Answer:
first number(x) = 2 second number(y)= 6
Step-by-step explanation:
This is an example of a simultaneous equation.
First write this word problem as equations, where x is the "first number" that you've mentioned and y is the "second number".
x + 2y = 14 (equation 1)
2x + y = 10 (equation 2)
This is solved using the elimination method.
We need to make one of the coefficients the same - in this case we can make y the same. In order to do this we need to multiply equation 2 by 2, so that y becomes 2y.
2x + y = 10 MULTIPLY BY 2
4x + 2y = 20 (this is now our new equation 2 with the same y coefficient)
Now subtract equation 1 from equation 2.
4x - x + 2y - 2y = 20 - 14 (2y cancels out here)
3x = 6
x = 2
Now we substitute our x value into equation 1 to find the value of y.
2 + 2y = 14
2y = 12
y = 6
Hope this has answered your question.
Answer:
6 and 2
Step-by-step explanation:
Let the first number =a
Let the second number =b
A first number plus twice a second number is 14.
a+2b=14Twice the first number plus the second totals 10.
2a+b=10We solve the two equations simultaneously
[tex]a+2b=14 \implies a=14-2b\\$Substitute into the second equation$\\2(14-2b)+b=10\\28-4b+b=10\\-3b=10-28\\-3b=-18\\b=6[/tex]
Recall:
a=14-2b
=14-2(6)
=14-12
a=2
The two numbers are 6 and 2.
Which linear inequality is represented by the graph?
y > 2x + 2
y ≥ One-halfx + 1
y > 2x + 1
y ≥ One-halfx + 2
Answer: y > 2x + 1
Step-by-step explanation:
In the graph first, we can see two things:
The line is not solid (so the values in the line are not included), and the shaded part is above, so we will be using the symbol:
y > f(x)
Now, in the line we can see that when x = 0, y = 1.
So the linear equation must be something like:
f(x) = a*x + 1
The only one that has an y-intercept equal to 1 is y > 2x + 1
Answer:
C or y>2x +1
Step-by-step explanation:
edge
find the values of x and y that make k ll j and m ll n
Answer:
x = 80
y = 130
Step-by-step explanation:
The 2 angles are supplementary. so, x-30 + x+50 = 180.
We solve and get 2x = 180-20
x = 80
y = x+50, because of parallel rules.
y = 130
Answer:
x = 80
y = 130
Step-by-step explanation:edge 2020
The attendance for a week at a local theatre is normally distributed, with a mean of 4000 and a standard deviation of 500. What percentage of the attendance figures would be less than 3500? What percentage of the attendance figures would be greater than 5000? what percentage of the attendance figures would be between 3700 and 4300 each week?
ok its 45.15% trust me
Answer:
Step-by-step explanation:
This curve alone does not give exact percentages with the exception of P(z=0) = .50 or 50%
A Pictorial where 'some' of the % have been added for helps more...
However, most often one needs to use a table, calculator, or an Excel function ect to find exact Percentage,
P(x > 4000) = P(z = 0) = .50 or 50 % |using above pictorial
Using Calculator etc: Here, am using the Excel NORMSDIST function to find the Percentages:
P(z=3/5 - z=-3/5) = .7257 - .2742 =.4515 or 45.15%
a parabola has an x-intercept at 2, its axis of symmetry is the line x=4, and the y-coordinate of its vertex is 6. Determine the equation of the parabola.
Answer:
The standard equation of the parabola is:
[tex]y=-\frac{3}{2}x^2+12x-18[/tex]
Step-by-step explanation:
An x intercept of 2 means that the point (2, 0) is in the graph of the parabola.
We can also write the general expression for the parabola in vertex form, since we can use the information on the coordinates of the vertex: (4, 6) - recall that the axis of symmetry of the parabola goes through the parabola's vertex, so the x-value of the vertex must be x=4.
[tex]y-y_{vertex}=a\,(x-x_{vertex})^2\\y-6=a\,(x-4)^2[/tex]
Now we can find the value of the parameter "a" by using the extra information about the point (2, 0) at which the parabola intercepts the x-axis:
[tex]y-6=a\,(x-4)^2\\0-6=a\,(2-4)^2\\-6=a\,4\\a=-\frac{6}{4} =-\frac{3}{2}[/tex]
Then the equation of the parabola becomes:
[tex]y-6=-\frac{3}{2} \,(x-4)^2\\y-6=-\frac{3}{2} (x^2-8x+16)\\y-6=-\frac{3}{2}x^2+12x-24\\y=-\frac{3}{2}x^2+12x-18[/tex]
Find the smallest positive integer that is greater than $1$ and relatively prime to the product of the first 20 positive integers. Reminder: two numbers are relatively prime if their greatest common divisor is 1.
Answer:
23
Step-by-step explanation:
since the number is relatively prime to the product of the first 20 positive numbers
It number must not have factor of (1-20)
Therefore the smallest possible number is the next prime after 20
Answer is 23
The smallest positive integer that is greater than 1 and relatively prime to the product of the first 20 positive integers is,
⇒ 23
What is Greatest common factors?The highest number that divides exactly into two more numbers, is called Greatest common factors.
Since, The number is relatively prime to the product of the first 20 positive numbers means a number which must not have factor of (1 - 20).
Hence, The smallest possible number is the next prime after 20 is, 23
Therefore, The smallest positive integer that is greater than 1 and relatively prime to the product of the first 20 positive integers is,
⇒ 23
Learn more about the Greatest common factors visit:
https://brainly.com/question/219464
#SPJ2
5/12 +( 5/12 + 3/4 ) =
Answer:
Proper: 15/4
Improper: 3 3/4
Step-by-step explanation:
Well to solve the following question,
5/12 + (5/12 + 3/4)
We solve the part in the parenthesis first,
5/12 + 3/4 = 14/4
Simplified -> 7/2
5/12 + 7/2
= 45/12
Simplified -> 15/4
Thus,
the answer is 15/4 or 3 3/4.
Hope this helps :)
Answer:
19/12= [tex]1 \frac{7}{12}[/tex]Step-by-step explanation:
[tex]\frac{5}{12}+\left(\frac{5}{12}+\frac{3}{4}\right)\\\\=\frac{5}{12}+\frac{5}{12}+\frac{3}{4}\\\\\mathrm{Add\:similar\:elements:}\:\frac{5}{12}+\frac{5}{12}=2\times \frac{5}{12}\\=2\times \frac{5}{12}+\frac{3}{4}\\\\=\frac{5\times \:2}{12}\\\\=\frac{10}{12}\\\\=\frac{10}{12}\\\\=\frac{5}{6}+\frac{3}{4}\\L.C.M =12\\\mathrm{Adjust\:Fractions\:based\:on\:the\:LCM}\\\\\frac{5}{6}=\frac{5\cdot \:2}{6\times \:2}=\frac{10}{12}\\\\\frac{3}{4}=\frac{3\times \:3}{4\times \:3}=\frac{9}{12}\\[/tex]
[tex]\\=\frac{10}{12}+\frac{9}{12}\\\mathrm{Since\:the\:denominators\:are\:equal\\\:combine\:the\:fractions}:\\\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}\\\\=\frac{10+9}{12}\\\\=\frac{19}{12}[/tex]
The area of a square is 64n36. What is the length of one side of the square?
Answer:
8n6
step by step explanation.
what is the value of A when we rewrite 4^31x as A^x
Answer:
.
Step-by-step explanation:
The value of A is A = 4³¹
What are Exponents?Exponents are the base raised by power, it is written in the superscript of a number.
The expression is
[tex]\rm 4^{31x}\\[/tex]
To write in form Aˣ
A will be obtained by comparing the expressions
Aˣ = [tex]\rm 4^{31x}\\[/tex]
A = 4³¹
Therefore, the value of A is A = 4³¹.
To know more about Exponents
https://brainly.com/question/5497425
#SPJ2
24=3(n-5) solve for n
Answer:
n = 13
Step-by-step explanation:
24 = 3 (n-5)
3n - 15 = 24
3n = 24 +15
3n = 39
n = 39/3
n = 13
Answer:
[tex]\boxed{\sf n=13}[/tex]
Step-by-step explanation:
[tex]\sf 24=3(n-5)[/tex]
[tex]\sf Expand \ brackets.[/tex]
[tex]\sf 24=3n-15[/tex]
[tex]\sf Add \ 15 \ to \ both \ sides.[/tex]
[tex]\sf 24+15=3n-15+15[/tex]
[tex]\sf 39=3n[/tex]
[tex]\sf Divide \ both \ sides \ by \ 3.[/tex]
[tex]\sf \frac{39}{3} =\frac{3n}{3}[/tex]
[tex]\sf 13=n[/tex]
a warehouse had 3 shelves long enough to hold 8 boxes and high enough to hold 4 boxes. all the shelves are full how many boxes are on the shelves all together?
Answer:
8*4*3=96 boxes in total
Step-by-step explanation:
I think. I just multiplies the 3 numbers. Hope this helps (:
Answer:
8*4*3=96 boxes in total
Step-by-step explanation:
I just multiplies the 3 numbers.
Rachel's waist circumference is 37 inches and her hip circumference is 39 inches. Based on this information, what does her waist-to-hip ratio tell you?
Answer:
[tex]n = 0.949[/tex]. The waist-to-hip ratio indicates that length of her waist circumference is equal to the 94.9 % of length of her hip circumference.
Step-by-step explanation:
The waist-to-hip ratio of Rachel is:
[tex]n = \frac{37\,in}{39\,in}[/tex]
[tex]n = \frac{37}{39}[/tex]
[tex]n = 0.949[/tex]
The waist-to-hip ratio indicates that length of her waist circumference is equal to the 94.9 % of length of her hip circumference.
The length of her waist circumference is 94.9% the length of her hip circumference.
From the information given, Rachel's waist circumference is 37 inches and her hip circumference is 39 inches.
Therefore, her waist to hip ratio will be calculated thus:
n = 37/39
n = 0.949
This implies that the length of her waist circumference is 94.9% the length of her hip circumference.
Learn more about ratio on:
https://brainly.com/question/13763238
Which inequality has a dashed boundary line when graphed? A y>=3/5x+1 B y>= -1/3x+1 C y>3x+1
Answer: C y>3x+1
Step-by-step explanation:
When we graph an inequality with strictly greater of less than sign ('<' or '>'), then the graph has a dashed boundary line .Further it indicates that it does not include the points on the line.From all the given options , only C contains inequality with '>' sign .
Hence, y>3x+1 is the inequality has a dashed boundary line when graphed.
hence, the correct option is C.
10=12-x what would match this equation
Answer:
x=2
Step-by-step explanation:
12-10=2
Answer:
x=2
Step-by-step explanation:
10=12-x
Subtract 12 from each side
10-12 = 12-12-x
-2 =-x
Multiply by -1
2 = x
In 2010 polls indicated that 75% of Americans favored mandatory testing of students in public schools as a way to rate the school. This year in a poll of 1,000 Americans 71% favor mandatory testing for this purpose. Has public opinion changed since 2010?
We test the hypothesis that the percentage supporting mandatory testing is less than 75% this year The p-value is 0.013
Which of the following interpretation of this p-value is valid?
A. The probability that Americans have changed their opinion on this issue since 2010 is 0.013.
B. There is a 1.3% chance that the null hypothesis is true.
C. If 75% of Americans still favor mandatory testing this year, then there is a 3% chance that poll results will show 72% or fewer with this opinion.
Answer:
C. If 75% of Americans still favor mandatory testing this year, then there is a 3% chance that poll results will show 72% or fewer with this opinion.
Step-by-step explanation:
Significance level or alpha level is the probability of rejecting the null hypothesis when null hypothesis is true. It is considered as a probability of making a wrong decision. It is a statistical test which determines probability of type I error. If the obtained probability is equal of less than critical probability value then reject the null hypothesis. In this question the sample of 1000 Americans is under test. It is the result of the poll that 75% still favor mandatory testing.
PLEASE HELP ANSWER A-B Claire is considering investing in a new business. In the first year, there is a probability of 0.2 that the new business will lose $10,000, a probability of 0.4 that the new business will break even ($0 loss or gain), a probability of 0.3 that the new business will make $5,000 in profits, and a probability of 0.1 that the new business will make $8,000 in profits. A.) Claire should invest in the company if she makes a profit. Should she invest? Explain using expected values. B.) If Claire’s initial investment is $1,200 and the expected value for the new business stays constant, how many years will it take for her to earn back her initial investment? LOOK AT PICTURE BELOW
Answer:
Therefore, the volume V cyl is given by the equation: V cyl πr 2h (area of its circular base times its height) where r is the radius of the cylinder and h is its height. The volume of the cone (V cone) is one-third that of a cylinder that has the same base and height: .
Step-by-step explanation:
Two jokers are added to a $52$ card deck and the entire stack of $54$ cards is shuffled randomly. What is the expected number of cards that will be strictly between the two jokers?
Answer:
52/3.
Step-by-step explanation:
There are (54·53)/2 = 1431 ways the 2 jokers can be placed in the 54-card deck. We can consider those to see how the number of cards between them might work out.
Suppose we let J represent a joker, and - represent any other card. The numbers of interest can be found as follows:
For jokers: JJ---... there are 0 cards between. This will be the case also for ...
-JJ---...
--JJ---...
and so on, down to ...
...---JJ
The first of these adjacent jokers can be in any of 53 positions. So, the probability of 0 cards between is 53/1431.
__
For jokers: J-J---..., there is 1 card between. The first of these jokers can be in any of 52 positions, so the probability of 1 card between is 52/1431.
__
Continuing in like fashion, we find the probability of n cards between is (53-n)/1431. So, the expected number of cards between is ...
[tex]E(n)=\sum\limits_{n=0}^{53}{\dfrac{n(53-n)}{1431}}=\dfrac{53}{1431}\sum\limits_{n=0}^{53}{n}-\dfrac{1}{1431}\sum\limits_{n=0}^{53}{n^2}\\\\=\dfrac{53(53\cdot 54)}{1431(2)}-\dfrac{1(53)(54)(107)}{1431(6)}=53-\dfrac{107}{3}\\\\\boxed{E(n)=\dfrac{52}{3}}[/tex]
Hong buys a bag of 11 tangerines for $2.86.
Find the unit price in dollars per tangerine.
If necessary, round your answer to the nearest cent.
Answer:
$0.26
Step-by-step explanation:
To find the unit price, divide the cost by the amount you have.
$2.86/11 = $0.26
The unit price is $0.26.
A type of probability distribution that shows the probability of x successes in n trials, where the probability of success remains the same from trial to trial, is referred to as a(n) ______.
Answer: Binomial distribution
Step-by-step explanation:
The binomial appropriation is a likelihood circulation that sums up the probability that a worth will take one of two free qualities under a given arrangement of boundaries or suspicions. The hidden suspicions of the binomial dispersion are that there is just a single result for every preliminary, that every preliminary has a similar likelihood of achievement, and that every preliminary is totally unrelated, or autonomous of one another.
Given that 243√3 =3^a, find the value of a
Answer:
a=11/5 OR 5.5
Step-by-step explanation:
An unbiased coin is tossed 14 times. In how many ways can the coin land tails either exactly 9 times or exactly 3 times?
Answer
[tex]P= 0.144[/tex] ways
the coin can land tails either exactly 8 times or exactly 5 times in
[tex]0.144[/tex] ways
Step by step explanation:
THis is a binomial distribution
Binomial distribution gives summary of the number of trials as well as observations as each trial has the same probability of attaining one particular value.
P(9)=(14,9).(0.5)⁹.(0.5)¹⁴⁻⁹
p(3)=(14,3).(0.5)⁹.(0.5)¹⁴⁻³
p=(9)+p(3)
p=C(14,9)(0.5)¹⁴ + C(14,3). (0.5)¹⁴
P= (0.5)¹⁴ [C(14,9) + C(14,3)]
P= (0.5)¹⁴ [2002 * 364]
P= 1/16384 * (2002 +364)
P= 91091/2048
P= 0.144
Hence,the coin can land tails either exactly 8 times or exactly 5 times in
[tex] 0.144[/tex] ways
A certain article indicates that in a sample of 1,000 dog owners, 680 said that they take more pictures of their dog than of their significant others or friends, and 490 said that they are more likely to complain to their dog than to a friend. Suppose that it is reasonable to consider this sample as representative of the population of dog owners.
(a) Construct a 90% confidence interval for the proportion of dog owners who take more pictures of their dog than of their significant others or friends. (Use a table or technology. Round your answers to three decimal places.)
(______),(_________)
(b) Construct a 95% confidence interval for the proportion of dog owners who are more likely to complain to their dog than to a friend. (Use a table or technology. Round your answers to three decimal places.)
(_______),(_______)
Answer: a) a 90% confidence interval for the proportion of dog owners who take more pictures of their dog than of their significant others or friends is (0.656,0.704).
b) a 95% confidence interval for the proportion of dog owners who are more likely to complain to their dog than to a friend is (0.459,0.521).
Step-by-step explanation:
Confidence interval for a population proportion is given by:-
[tex]\hat{p}\pm z(\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}})[/tex]
, where [tex]\hat{p}[/tex] = sample proportion , n= sample size, z= critical z-value.
As per given,
a) n=1000
Sample proportion of dog owners say they take more pictures of their dog than of their significant others or friends =[tex]\hat{p}=\dfrac{680}{1000}=0.68[/tex]
critical value for 90% confidence = 1.645 [By table]
A 90% confidence interval for the proportion of dog owners who take more pictures of their dog than of their significant others or friends.
[tex]0.68\pm (1.645)\sqrt{\dfrac{0.68(1-0.68)}{1000}}\\\\\approx0.68\pm0.024=(0.68-0.024,0.68+0.024)=(0.656,0.704)[/tex]
Hence, a 90% confidence interval for the proportion of dog owners who take more pictures of their dog than of their significant others or friends is (0.656,0.704).
b) Sample proportion of dog owners say they are more likely to complain to their dog than to a friend =[tex]\hat{p}=\dfrac{490}{1000}=0.49[/tex]
critical value for 95% confidence = 1.96 [By table]
A 95% confidence interval for the proportion of dog owners who are more likely to complain to their dog than to a friend:
[tex]0.49\pm (1.96)\sqrt{\dfrac{0.49(1-0.49)}{1000}}\\\\\approx0.49\pm0.031=(0.49-0.031,0.49+0.031)=(0.459,0.521)[/tex]
Hence, a 95% confidence interval for the proportion of dog owners who are more likely to complain to their dog than to a friend is (0.459,0.521).
A bicycle tire has a radius of 5 inches. To the nearest inch, how far does the tire travel when it makes 8 revolutions?
Answer:
251 inches
Step-by-step explanation:
c = 2πr
c = 2(3.14)(5) = 31.4
31.4 x 8 rev. = 251 inches
When a button is pressed, a computer program outputs a random even number greater than 0 less than 8. You press the button 4 times.
Can some help me with this?
Answer:
Well all even numbers between 0 and 8 are,
2, 4, 6, 8
Meaning if the button is pressed 4 times 2, 4, 6, or 8 will be outputted.
When press button 4 times. Then output of the program will be, [tex](2,4,6,2)[/tex]
Even number:Any number that can be exactly divided by 2 is called as an even number.
Given that, When a button is pressed, a computer program outputs a random even number greater than 0 less than 8.
Even numbers greater than 0 less than 8 are,
[tex]=2,4,6[/tex]
When press button 4 times. Then output of the program will be,
[tex]=(2,4,6,2)[/tex]
Learn more about the even numbers here:
https://brainly.com/question/581879
Find the measure of the indicated angle to the nearest degree. Thanks.
Answer:
θ ≈ 40°
Step-by-step explanation:
Since, sinθ = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]
cosθ = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]
tanθ = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]
In the picture attached,
Measures of adjacent side and opposite side of the triangle have been given. Therefore, tangent rule will be applied in the given triangle.
tanθ = [tex]\frac{19}{23}[/tex]
θ = [tex]\text{tan}^{-1}(\frac{19}{23})[/tex]
θ = 39.56
θ ≈ 40°
Construct a 90% confidence interval for the true mean using the FPCF. (Round your answers to 4 decimal places.) The 90% confidence interval is from to
Answer:
The answer is below
Step-by-step explanation:
Twenty-five blood samples were selected by taking every seventh blood sample from racks holding 187 blood samples from the morning draw at a medical center. The white blood count (WBC) was measured using a Coulter Counter Model S. The mean WBC was 8.636 with a standard deviation of 3.9265. (a) Construct a 90% confidence interval for the true mean using the FPCF. (Round your answers to 4 decimal places.) The 90% confidence interval is from to
Answer:
Given:
Mean (μ) = 8.636, standard deviation (σ) = 3.9265, Confidence (C) = 90% = 0.9, sample size (n) = 25
α = 1 - C = 1 - 0.9 = 0.1
α/2 = 0.1/2 = 0.05
From the normal distribution table, The z score of α/2 (0.05) corresponds to the z score of 0.45 (0.5 - 0.05) which is 1.645
The margin of error (E) is given by:
[tex]E=z_{\frac{\alpha}{2} }*\frac{\sigma}{\sqrt{n} }\\ \\E=1.645*\frac{3.9265}{\sqrt{25} }=1.2918[/tex]
The confidence interval = μ ± E = 8.636 ± 1.2918 = (7.3442, 9.9278)
The 90% confidence interval is from 7.3442 to 9.9278
Given p(x) = x4 + x3 - 13x2 - 25x - 12
1. What is the remainder when p(x) is divided by X - 4?
2. Describe the relationship between the linear expression and the polynomial?
How do we describe the relationship?
simplify (3+3 / x(x+1) )(x-3 / x(x-1) )
Answer:
I think it is [tex]\frac{6x-18}{x^{4} }[/tex]
Step-by-step explanation:
A random sample of 61 Foreign Language movies made in the last 10 years has a mean length of 135.7 minutes with a standard deviation of 13.7 minutes. Construct a 95% confidence interval.
Answer:
95% confidensce interval of the mean (two-tail) = [132.2, 139.2]
Step-by-step explanation:
Given:
N = size of sample = 61
m = sample mean = 135.7
s = sample standard deviation 13.7
Need 95% confidence interval
Solution.
alpha (95% confidence interval) = 0.05
(1-alpha/2) = 0.975 [two sided]
Equation for confidence interval of the mean
= m +/- t(1-alpha/2,N-1) * s / sqrt(N)
= 135.7 +/- 2.0003 * 13.7 / sqrt(60)
= [132.16, 139.24]
6th grade math , help me please :)
Answer:
A. Eric rode 2 more miles per week than Kim rode
Step-by-step explanation:
Number of miles Kim rode bicycle in 9 weeks = 135 miles
Let x be the number of miles per week.
135miles => 9 weeks
x miles => 1 week
[tex] x = \frac{135}{9} [/tex]
[tex] x = 15 [/tex]
Kim rode the bicycle 15 miles per week
Number of miles Eric rode bicycle in 6 weeks = 102 miles
Let x be the number of miles per week Eric rides the bicycle.
102 miles => 6 weeks
x miles => 1 week
[tex] x = \frac{102}{6} [/tex]
[tex] x = 17 [/tex]
Kim rode the bicycle 17 miles per week
Comparing the number of miles per week they rode, we would conclude that: "Eric rode 2 more miles per week than Kim rode".
The function g(x) is a transformation of f(x). If g(x) has a y-intercept of -2, which of the following functions could represent g(x)
Answer:
b. [tex]g(x)=f(x)-5[/tex]
Step-by-step explanation:
You have that the function f(x) has its y-intercept for y=3.
Furthermore, you have that g(x) is a transformation of f(x) with y-intercept for y=-2.
In this case you have that f(x) has been translated vertically downward.
The general way to translate a function vertically in the coordinate system is:
[tex]g(x)=f(x)+a[/tex] (1)
being a positive or negative.
if g(x) has its y-intercept for y=-2, and the y-intercept of f(x) is for y=3, then the value of a in the equation (1) must be a = -5, which is the difference between both y-intercepts, in fact:
a = -2 -3 = -5
Then, the answer is:
b. [tex]g(x)=f(x)-5[/tex]
Answer: g(x) = f(x) - 5
Step-by-step explanation:
just took this