δt = t₂ - t₁Δt = 2 - 0Δt = 2 s

Calculate the average velocity as:

v = Δs/Δt

Substitute Δs and Δt into the above formula:

v = 12/2 m/s

v = 6 m/s

Therefore, the average velocity of the object from t = 0 to t = 2 is 6 m/s.

Part 2 - Instantaneous Velocity

Instantaneous Velocity is the velocity of an object at a specific time. It is represented by the derivative of the position function with respect to time, or the slope of the tangent line of the position function at that point.

To find the instantaneous velocity of the object at t = 2, we need to find the derivative of the position function with respect to time.

s(t) = 3t²s'(t) = 6t

The instantaneous velocity of the object at t = 2 can be represented as:

v(2) = s'(2)

Substitute t = 2 into the above equation:

v(2) = 6(2)m/s

v(2) = 12 m/s

Therefore, the instantaneous velocity of the object at t = 2 seconds is 12 m/s.

To know more about velocity refer here:

https://brainly.com/question/31495959

#SPJ11

Find the derivative of p(x) with respect to x where p(x)=(4x+4x+5) (2x²+3x+3) p'(x)= You have not attempted this yet

Answers

The product rule is a derivative rule that is used in calculus. It enables the differentiation of the product of two functions. if we have two functions f(x) and g(x), then the derivative of their product is given by f(x)g'(x) + g(x)f'(x).

The derivative of p(x) with respect to x where p(x)=(4x+4x+5)(2x²+3x+3) is given as follows; p'(x)= 4(2x²+3x+3) + (4x+4x+5) (4x+3). We are expected to find the derivative of the given function which is a product of two factors; f(x)= (4x+4x+5) and g(x)= (2x²+3x+3) using the product rule. The product rule is given as follows.

If we have two functions f(x) and g(x), then the derivative of their product is given by f(x)g'(x) + g(x)f'(x) .Now let's evaluate the derivative of p(x) using the product rule; p(x)= f(x)g(x)

= (4x+4x+5)(2x²+3x+3)

Then, f(x)= 4x+4x+5g(x)

= 2x²+3x+3

Differentiating g(x);g'(x) = 4x+3

Therefore; p'(x)= f(x)g'(x) + g(x)f'(x)

= (4x+4x+5)(4x+3) + (2x²+3x+3)(8)

= 32x² + 56x + 39

Therefore, the derivative of p(x) with respect to x where p(x)=(4x+4x+5)(2x²+3x+3)

is given as; p'(x) = 32x² + 56x + 39

To know more about derivative visit:

https://brainly.com/question/29144258

#SPJ11

consider the standard brownian motion subject to constraint i.e., a process obtained from brownian motion by conditioning the brownian motion to hit b at time t. this results in a continuous path from (0,0) to (t,b)

Answers

Given that  W(t) is a standard Brownian motion. The probability P(1 < W(1) < 2) is 0.136.

A Gaussian random process (W(t), t ∈[0,∞)) is said be a standard brownian motion if

1)W(0) = 0

2) W(t) has independent increments.

3) W(t) has continuous sample paths.

4) W([tex]t_2[/tex]) -W([tex]t_1[/tex]) ~ N(0, [tex]t_2-t_1[/tex])

Given, W([tex]t_2[/tex]) -W([tex]t_1[/tex]) ~ N(0, [tex]t_2-t_1[/tex])

[tex]W(1) -W(0) \ follows \ N(0, 1-0) = N(0,1)[/tex]

Since, W(0) = 0

W(1) ~ N(0,1)

The probability  P(1 < W(1) < 2) :

= P(1 < W(1) < 2)

= P(W(1) < 2) - P(W(1) < 1)

= Ф(2) - Ф(1)

(this is the symbol for cumulative distribution of normal distribution)

Using standard normal table,

= 0.977 - 0.841  = 0.136

Learn more about standard brownian motion here

https://brainly.com/question/28441932

#SPJ4

The complete question is given below:

Let W(t) be a standard Brownian motion. Find P(1 < W(1) < 2).

Use the Intermediate Value Theorem to determine whether the following equation has a solution or not. If so, then use a graphing calculator or computer grapher to solve the equation. 5x(x−1)^2
=1 (one root) Select the correct choice below, and if necossary, fill in the answer box to complete your choice A. x≈ (Use a comma to separate answers as needed. Type an integer or decimal rounded to four decimal places as needed.) B. There is no solution

Answers

x ≈ 0.309 as the one root of the given equation found using the  Intermediate Value Theorem (IVT) .

The Intermediate Value Theorem (IVT) states that if f is a continuous function on a closed interval [a, b] and c is any number between f(a) and f(b), then there is at least one number x in [a, b] such that f(x) = c.

Given the equation

`5x(x−1)² = 1`.

Use the Intermediate Value Theorem to determine whether the given equation has a solution or not:

It can be observed that the function `f(x) = 5x(x-1)² - 1` is continuous on the interval `[0, 1]` since it is a polynomial of degree 3 and polynomials are continuous on the whole real line.

The interval `[0, 1]` contains the values of `f(x)` at `x=0` and `x=1`.

Hence, f(0) = -1 and f(1) = 3.

Therefore, by IVT there is some value c between -1 and 3 such that f(c) = 0.

Therefore, the given equation has a solution.

.

Know more about the Intermediate Value Theorem (IVT)

https://brainly.com/question/14456529

#SPJ11

Simplify the following radical expression by rationalizing the denominator. (-6)/(\sqrt(5y))

Answers

The simplified radical expression by rationalizing the denominator is, [tex]\frac{-6}{\sqrt{5y}}\times\frac{\sqrt{5y}}{\sqrt{5y}}[/tex] = [tex]\frac{-6\sqrt{5y}}{5y}$$[/tex] = $\frac{-6\sqrt{5y}}{5y}$.

To simplify the radical expression by rationalizing the denominator, multiply both numerator and denominator by the conjugate of the denominator.

The given radical expression is [tex]$\frac{-6}{\sqrt{5y}}$[/tex].

Rationalizing the denominator

To rationalize the denominator, we multiply both the numerator and denominator by the conjugate of the denominator, [tex]$\sqrt{5y}$[/tex]

Note that multiplying the conjugate of the denominator is like squaring a binomial:

This simplifies to:

(-6√(5y))/(√(5y) * √(5y))

The denominator simplifies to:

√(5y) * √(5y) = √(5y)^2 = 5y

So, the expression becomes:

(-6√(5y))/(5y)

Therefore, the simplified expression, after rationalizing the denominator, is (-6√(5y))/(5y).

[tex]$(a-b)(a+b)=a^2-b^2$[/tex]

This is what we will do to rationalize the denominator in this problem.

We will multiply the numerator and denominator by the conjugate of the denominator, which is [tex]$\sqrt{5y}$[/tex].

Multiplying both the numerator and denominator by [tex]$\sqrt{5y}$[/tex], we get [tex]\frac{-6}{\sqrt{5y}}\times\frac{\sqrt{5y}}{\sqrt{5y}}[/tex] = [tex]\frac{-6\sqrt{5y}}{5y}$$[/tex]

For more related questions on simplified radical:

https://brainly.com/question/14923091

#SPJ8

Write the mathematical expression that is equivalent to the
phrase "The volume of a rectangle with a length of 6 .5", a width
of 8 .3" and a height of 10 .7". Do not simplify your answer.

Answers

The volume of the given rectangular prism is approximately 578.9 cubic units.

The mathematical expression for the volume of a rectangular prism is given by the formula: Volume = length × width × height.

In this case, we are given a rectangle with a length of 6.5 units, a width of 8.3 units, and a height of 10.7 units. To find the volume, we substitute these values into the formula.

Volume = 6.5 × 8.3 × 10.7

Now, we can perform the multiplication to calculate the volume. However, since the multiplication involves decimal numbers, it is important to consider the significant figures and maintain accuracy throughout the calculation.

Multiplying 6.5 by 8.3 gives us 53.95, and multiplying this by 10.7 gives us 578.915. However, we must consider the significant figures of the given measurements to determine the final answer.

The length and width are given with two decimal places, indicating that the values are likely measured to the nearest hundredth. The height is given with one decimal place, indicating it is likely measured to the nearest tenth. Therefore, we should round the final answer to the same level of precision, which is one decimal place.

Learn more about volume here :-

https://brainly.com/question/24086520

#SPJ11

Solve the following problems. If 700 kilos of fruits are sold at P^(70) a kilo, how many kilos of fruits can be sold at P^(50) a kilo?

Answers

Given that 700 kilos of fruits are sold at P₱70 a kilo. Let the number of kilos of fruits that can be sold at P₱50 a kilo be x.

Then the money obtained by selling these kilos of fruits would be P50x. Also, the total money obtained by selling 700 kilos of fruits would be: 700 × P₱70 = P₱49000 From the above equation, we can say that: P₱50x = P₱49000 Now, we can calculate the value of x by dividing both sides of the equation by 50. Hence, x = 980 kilos. 

Therefore, 980 kilos of fruits can be sold at P₱50 a kilo. We are given that 700 kilos of fruits are sold at P₱70 a kilo. Let the number of kilos of fruits that can be sold at P₱50 a kilo be x. Then the money obtained by selling these kilos of fruits would be P₱50x. Also, the total money obtained by selling 700 kilos of fruits would be:700 × P₱70 = P₱49000 From the above equation, we can say that:P₱50x = P₱49000 Now, we can calculate the value of x by dividing both sides of the equation by 50. Hence, x = 980 kilos. Therefore, 980 kilos of fruits can be sold at P₱50 a kilo. The main answer is 980 kilos of fruits can be sold at P₱50 a kilo.

To know more about number visit:

https://brainly.com/question/24908711

#SPJ11

Let L = {(, , w) | M1(w) and M2(w) both halt, with opposite output}. Show that L is not decidable by giving a mapping reduction from some language we already know to be not decidable.

Answers

This reduction shows that if we had a decider for L, we could use it to decide the undecidable language Halt, which is a contradiction. Therefore, L is also undecidable.

By providing this mapping reduction from Halt to L, we have shown that L is undecidable, as desired.

To show that language L is not decidable, we can perform a mapping reduction from a known undecidable language to L. Let's choose the language Halt, which is the language of Turing machines that halt on an empty input. We'll show a reduction from Halt to L.

The idea behind the reduction is to construct two Turing machines, M1 and M2, such that M1 halts if and only if the given Turing machine in Halt halts on an empty input. Additionally, M2 will halt if and only if the given Turing machine in Halt does not halt on an empty input.

Here is a description of the reduction:

Given an input (M, ε), where M is a Turing machine encoded as a string and ε represents an empty input.

Construct two Turing machines, M1 and M2, as follows:

M1: On input w, simulate M on ε. If M halts, accept w; otherwise, reject w.

M2: On input w, simulate M on ε. If M halts, reject w; otherwise, accept w.

Output the transformed input (, , (M, ε)).

Now, let's analyze how this reduction works:

If (M, ε) is in Halt, meaning M halts on an empty input, then M1 will halt and accept any input w, while M2 will loop and never halt on any input w. Therefore, (, , (M, ε)) is in L.

If (M, ε) is not in Halt, meaning M does not halt on an empty input, then M1 will loop and never halt on any input w, while M2 will halt and accept any input w. Therefore, (, , (M, ε)) is not in L.

This reduction shows that if we had a decider for L, we could use it to decide the undecidable language Halt, which is a contradiction. Therefore, L is also undecidable.

By providing this mapping reduction from Halt to L, we have shown that L is undecidable, as desired.

To know more about the word reduction, visit:

https://brainly.com/question/8963217

#SPJ11

Following is the query that displays the model number and price of all products made by manufacturer B. R1:=σ maker ​
=B( Product ⋈PC) R2:=σ maker ​
=B( Product ⋈ Laptop) R3:=σ maker ​
=B( Product ⋈ Printer) R4:=Π model, ​
price (R1) R5:=π model, price ​
(R2) R6:=Π model, ​
price (R3) R7:=R4∪R5∪R6

Answers

The given query displays the model number and price of all products made by the manufacturer B. There are six relations involved in this query.

Let's go through each of the relations one by one.

R1 relationR1:=σ maker ​=B( Product ⋈PC)

This relation R1 selects the tuples from the Product ⋈ PC relation whose maker is B.

The resulting relation R1 has two attributes: model and price.R2 relationR2:=σ maker ​=B( Product ⋈ Laptop)

This relation R2 selects the tuples from the Product ⋈ Laptop relation whose maker is B.

The resulting relation R2 has two attributes: model and price.R3 relationR3:=σ maker ​=B( Product ⋈ Printer)

This relation R3 selects the tuples from the Product ⋈ Printer relation whose maker is B.

The resulting relation R3 has two attributes: model and price.R4 relationR4:=Π model, ​price (R1)

The resulting relation R4 has two attributes: model and price.R5 relationR5:=π model, price ​(R2)

The relation R5 selects the model and price attributes from the relation R2.

The resulting relation R5 has two attributes: model and price.R6 relationR6:=Π model, ​price (R3)

The resulting relation R6 has two attributes: model and price.

Finally, the relation R7 combines the relations R4, R5, and R6 using the union operation. R7 relationR7:=R4∪R5∪R6

Therefore, the relation R7 has the model number and price of all products made by the manufacturer B.

To know more about manufacturer visit:

https://brainly.com/question/33332462

#SPJ11

a study of consumer smoking habits includes 152 people in the 18-22 age bracket (57 of whom smoke), 139 people in the 23-30 age bracket (31 of whom smoke), and 88 people in the 31-40 age bracket (27 of whom smoke). if one person is randomly selected from this simple, find the probability of getting someone who is age 23-30 or smokes. state your answer as a decimal to three decimal places.

Answers

The probability of getting someone who is age 23-30 or smokes is given as follows:

0.588.

How to calculate the probability?

The total number of people is given as follows:

152 + 139 + 88 = 379.

The desired outcomes are given as follows:

Age 23-30: 139.Other ages smokers: 57 + 27 = 84.

Hence the number of desired outcomes is given as follows:

139 + 84 = 223.

The probability is calculated as the division of the number of desired outcomes by the number of total outcomes, hence it is given as follows:

223/379 = 0.588.

Learn more about the concept of probability at https://brainly.com/question/24756209

#SPJ4

The equation 3xy = 9 is a linear equation.
Group of answer choices:
True or False

Answers

Linear equations are a subset of non-linear equations, and the equation 3xy = 9 is a non-linear equation.

The equation 3xy = 9 is not a linear equation. It is a non-linear equation. Linear equations are first-degree equations, meaning that the exponent of all variables is 1. A linear equation is represented in the form y = mx + b, where m and b are constants.

The variables in linear equations are not raised to powers higher than 1, making it easier to graph them. In contrast, non-linear equations are any equations that cannot be written in the form y = mx + b. Non-linear equations have at least one variable with an exponent that is greater than or equal to 2. Non-linear equations are harder to graph than linear equations.

The answer is false, the equation 3xy = 9 is a non-linear equation, not a linear equation. Non-linear equations are any equations that cannot be written in the form y = mx + b. They have at least one variable with an exponent that is greater than or equal to 2.

Linear equations are a subset of non-linear equations, and the equation 3xy = 9 is a non-linear equation.

To know more about Linear visit:

brainly.com/question/31510530

#SPJ11


When is a z-score considered to be highly unusual?
a z-score over 1.96 is considered highly unusual

a z-score over 2 is considered highly unusual

a z-score over 3 is considered highly unusual

Answers

A z-score over 2 is considered highly unusual.

A z-score is a measure of how many standard deviations a particular data point is away from the mean in a standard normal distribution. A z-score of 2 means that the data point is 2 standard deviations away from the mean. In a standard normal distribution, approximately 95% of the data falls within 2 standard deviations of the mean. This means that only about 5% of the data falls beyond 2 standard deviations from the mean.

Therefore, if a z-score is over 2, it indicates that the corresponding data point is in the tail of the distribution and is relatively far from the mean. This is considered highly unusual because it suggests that the data point is an extreme outlier compared to the majority of the data. In other words, it is highly unlikely to observe such a data point in a normal distribution, and it indicates a significant deviation from the expected pattern.

Learn more about z-score  from

https://brainly.com/question/25638875

#SPJ11

At Heinz ketchup factory the amounts which go into bottles of ketchup are
supposed to be normally distributed with mean 36 oz. and standard deviation 0.11 oz. Once
every 30 minutes a bottle is selected from the production line, and its contents are noted
precisely. If the amount of ketchup in the bottle is below 35.8 oz. or above 36.2 oz., then the
bottle fails the quality control inspection. What percent of bottles have less than 35.8
ounces of ketchup?
What percentage of bottles pass the quality control inspection?
You may use Z-table or RStudio. Your solution must include a relevant graph

Answers

The percentage of bottles that pass the quality control inspection is 100% - 3.44% = 96.56%.

Given that the amounts which go into bottles of ketchup are normally distributed with mean 36 oz and standard deviation 0.11 oz. Also, a bottle is selected every 30 minutes from the production line.

If the amount of ketchup in the bottle is below 35.8 oz or above 36.2 oz, then the bottle fails the quality control inspection.We have to find the following:What percent of bottles have less than 35.8 ounces of ketchup?What percentage of bottles pass the quality control inspection?

We can find the percent of bottles have less than 35.8 ounces of ketchup by calculating the z-score of 35.8 and then using the z-table.

Then, we can find the percentage of bottles that pass the quality control inspection using the complement of the first percentage. Here are the steps to find the solution:

\First, we have to calculate the z-score of 35.8 oz using the formula:z = (x - μ) / σwhere x = 35.8 oz, μ = 36 oz, and σ = 0.11 ozz = (35.8 - 36) / 0.11 = -1.82.

Second, we have to find the probability of the z-score using the z-table.The probability of z-score -1.82 is 0.0344.

Therefore, the percentage of bottles have less than 35.8 ounces of ketchup is 3.44%.Third, we have to find the percentage of bottles that pass the quality control inspection.

The bottles pass the quality control inspection if the amount of ketchup in the bottle is between 35.8 oz and 36.2 oz. The percentage of bottles that pass the quality control inspection is 100% - 3.44% = 96.56%.

In conclusion, we found that 3.44% of bottles have less than 35.8 ounces of ketchup and 96.56% of bottles pass the quality control inspection.  The shaded area represents the percentage of bottles that have less than 35.8 oz of ketchup.

To know more about z-table visit:

brainly.com/question/30765367

#SPJ11

Tyrion, Cersei, and ten other people are sitting at a round table, with their seatingarrangement having been randomly assigned. What is the probability that Tyrion andCersei are sitting next to each other? Find this in two ways:(a) using a sample space of size 12!, where an outcome is fully detailed about the seating;(b) using a much smaller sample space, which focuses on Tyrion and Cersei

Answers

(a) In a seating arrangement with 12 people, there are 12! (factorial of 12) possible seating arrangements. The outcome is fully detailed about the seating. 2 people can be seated in 2! Ways. There are 10 people left to seat and there are 10! Ways to seat them. So, we get the following:(2! × 10!)/(12!) = 1/6. Therefore, the probability that Tyrion and Cersei are sitting next to each other is 1/6.

(b) In this smaller sample space, we will only focus on Tyrion and Cersei. There are only 2 possible ways they can sit next to each other:

1. Tyrion can sit to the left of Cersei

2. Tyrion can sit to the right of CerseiIn each case, the other 10 people can be seated in 10! Ways.

So, the probability that Tyrion and Cersei are sitting next to each other in this smaller sample space is:(2 × 10!)/(12!) = 1/6, which is the same probability we got using the larger sample space.

To know more about  Tyrion visit:

https://brainly.com/question/33310981

#SPJ11

Y represents the final scores of AREC 339 in 2013 and it was normally distributed with the mean score of 80 and variance of 16 . a. Find P(Y≤70) 5 pts b. P(Y≥90) 5pts P(70≤Y≤90)

Answers

b) Using the standard normal distribution table or a calculator, we find that the area to the right of z = 2.5 is approximately 0.0062. Therefore, P(Y ≥ 90) ≈ 0.0062.

To solve these probability questions, we can use the properties of the normal distribution. Given that Y follows a normal distribution with a mean of 80 and a variance of 16, we can standardize the values using the z-score formula:

z = (x - μ) / σ

where x is the given value, μ is the mean, and σ is the standard deviation (which is the square root of the variance).

a) P(Y ≤ 70):

To find this probability, we need to calculate the z-score for 70 and then find the area to the left of that z-score in the standard normal distribution table or using a statistical software.

z = (70 - 80) / √16 = -10 / 4 = -2.5

Using the standard normal distribution table or a calculator, we find that the area to the left of z = -2.5 is approximately 0.0062. Therefore, P(Y ≤ 70) ≈ 0.0062.

b) P(Y ≥ 90):

Similarly, we calculate the z-score for 90 and find the area to the right of that z-score.

z = (90 - 80) / √16 = 10 / 4 = 2.5

c) P(70 ≤ Y ≤ 90):

To find this probability, we can subtract the probability of Y ≤ 70 from the probability of Y ≥ 90.

P(70 ≤ Y ≤ 90) = 1 - P(Y < 70 or Y > 90)

              = 1 - (P(Y ≤ 70) + P(Y ≥ 90))

Using the values calculated above:

P(70 ≤ Y ≤ 90) ≈ 1 - (0.0062 + 0.0062) = 0.9876

P(70 ≤ Y ≤ 90) ≈ 0.9876.

To know more about subtract visit:

brainly.com/question/13619104

#SPJ11


How
to find the standard error of the mean for each sampling situation
(assuming a normal population)
a. o=52, n=16
b. o=52, n=64
c. o=52, n=256

Answers

The standard error of the mean for each sampling situation (assuming a normal population) is:

a) SEM = 13

b) SEM = 6.5

c) SEM = 3.25

In statistics, the standard error (SE) is the measure of the precision of an estimate of the population mean. It tells us how much the sample means differ from the actual population mean. The formula for the standard error of the mean (SEM) is:

SEM = σ / sqrt(n)

Where σ is the standard deviation of the population, n is the sample size, and sqrt(n) is the square root of the sample size.

Let's calculate the standard error of the mean for each given sampling situation:

a) Given o = 52 and n = 16:

The standard deviation of the population is given by σ = 52.

The sample size is n = 16.

The standard error of the mean is:

SEM = σ / sqrt(n) = 52 / sqrt(16) = 13

b) Given o = 52 and n = 64:

The standard deviation of the population is given by σ = 52.

The sample size is n = 64.

The standard error of the mean is:

SEM = σ / sqrt(n) = 52 / sqrt(64) = 6.5

c) Given o = 52 and n = 256:

The standard deviation of the population is given by σ = 52.

The sample size is n = 256.

The standard error of the mean is:

SEM = σ / sqrt(n) = 52 / sqrt(256) = 3.25

Learn more about standard error

https://brainly.com/question/32854773

#SPJ11

A bag contains 7 red marbles and 3 white mables. Three are drawn from the bag, one after the other without replacement. Find the probability that :
A) All are red
B) All are white
C) First two are red and the third white
D) at least one red

Answers

A. The probability that all three marbles drawn are red is 7/24.

B. The probability that all three marbles drawn are white is 1/120.

C.  The probability that the first two marbles drawn are red and the third marble is white is 7/40.

D. The probability of drawing at least one red marble is 119/120.

A) To find the probability that all three marbles drawn are red, we need to consider the probability of each event occurring one after the other. The probability of drawing a red marble on the first draw is 7/10 since there are 7 red marbles out of a total of 10 marbles. After the first red marble is drawn, there are 6 red marbles left out of a total of 9 marbles. Therefore, the probability of drawing a red marble on the second draw is 6/9. Similarly, on the third draw, the probability of drawing a red marble is 5/8.

Using the rule of independent probabilities, we can multiply these probabilities together to find the probability that all three marbles drawn are red:

P(all red) = (7/10) * (6/9) * (5/8) = 7/24

Therefore, the probability that all three marbles drawn are red is 7/24.

B) Since there are 3 white marbles in the bag, the probability of drawing a white marble on the first draw is 3/10. After the first white marble is drawn, there are 2 white marbles left out of a total of 9 marbles. Therefore, the probability of drawing a white marble on the second draw is 2/9. Similarly, on the third draw, the probability of drawing a white marble is 1/8.

Using the rule of independent probabilities, we can multiply these probabilities together to find the probability that all three marbles drawn are white:

P(all white) = (3/10) * (2/9) * (1/8) = 1/120

Therefore, the probability that all three marbles drawn are white is 1/120.

C) To find the probability that the first two marbles drawn are red and the third marble is white, we can multiply the probabilities of each event occurring. The probability of drawing a red marble on the first draw is 7/10. After the first red marble is drawn, there are 6 red marbles left out of a total of 9 marbles. Therefore, the probability of drawing a red marble on the second draw is 6/9. Lastly, after two red marbles are drawn, there are 3 white marbles left out of a total of 8 marbles. Therefore, the probability of drawing a white marble on the third draw is 3/8.

Using the rule of independent probabilities, we can multiply these probabilities together:

P(first two red and third white) = (7/10) * (6/9) * (3/8) = 7/40

Therefore, the probability that the first two marbles drawn are red and the third marble is white is 7/40.

D) To find the probability of drawing at least one red marble, we can calculate the complement of drawing no red marbles. The probability of drawing no red marbles is the same as drawing all three marbles to be white, which we found to be 1/120.

Therefore, the probability of drawing at least one red marble is 1 - 1/120 = 119/120.

Therefore, the probability of drawing at least one red marble is 119/120.

Learn more about probability  from

https://brainly.com/question/30390037

#SPJ11

There are 12 balls numbered 1 through 12 placed in a bucket. What is the probability of reaching into the bucket and randomly drawing three balls numbered 10, 5, and 6 without replacement, in that order? Express your answer as a fraction in lowest terms or a decimal rounded to the nearest millionth.

Answers

The probability of randomly drawing three balls numbered 10, 5, and 6 without replacement from a bucket containing 12 balls numbered 1 through 12 is [tex]\(\frac{1}{220}\)[/tex] or approximately 0.004545 (rounded to the nearest millionth).

To calculate the probability, we need to determine the number of favourable outcomes (drawing balls 10, 5, and 6 in that order) and the total number of possible outcomes. The first ball has a 1 in 12 chance of being ball number 10. After that, the second ball has a 1 in 11 chance of being ball number 5 (as one ball has been already drawn). Finally, the third ball has a 1 in 10 chance of being ball number 6 (as two balls have already been drawn).

Therefore, the probability of drawing these three specific balls in the specified order is [tex]\(\frac{1}{12} \times \frac{1}{11} \times \frac{1}{10} = \frac{1}{220}\)[/tex] or approximately 0.004545.

To learn more about probability refer:

https://brainly.com/question/25839839

#SPJ11

Suppose we define multiplication in R2 component-wise in the obvious way, i.e. (a,b)⋅(c,d)=(ac,bd). Show that R2 would not be an integral domain. Describe all of the zero divisors in this ring.

Answers

Suppose we define multiplication in R² component-wise in the obvious way, (a,b)⋅(c,d)=(ac,bd). Then R² would not be an integral domain.

To check whether R² would be an integral domain or not, we must confirm whether it satisfies the requirements of an integral domain or not.

Commutativity: We have to check whether ab = ba for every a, b ∈ R². If a = (a₁, a₂) and b = (b₁, b₂), then ab = (a₁b₁, a₂b₂) and ba = (b₁a₁, b₂a₂). We can observe that ab = ba for every a, b ∈ R². Hence R² satisfies commutativity.Associativity: We have to verify whether (ab)c = a(bc) for every a, b, c ∈ R². If a = (a₁, a₂), b = (b₁, b₂), and c = (c₁, c₂), then: (ab)c = ((a₁ b₁), (a₂ b₂))(c₁, c₂) = ((a₁ b₁) c₁, (a₂ b₂) c₂) and a(bc) = (a₁, a₂)((b₁ c₁), (b₂ c₂)) = ((a₁ b₁) c₁, (a₂ b₂) c₂). We observe that (ab)c = a(bc) for every a, b, c ∈ R². Therefore, R² satisfies associativity.Identity: We have to check whether there exists an identity element in R². Let e be the identity element. Then ae = a for every a ∈ R². If a = (a₁, a₂), then ae = (a₁ e₁, a₂ e₂) = (a₁, a₂). Thus, e = (1, 1) is the identity element in R².Inverse: We have to check whether for every a ∈ R², there exists an inverse such that aa⁻¹ = e. Let a = (a₁, a₂). Then a⁻¹ = (1/a₁, 1/a₂) if a1, a2 ≠ 0. Let us consider a = (0, a₂). Then a(0, 1/a₂) = (0, 1). Let us consider a = (a₁, 0). Then (a₁, 0)(1/a₁, 0) = (1, 0). We can observe that there are zero divisors in R².

Therefore, R² is not an integral domain. Zero divisors in R² are (0, a2) and (a1, 0), where a1, a2 ≠ 0.

Learn more about commutativity:

brainly.com/question/778086

#SPJ11


During a football game, a team has four plays, or downs to advance the football ten
yards. After a first down is gained, the team has another four downs to gain ten or more
yards.
If a team does not move the football ten yards or more after three downs, then the team
has the option of punting the football. By punting the football, the offensive team gives
possession of the ball to the other team. Punting is the logical choice when the offensive
team (1) is a long way from making a first down, (2) is out of field goal range, and (3) is
not in a critical situation.
To punt the football, a punter receives the football about 10 to 12 yards behind the center.
The punter's job is to kick the football as far down the field as possible without the ball
going into the end zone.
In Exercises 1-4, use the following information.
A punter kicked a 41-yard punt. The path of the football can be modeled by
y=-0.0352² +1.4z +1, where az is the distance (in yards) the football is kicked and y is the height (in yards) the football is kicked.
1. Does the graph open up or down?
2. Does the graph have a maximum value or a minimum value?
3. Graph the quadratic function.
4. Find the maximum height of the football.
5. How would the maximum height be affected if the coefficients of the "2" and "a" terms were increased or decreased?

Answers

1. The graph opens downward.

2. The graph has a maximum value.

4. The maximum height is approximately 22.704 yards.

5. Increasing the coefficients makes the parabola narrower and steeper, while decreasing them makes it wider and flatter.

1. The graph of the quadratic function y = -0.0352x² + 1.4x + 1 opens downwards. This can be determined by observing the coefficient of the squared term (-0.0352), which is negative.

2. The graph of the quadratic function has a maximum value. Since the coefficient of the squared term is negative, the parabola opens downward, and the vertex represents the maximum point of the graph.

3. To graph the quadratic function y = -0.0352x² + 1.4x + 1, we can plot points and sketch the parabolic curve. Here's a rough representation of the graph:

Graph of the quadratic function

The x-axis represents the distance (in yards) the football is kicked (x), and the y-axis represents the height (in yards) the football reaches (y).

4. To find the maximum height of the football, we can determine the vertex of the quadratic function. The vertex of a quadratic function in the form y = ax² + bx + c is given by the formula:

x = -b / (2a)

In this case, a = -0.0352 and b = 1.4. Plugging in the values, we have:

x = -1.4 / (2 * -0.0352)

x = -1.4 / (-0.0704)

x ≈ 19.886

Now, substituting this value of x back into the equation, we can find the maximum height (y) of the football:

y = -0.0352(19.886)² + 1.4(19.886) + 1

Performing the calculation, we get:

y ≈ 22.704

Therefore, the maximum height of the football is approximately 22.704 yards.

5. If the coefficients of the "2" and "a" terms were increased, it would affect the shape and position of the graph. Specifically:

Increasing the coefficient of the squared term ("2" term) would make the parabola narrower, resulting in a steeper downward curve.

Increasing the coefficient of the "a" term would affect the steepness of the parabola. If it is positive, the parabola would open upward, and if it is negative, the parabola would open downward.

On the other hand, decreasing the coefficients would have the opposite effects:

Decreasing the coefficient of the squared term would make the parabola wider, resulting in a flatter downward curve.

Decreasing the coefficient of the "a" term would affect the steepness of the parabola in the same manner as increasing the coefficient, but in the opposite direction.

These changes in coefficients would alter the shape of the parabola and the position of the vertex, thereby affecting the maximum height and the overall trajectory of the football.

for such more question on height

https://brainly.com/question/23377525

#SPJ8

Given the matrix
Use Matlab without syms to find the output in the workspace
of:
a) It's determinant and trace
b) It's rank
c) It's inverse

Answers

By following the provided instructions and executing the commands in MATLAB, you will be able to find the determinant, trace, rank, and inverse of the given matrix.

I can provide you with the instructions on how to perform these calculations in MATLAB. Please follow these steps:

a) Determinant and trace:

1. Define the matrix in MATLAB using its elements. For example, if the matrix is A, you can define it as:

  A = [a11, a12, a13; a21, a22, a23; a31, a32, a33];

  Replace a11, a12, etc., with the actual values of the matrix elements.

2. Calculate the determinant of the matrix using the det() function:

  det_A = det(A);

3. Calculate the trace of the matrix using the trace() function:

  trace_A = trace(A);

b) Rank:

1. Use the rank() function in MATLAB to determine the rank of the matrix:

  rank_A = rank(A);

c) Inverse:

1. Calculate the inverse of the matrix using the inv() function:

  inv_A = inv(A);

Please note that in order to obtain the output in the MATLAB workspace, you need to execute these commands in MATLAB itself. The variables det_A, trace_A, rank_A, and inv_A will hold the respective results.

To know more about MATLAB, visit

https://brainly.com/question/30641998

#SPJ11

Laney 5 mith Jane eats of ( a^(2))/(3) cup of cereal for breakfast every day. If the box contains a total of 24 cups, how many days will it take to finish the cereal box?

Answers

The number of days it will take Laney and Jane to finish the cereal box is (72 / a^2).

Laney and Jane eat (a^2)/3 cups of cereal for breakfast every day. The box contains a total of 24 cups. The question is asking for the number of days that it will take them to finish the cereal box.To find the answer, we will need to calculate how many cups of cereal they eat per day and divide it into the total number of cups in the box. The formula for this is:Number of days = (Total cups in the box) / (Number of cups eaten per day)We are given that they eat (a^2)/3 cups of cereal per day. We also know that the box contains 24 cups of cereal, so:Number of cups eaten per day = (a^2)/3Number of days = 24 / ((a^2)/3)To simplify this expression, we can multiply by the reciprocal of (a^2)/3:Number of days = 24 * (3 / (a^2))Number of days = (72 / a^2)Therefore, the number of days it will take Laney and Jane to finish the cereal box is (72 / a^2).

Learn more about number :

https://brainly.com/question/10547079

#SPJ11

The following represent statistics of weekly salaries at Acme Corporation. Mean =$585 Median =$581 Mode =$575 Standard deviation =$28 First Quartile =$552 Third Quartile =$60586 th Percentile =$612P 64

=$592 a) What is the most common salary? b) What salary did half the employee's salaries surpass? c) About what percent of employee's salaries is below $612? d) What percent of the employee's salaries are above $552? e) What salary is 2 standard deviations below the mean? f) About what percent of employee's salaries is above $592 ? g) What salary is 1.5 standard deviations above the mean? h) Assume the weekly salaries have a distribution that is bell-shaped, about what percent of the salaries would be between $529 and $641 ?

Answers

h) Assuming a bell-shaped distribution, approximately 68% of the salaries would fall within one standard deviation of the mean. Therefore, we can estimate that about 68% / 2 = 34% of the salaries would be between $529 and $641.

a) The most common salary, or the mode, is $575.

b) The median salary is $581. This means that half of the employee's salaries surpass $581.

c) Approximately 64% of employee's salaries are below $612. This is indicated by the 64th percentile value.

d) The first quartile is $552, which represents the 25th percentile. Therefore, approximately 25% of the employee's salaries are above $552.

e) Two standard deviations below the mean would be calculated as follows:

  2 * $28 (standard deviation) = $56

  Therefore, the salary that is 2 standard deviations below the mean is $585 - $56 = $529.

f) About 50% of the salaries are above the median, so approximately 50% of employee's salaries are above $592.

g) 1.5 standard deviations above the mean would be calculated as follows:

  1.5 * $28 (standard deviation) = $42

  Therefore, the salary that is 1.5 standard deviations above the mean is $585 + $42 = $627.

To know more about deviations visit:

brainly.com/question/13498201

#SPJ11

Assume a system with 4000 bit frames, a data rate of 2Mbit/s and an ALOHA MAC. New frames arrive in the channel according to a Poisson distribution. a) For a frame arrival rate of 2 per frame duration, determine the probability that exactly one frame collides with our desired frame. b) For frame arrival rates of 2 and 4 per frame duration, determine the probability of 1 or more frames colliding with our desired frame. c) Determine the effective throughput of the channel in bits/second when the frame arrival rate is 2 and 4 per frame duration.

Answers

To find the probability of exactly one collision, we need to calculate P(1) when λ = 2. Plugging in these values into the Poisson formula, we get P(1) = (e^(-2) * 2^1) / 1! ≈ 0.2707.

ALOHA MAC is a random access protocol where devices transmit data whenever they have it, resulting in the possibility of frame collisions. In the first case, where the frame arrival rate is 2 per frame duration, we want to find the probability of exactly one frame colliding with our desired frame. The Poisson distribution can be used for this calculation.

Let λ be the average arrival rate, which is 2 frames per frame duration. The probability of exactly k arrivals in a given interval is given by the Poisson distribution formula P(k) = (e^(-λ) * λ^k) / k!.

To find the probability of exactly one collision, we need to calculate P(1) when λ = 2. Plugging in these values into the Poisson formula, we get P(1) = (e^(-2) * 2^1) / 1! ≈ 0.2707.

In the second case, where the frame arrival rates are 2 and 4 per frame duration, we want to determine the probability of 1 or more collisions with our desired frame. To calculate this, we can find the complement of the probability that no collisions occur. Using the Poisson distribution formula with λ = 2 and λ = 4, we calculate P(0) = e^(-2) ≈ 0.1353 and P(0) = e^(-4) ≈ 0.0183 for the respective cases. Therefore, the probabilities of 1 or more collisions are approximately 1 - 0.1353 ≈ 0.864.

For more information on frames visit: brainly.com/question/14918196

#SPJ11

Carlo used this number line to find the product of 2 and What errors did Carlo make? Select two options -3. The arrows should each be a length of 3 . The arrows should be pointing in the positive direction. The arrows should start at zero. The arrows should point in the negative direction.

Answers

The arrows should be pointing in the positive direction.

We are given the following number line: [asy]
unitsize(15);
for(int i = -4; i <= 4; ++i) {
draw((i,-0.1)--(i,0.1));
label("$"+string(i)+"$",(i,0),2*dir(90));
}
draw((-3,0)--(0,0),EndArrow);
draw((0,0)--(3,0),EndArrow);
draw((0,0)--(-3,0),BeginArrow);
[/asy]

And he needs to find the product of 2 and the error he made is shown below:

The arrows should point in the negative direction.

The direction of the arrow should be towards the positive direction.

Therefore, the following option is correct:

The arrows should point in the negative direction.

Carlo should have pointed the arrows towards the positive direction.

Therefore, the following option is correct:

The arrows should be pointing in the positive direction.

Learn more about Errors:

brainly.com/question/28008941

#SPJ11

\[ t^{2} x^{\prime}+2 t x=t^{7}, \quad x(0)=0 \] Write the Left Hand Side (LHS) as the derivative of a product and solve by integrating both sides with respect to \( t \).

Answers

The differential equation \(t^{2} x^{\prime}+2 t x=t^{7}\) with \(x(0)=0\) can be solved by rewriting the LHS as the derivative of a product and integrating both sides. The solution is \(x = \frac{t^6}{8}\).

The given differential equation is \( t^{2} x^{\prime}+2 t x=t^{7} \), with the initial condition \( x(0)=0 \). To solve this equation, we can rewrite the left-hand side (LHS) as the derivative of a product. By applying the product rule of differentiation, we can express it as \((t^2x)^\prime = t^7\). Integrating both sides with respect to \(t\), we obtain \(t^2x = \frac{t^8}{8} + C\), where \(C\) is the constant of integration. By applying the initial condition \(x(0) = 0\), we find \(C = 0\). Therefore, the solution to the differential equation is \(x = \frac{t^6}{8}\).

For more information on integral visit: brainly.com/question/33360718

#SPJ11

IQ scores are normally distributed with a mean of 95 and a standard deviation of 16 . Assume that many samples of size n are taken from a large population of people and the mean 1Q score is computed for each sample. a. If the sample size is n=64, find the mean and standard deviation of the distribution of sample means. The mean of the distribution of sample means is The standard deviation of the distribution of sample means is (Type an integer or decimal rounded to the nearest tenth as needed.) b. If the sample size is n=100, find the mean and standard deviation of the distribution of sample means. The mean of the distribution of sample means is

Answers

When the sample size is 64, the mean of the distribution of sample means is 95 and the standard deviation of the distribution of sample means is 2. When the sample size is 100, the mean of the distribution of sample means is 95 and the standard deviation of the distribution of sample means is 1.6.

Mean of the distribution of sample means = 95 Standard deviation of the distribution of sample means= 2 The formula for the mean and standard deviation of the sampling distribution of the mean is given as follows:

μM=μσM=σn√where; μM is the mean of the sampling distribution of the meanμ is the population meanσ M is the standard deviation of the sampling distribution of the meanσ is the population standard deviation n is the sample size

In this question, we are supposed to calculate the mean and standard deviation of the distribution of sample means when the sample size is 64.

So the mean of the distribution of sample means is: μM=μ=95

The standard deviation of the distribution of sample means is: σM=σn√=16164√=2b.

Mean of the distribution of sample means = 95 Standard deviation of the distribution of sample means= 1.6

In this question, we are supposed to calculate the mean and standard deviation of the distribution of sample means when the sample size is 100. So the mean of the distribution of sample means is:μM=μ=95The standard deviation of the distribution of sample means is: σM=σn√=16100√=1.6

From the given question, the IQ scores are normally distributed with a mean of 95 and a standard deviation of 16. When the sample size is 64, the mean of the distribution of sample means is 95 and the standard deviation of the distribution of sample means is 2. When the sample size is 100, the mean of the distribution of sample means is 95 and the standard deviation of the distribution of sample means is 1.6.

The sampling distribution of the mean refers to the distribution of the mean of a large number of samples taken from a population. The mean and standard deviation of the sampling distribution of the mean are equal to the population mean and the population standard deviation divided by the square root of the sample size respectively. In this case, the mean and standard deviation of the distribution of sample means are calculated when the sample size is 64 and 100. The mean of the distribution of sample means is equal to the population mean while the standard deviation of the distribution of sample means decreases as the sample size increases.

To know more about means visit:

brainly.com/question/30112112

#SPJ11

woodlawn is a taxi company and serves the car wash for the registered taxi drivers. the drivers arrive at the washing space to get their car washed according to the poisson process, with an average arrival rate of 8 cars per hour. currently, the washing process is low-tech and is done manually by the workers. there are two spots (one worker per spot) for washing the car. service times for washing each car are random, with a mean of 12 mins and a standard deviation of 6 mins.

Answers

The washing process is low-tech and is done manually by the workers and there are two spots (one worker per spot) for washing the car is 12 minutes.

The arrival of cars at the car wash follows a Poisson process. This is a mathematical model used to describe events that occur randomly over time, where the number of events in a given interval follows a Poisson distribution.

The time taken to wash each car is characterized by its average washing time. In this scenario, the average washing time is 12 minutes. This means that, on average, it takes 12 minutes to wash a car.

The standard deviation is a measure of how much the washing times vary from the average. In this case, the standard deviation is 6 minutes. A higher standard deviation indicates a greater variability in the washing times. This means that some cars may take more or less time to wash compared to the average of 12 minutes, and the standard deviation of 6 minutes quantifies this deviation from the mean.

The washing time for each car is considered a random variable because it can vary from car to car. The random service times are assumed to follow a probability distribution, which is not explicitly mentioned in the given information.

Woodlawn has two washing spots, with one worker assigned to each spot. This suggests that the cars are washed in parallel, meaning that two cars can be washed simultaneously. Having multiple workers and spots allows for a more efficient washing process, as it reduces waiting times for the drivers.

To know more about deviation here

https://brainly.com/question/16555520

#SPJ4

Find the volumes of the solids generated by revolving the region in the first quadrant bounded by the curve x=y−y^3
and the y-axis about the given axes. a. The x-axis b. The line y=1 a. The volume is (Type an exact answer in terms of π.)

Answers

So, the volume of the solid generated by revolving the region about the x-axis is 2π/3.

To find the volume of the solid generated by revolving the region in the first quadrant bounded by the curve [tex]x = y - y^3[/tex] and the y-axis about the x-axis, we can use the method of cylindrical shells.

The equation [tex]x = y - y^3[/tex] can be rewritten as [tex]y = x + x^3.[/tex]

We need to find the limits of integration. Since the region is in the first quadrant and bounded by the y-axis, we can set the limits of integration as y = 0 to y = 1.

The volume of the solid can be calculated using the formula:

V = ∫[a, b] 2πx * h(x) dx

where a and b are the limits of integration, and h(x) represents the height of the cylindrical shell at each x-coordinate.

In this case, h(x) is the distance from the x-axis to the curve [tex]y = x + x^3[/tex], which is simply x.

Therefore, the volume can be calculated as:

V = ∫[0, 1] 2πx * x dx

V = 2π ∫[0, 1] [tex]x^2 dx[/tex]

Integrating, we get:

V = 2π[tex][x^3/3][/tex] from 0 to 1

V = 2π * (1/3 - 0/3)

V = 2π/3

To know more about volume,

https://brainly.com/question/33630070

#SPJ11

Other Questions
Which of the following is MOST appropriate cardiorespiratory assessment to determine intensity levels for a deconditioned client?A. Submaximal cycle ergometer testB. Physician-supervised VO2 Max testC. Talk testD. Rockport walking test test Describe any special considerations unique to Oracle that must be addressed? The ______ glands are the functional portion of the mammary glands which produce milk due to stimulation by the hormone _____.A) alveolar; oxytocinB) lactiferous; prolactinC) lactiferous; oxytocinD) alveolar; prolactin Please answer all 4 questions. Thanks in advance.1.What is the present value of a security that will pay $14,000 in 20 years if securities of equal risk pay 3% annually? Do not round intermediate calculations. Round your answer to the nearest cent.2.Your parents will retire in 19 years. They currently have $260,000 saved, and they think they will need $1,300,000 at retirement. What annual interest rate must they earn to reach their goal, assuming they don't save any additional funds? Round your answer to two decimal places.3.An investment will pay $150 at the end of each of the next 3 years, $250 at the end of Year 4, $350 at the end of Year 5, and $500 at the end of Year If other investments of equal risk earn 12% annually, what is its present value? Its future value? Do not round intermediate calculations. Round your answers to the nearest cent. What is the present value? What is the future value?4.You have saved $5,000 for a down payment on a new car. The largest monthly payment you can afford is $300. The loan will have a 9% APR based on end-of-month payments. What is the most expensive car you can afford if you finance it for 48 months? What is the most expensive car you can afford if you finance it for 60 months? Round to nearest cent for both. True or False. The parents of peers are a recognized influence in the formation of most people's political values. What are the leading coefficient and degree of the polynomial? -15u^(4)+20u^(5)-8u^(2)-5u In simplest radical form, what are the solutions to the quadratic equation 0 =-3x - 4x + 5?-b b-4ac2aQuadratic formula: x =O x= -2193Ox=-2+21930 x= 2+1530 x = 2+2/193 The demand for labor in a certain industry is ND = 300 - w, where ND is the number of workersemployers want to hire and w is the real wage measured in dollars per day. The supply of labor inthe same industry is NS = 200 + w, where NS is the number of people willing to work.Now, consider an alternative model where firms always offer a wage of w = $50, regardless of howmany workers are in the industry. The wage-setting curve is NS = 200 + w and the labor force is300 people.1. According to this model, what is the equilibrium wage and employment in this industry?2. What is the equilibrium level of unemployment and why?3. According to this model if the minimum wage is set at $60 per day, how many workerswill be unemployed? Please show your work. some research indicates that obese people have much more lipoprotein lipase activity in their fat cells than lean people do.true or false? Shahrul had been with the organization for a fortnight now and was due to meet Razali. He opened the door and walked in.Razali asked him to be seated and said, So doctor, what is the diagnosis?Shahrul had been recently hired as the company counsellor at MJS United Sdn Bhd, as Razali, the CEO, felt that he was fed up with his team of non-performers. He had hand-picked the Band II decision makers from the most prestigious and growing enterprises. Each one came with a proven track record of strategic turnarounds they had managed in their respective roles. So why this inertia at MJS United Sdn Bhd? The salaries and perks were competitive, reasonable autonomy was permitted in decision-making and yet nothing was moving.There had been two major mergers and the responsibilities had increased somewhat. When Shahrul went to meet Samad Mamat, the bright star who had joined six months back, he was reported absent and seemed to be suffering from hypertension and angina pain. His colleague in the next cabin was not aware that Samad had not come for the past four days. As he was talking to Razalis secretary, he could hear Kamal Baharu, the HR head, yelling at the top of her voice at a new recruit, who after six weeks of joining had come to ask her about her job role.The Band III executives had been with the company for a tenure of 515 years and yet had not been able to make it to the Band II position (except two lady employees). They were laid back, extremely critical and yet surprisingly were not moving.Razali also seemed a peculiar guy, he had hired him as the counsellor and was also making some structural changes as suggested by a spiritual expert, to nullify the effect of evil spirits. He had a history of hiring the best brains, and then trying to fit them into some role in the organization. And in case someone did not fit in, firing him without any remorse. He had changed his nature of business thrice and on the personal front, he was on the verge of his second divorce.The company had a great infrastructure, attractive compensation packages and yet the place reeked of apathy. It was like a stagnant pool of the best talent. Was it possible to undertakeoperation clean up?QUESTIONSWhat is the management decision problem that Shahrul is likely to narrate to Razali?Convert and formulate it into a research problem and state the objectives of your study.Can you suggest a theoretical framework about what you propose to study?Develop the working hypothesis for your study. When administering fresh frozen plasma (FFP), which one of the following is considered standard blood bank practice?A. Should be ABO compatible with the recipient's red blood cellsB. Must be the same Rh type as the recipientC. Is appropriate for use as a volume expanderD. Component should remain frozen when it is issued Define a function named get_sum_multiples_of_3(a_node) which takes a Node object (a reference to a linked chain of nodes) as a parameter and returns the sum of values in the linked chain of nodes which are multiples of 3. For example, if a chain of nodes is: 1 -> 2 -> 3 -> 4 -> 5 -> 6, the function should return 9 (3 + 6).Note:You can assume that the parameter is a valid Node object.You may want to use the get_multiple_of_3() method The operations manager for the Blue Moon Brewing... The operations manager for the Blue Moon Brewing Co. produces two beers: Lite (L) and Dark (D). Two of his resources are constrained. production time, which is limited to 8 hours (480 minutes) per day; and mait extract (one of his ingredients), of which he can get only 675 gallons each day. To produce a keg of Lite beer requires 2 minutes of time and 5 gallons of mait extract, while each keg of Dark beer needs 4 minutes of time and 3 gallons of mait extract. Profits for Lite beer are $3.00 per keg, and profits for Dark beer are $2.00 per keg. What is the objective function? Multiple Choice $4L+$2D=Z $5L+$3D=Z $2L+$3D=Z $2L+$4D=Z $3L+$2D=Z What the best describe of convection process?. Use the description to write the transformed function, g(x). f(x)=(1)/(x)is compressed vertically by a factor of (1)/(3)and then translated 3 units up Rogot instruments makes fine violins, violas, and cellos, It has $1.2 milion in debt outstanding, equify valued at $24 milison, and pays corporate income tax at rate 21%. Its cost of equity is 12% and its cost of debt is 8%. a. What is Rogot's pre-tax WACC? b. What is Rogot's (effective after-tax) WACC? a. What is Rogors pre-tax WACC? Rogots pre-tax WACC is \%. (Round to two decimal places.) b. What is Rogot's (elfective after-tax) WACC? Rogot's (effective afler-tax) WACC is \%. (Round to two decimal places.) Is SAA a triangle similarity theorem? Suppose the production function for coffee (C) is C=min(B,W), where B= beans in pounds and W= water in gallons. Suppose the price of water is $.10 per gallon and the price of beans is $10 per pound. The expansion path a. depends on the price of beans only. b. depends on the price of water only c. depends on the price of neither beans nor water. d. depends of the costs of both beans and water. Question 6 The master budget process usually begins with the: operating budget production budget cash budget sales budget The acid-test ratio is a test of the quality of accounts receivable-in other words, whether they are likely to be collected. True False Question 8 The budget or schedule that provides necessary input data for the direct labour budget is the production budget. True False one cup of raw leafy greens is counted as 1 cup from the vegetable group.