A firm issues​ three-month commercial paper with a ​$1000000
face value and pays an EAR of​ 7.4%. What is the amount the firm​
receives?

Answers

Answer 1

If firm issues​ commercial paper with $1000000 face-value and pays EAR of​ 7.4%, then amount the firm will receive is $981500.

To calculate the amount the firm receives from issuing the three-month commercial paper, we need to determine the total interest earned over the three-month period.

The Effective Annual Rate (EAR) of 7.4% indicates the annualized interest rate. Since the commercial paper has 3-month term, we adjust the EAR to account for the shorter period.

To find the quarterly interest rate, we divide the EAR by the number of compounding periods in a year. In this case, since it is a 3-month period, there are 4-compounding periods in a year (quarterly compounding).

Quarterly interest rate = (EAR)/(number of compounding periods)

= 7.4%/4

= 1.85%,

Now, we calculate interest earned on "face-value" of $1,000,000 over 3-months,

Interest earned = (face value) × (quarterly interest rate)

= $1,000,000 × 1.85% = $18,500,

So, amount firm receives from issuing 3-month commercial paper is the face value minus the interest earned:

Amount received = (face value) - (interest earned)

= $1,000,000 - $18,500

= $981,500.

Therefore, the amount that firms receives is $981500.

Learn more about EAR here

https://brainly.com/question/32531122

#SPJ4


Related Questions

1. Transform the following f(x) using the Legendre's polynomial function (i). (ii). 4x32x² 3x + 8 x³ 2x²-x-3 -

Answers

The answer cannot be provided in one row as the specific transformation steps and calculations are not provided in the question.

Transform the given function f(x) using Legendre's polynomial function.

The given problem involves transforming the function f(x) using Legendre's polynomial function.

Legendre's polynomial function is a series of orthogonal polynomials used to approximate and transform functions.

In this case, the function f(x) is transformed using Legendre's polynomial function, which involves expressing f(x) as a linear combination of Legendre polynomials.

The specific steps and calculations required to perform this transformation are not provided, but the result of the transformation will be a new representation of the function f(x) in terms of Legendre polynomials.

Learn more about steps and calculations

brainly.com/question/29162034

#SPJ11

A partly-full paint can has 0.878 U.S. gallons of paint left in it. (a) What is the volume of the paint, in cubic meters? (b) If all the remaining paint is used to coat a wall evenly (wall area = 13.7 m2), how thick is the layer of wet paint? Give your answer in meters.

Answers

a)  The volume of paint left in the can is:

.878 gallons * 0.00378541 m^3/gallon = 0.003321 m^3

b)  the thickness of the layer of wet paint is 0.000242 meters or 0.242 millimeters (since there are 1000 millimeters in a meter).

(a) To convert gallons to cubic meters, we need to know the conversion factor between the two units. One U.S. gallon is equal to 0.00378541 cubic meters. Therefore, the volume of paint left in the can is:

0.878 gallons * 0.00378541 m^3/gallon = 0.003321 m^3

(b) We can use the formula for the volume of a rectangular solid to find the volume of wet paint needed to coat the wall evenly:

Volume = area * thickness

We want to solve for the thickness, so we rearrange the formula to get:

Thickness = Volume / area

The volume of wet paint needed is equal to the volume of dry paint needed since they both occupy the same space when the paint dries. Therefore, the volume of wet paint needed is:

0.003321 m^3

The area of the wall is given as:

13.7 m^2

So the thickness of the layer of wet paint is:

0.003321 m^3 / 13.7 m^2 = 0.000242 m

Therefore, the thickness of the layer of wet paint is 0.000242 meters or 0.242 millimeters (since there are 1000 millimeters in a meter).

Learn more about meters here:

https://brainly.com/question/29367164

#SPJ11

A single fair four-sided die is rolled. Find the probability of getting a 2 or 1. What is the total number of possible outcomes?

Answers

The probability of getting a 2 or 1 when rolling a single fair four-sided die is 2/4 or 1/2. There are 4 possible outcomes in total.

When rolling a fair four-sided die, each face has an equal probability of landing face up. Since we are interested in the probability of getting a 2 or 1, we need to determine how many favorable outcomes there are.

In this case, there are two favorable outcomes: rolling a 1 or rolling a 2. Since the die has four sides in total, the probability of each favorable outcome is 1/4.

To calculate the probability of getting a 2 or 1, we add the individual probabilities together:

Probability = Probability of rolling a 2 + Probability of rolling a 1 = 1/4 + 1/4 = 2/4 = 1/2

Therefore, the probability of getting a 2 or 1 is 1/2.

As for the total number of possible outcomes, it is equal to the number of sides on the die, which in this case is 4.

Learn more about probability

brainly.com/question/31828911

#SPJ11

In a volatile housing market, the overall value of a home can be modeled by V(x)
= 500x^2 - 500x + 125,000. V represents the value of the home, while x represents each year after 2020. What is the y-intercept, and what does it mean in terms of the value of the home?
Please answer fast!

Answers

To find the y-intercept of the given equation, we need to set x = 0 and evaluate the equation V(x).

When x = 0, the equation becomes:

V(0) = 500(0)^2 - 500(0) + 125,000

= 0 - 0 + 125,000

= 125,000

Therefore, the y-intercept is 125,000.

In terms of the value of the home, the y-intercept represents the initial value of the home when x = 0, which in this case is $125,000. This means that in the year 2020 (x = 0), the value of the home is $125,000.

Suppose that $2500 is placed in a savings account at an annual rate of 2.6%, compounded quarterly. Assuming that no withdrawals are made, how long will it take for the account to grow to $35007 Do not round any intermediate computations, and round your answer to the nearest hundreoth. If necessary, refer to the list of financial formular-

Answers

Answer:

time = 101.84 years

Step-by-step explanation:

The formula for compound interest is given by:

A(t) = P(1 + r/n)^(nt), where

A(t) is the amount in the account after t years (i.e., 35007 in this problem),P is principal (i.e., the deposit, which is $2500 in this problem),r is the interest rate (percentage becomes a decimal in the formula so 2.6% becomes 0.026),n is the number of compounding periods per year (i.e., 4 for money compounded quarterly since there are 4 quarters in a year),and t is the time in years.

Thus, we can plug in 35007 for A(t), 2500 for P, 0.026 for r, and 4 for n in the compound interest formula to find t, the time in years (rounded to the nearest hundredth) that it will take for the savings account to reach 35007:

Step 1:  Plug in values for A(t), P, r, and n.  Then simplify:

35007 = 2500(1 + 0.026/4)^(4t)

35007 = 2500(1.0065)^(4t)

Step 2:  Divide both sides by 2500:

(35007 = 2500(1.0065)^4t)) / 2500

14.0028 = (1.0065)^(4t)

Step 3:  Take the log of both sides:

log (14.0028) = log (1.0065^(4t))

Step 4:  Apply the power rule of logs and bring down 4t on the right-hand side of the equation:

log (14.0028) = 4t * log (1.0065)

Step 4:  Divide both sides by log 1.0065:

(log (14.0028) = 4t * (1.0065)) / log (1.0065)

log (14.0028) / log (1.0065) = 4t

Step 5; Multiply both sides by 1/4 (same as dividing both sides by 4) to solve for t.  Then round to the nearest hundredth to find the final answer:

1/4 * (log (14.0028) / log (1.0065) = 4t)

101.8394474 = t

101.84 = t

Thus, it will take about 101.84 years for the money in the savings account to reach $35007

A sample of 800 g of an isotope decays to another isotope according to the function A(t)=800e−0.028t, where t is the time in years. (a) How much of the initial sample will be left in the sample after 10 years? (b) How long will it take the initial sample to decay to half of its original amount? (a) After 10 years, about g of the sample will be left. (Round to the nearest hundredth as needed.)

Answers

After 10 years, around 612.34 g of the initial sample will remain based on the given decay function.

(a) After 10 years, approximately 612.34 g of the sample will be left.

To find the amount of the sample remaining after 10 years, we substitute t = 10 into the given function A(t) = 800e^(-0.028t):

A(10) = 800e^(-0.028 * 10)

      = 800e^(-0.28)

      ≈ 612.34 g (rounded to the nearest hundredth)

Therefore, after 10 years, approximately 612.34 g of the initial sample will be left.

After 10 years, around 612.34 g of the initial sample will remain based on the given decay function.

To know more about  function follow the link:

https://brainly.com/question/1968855

#SPJ11

choose the graph of y>x^2-9

Answers

The graph of the inequality y > x² - 9 is given by the image presented at the end of the answer.

How to graph the inequality?

The inequality for this problem is given as follows:

y > x² - 9.

For the curve y = x² - 9, we have that:

The vertex is at (0,-9).The x-intercepts are (-3,0) and (3,0).

Due to the > sign, the values greater than the inequality, that is, above the inequality, are shaded.

As the inequality does not have an equal sign, the parabola is dashed.

More can be learned about inequalities at brainly.com/question/25275758

#SPJ1

Consider the integral I=∫(xlog e u ​ (x))dx

Answers

Answer:  x to the power of x+c

Step-by-step explanation:

Let I =∫xx (logex)dx

Find the sum: 4 Σ(5k - 4) = k=1

Answers

The sum of 4 Σ(5k - 4) = k=1 would be equal to 10n² - 14n.

The given expression is `4 Σ(5k - 4) = k=1`.

We need to find the sum of this expression.

Step 1:

The given expression is 4 Σ(5k - 4) = k=1. Using the distributive property, we can expand it to 4 Σ(5k) - 4 Σ(4).

Step 2:

Now, we need to evaluate each part of the expression separately. Using the formula for the sum of the first n positive integers, we can find the value of

Σ(5k) and Σ(4).Σ(5k) = 5Σ(k) = 5(1 + 2 + 3 + ... + n) = 5n(n + 1)/2Σ(4) = 4Σ(1) = 4(1 + 1 + 1 + ... + 1) = 4n

Therefore, the given expression can be written as 4(5n(n + 1)/2 - 4n).

Step 3:

Simplifying this expression, we get: 4(5n(n + 1)/2 - 4n) = 10n² + 2n - 16n = 10n² - 14n.

Step 4:

Therefore, the sum of 4 Σ(5k - 4) = k=1 is equal to 10n² - 14n.

Learn more about  sum of this expression at https://brainly.com/question/12520310

#SPJ11

Application ( 16 marks) 1. As a science project, Anwar monitored the content of carbon monoxide outside of his house over several days. He found that the data modeled a sinusoidal function, and [5] that it reached a maximum of about 30 ppm (parts per million) at 6:00pm and a minimum of 100pm at 6:00am. Assumina midniaht is t=0. write an eauation for the concentration of carbon monoxide. C (in DDm). as a function of time. t (in hours).

Answers

To write an equation for the concentration of carbon monoxide as a function of time, we can use a sinusoidal function. Since the data reaches a maximum of 30 ppm at 6:00pm and a minimum of 100 ppm at 6:00am, we know that the function will have an amplitude of (100 - 30)/2 = 35 ppm and a midline at (100 + 30)/2 = 65 ppm.


The general equation for a sinusoidal function is:

C(t) = A * sin(B * (t - C)) + D

where:
- A represents the amplitude,
- B represents the period,
- C represents the horizontal shift, and
- D represents the vertical shift.

In this case, the amplitude (A) is 35 ppm and the midline is 65 ppm, so D = 65.

To find the period (B), we need to determine the time it takes for the function to complete one cycle. Since the maximum occurs at 6:00pm and the minimum occurs at 6:00am, the time difference is 12 hours. Therefore, the period (B) is 2π/12 = π/6.

The horizontal shift (C) is determined by the time at which the function starts. Assuming midnight is t=0, the function starts 6 hours before the maximum at 6:00pm. Therefore, C = -6.

Combining all the values, the equation for the concentration of carbon monoxide as a function of time (t) in hours is:

C(t) = 35 * sin((π/6) * (t + 6)) + 65

To learn more about "Equation" visit: https://brainly.com/question/29174899

#SPJ11

Use the rhombus to answer the following questions DB=10, BC=13 and m

Answers

The measures are given as;

DA = 13

BW = 5

WC = 5

<BAC = 25 degrees

<ACD = 25 degrees

<DAB = 25 degrees

<ADC = 65 degrees

<DBC =  65 degrees

<BWC = 90 degrees

How to determine the measures

From the information given, we have that;

DB=10, BC=13 and m<WAD = 25 degrees

We need to know the properties of a rhombus, we have;

All sides of a rhombus are equalDiagonals bisect each other at 90° Opposite sides are parallel in a rhombus.Opposite angles are equal in a rhombus

Learn more about rhombus at: https://brainly.com/question/26154016

#SPJ1

dx Solve (x+1) (² + 1) = t- dt (with t > 0) by separation of variables.

Answers

The solution to the differential equation (x+1)(dx²+1) = (t- dt) using separation of variables is x + arctan(x) = t - ln|t| + C, where C is the constant of integration.

To solve the given differential equation (x+1)(dx²+1) = (t- dt) using separation of variables, we can divide both sides of the equation by (x+1)(dx²+1) to separate the variables.

After separating the variables, we can integrate both sides with respect to their respective variables. Integrating the left side with respect to x gives us the integral of (1/(x+1)) dx, which is ln|x+1|. Integrating the right side with respect to t gives us the integral of (t- dt), which is t - ln|t|.

By applying the initial condition that t > 0, we can simplify the solution further to x + arctan(x) = t - ln|t| + C, where C is the constant of integration.

This solution represents the family of curves that satisfy the given differential equation. The constant C accounts for the different curves within the family. By selecting different values for C, we obtain different specific solutions within the family.

Learn more about variables

brainly.com/question/15740935

#SPJ11



Divide using long division. Check your answers. (9x²-21 x-20) / (x-1) .

Answers

The final result of long division is: 9x - 11 with the remainder -12.

To divide (9x² - 21x - 20) by (x - 1) using long division:

To divide using long division, follow these steps:

Step 1: Write the problem in long division format. Place the dividend, which is 9x² - 21x - 20, inside the long division symbol. Place the divisor, which is x - 1, on the left side.

        _______________________
x - 1  |   9x² - 21x - 20

Step 2: Divide the first term of the dividend (9x²) by the first term of the divisor (x). Write the quotient above the long division symbol.

        _______________________
x - 1  |   9x² - 21x - 20
         9x

Step 3: Multiply the quotient (9x) by the divisor (x - 1) and write the result below the dividend. Subtract this result from the dividend.

        _______________________
x - 1  |   9x² - 21x - 20
         9x² - 9x

                - (9x² - 9x)
        _______________________
x - 1  |   9x² - 21x - 20
         9x² - 9x
        ________________
                    -12x - 20

Step 4: Bring down the next term of the dividend (-20) and continue the process.

        _______________________
x - 1  |   9x² - 21x - 20
         9x² - 9x
        ________________
                    -12x - 20
                    -12x + 12
        ________________
                           -32

Step 5: Divide the new term (-32) by the first term of the divisor (x). Write the new quotient above the long division symbol.

        _______________________
x - 1  |   9x² - 21x - 20
         9x² - 9x
        ________________
                    -12x - 20
                    -12x + 12
        ________________
                           -32
                           -32

Step 6: Multiply the new quotient (-32) by the divisor (x - 1) and write the result below. Subtract this result from the previous result.

        _______________________
x - 1  |   9x² - 21x - 20
         9x² - 9x
        ________________
                    -12x - 20
                    -12x + 12
        ________________
                           -32
                           -32
         _________________
                              0

Step 7: The division is complete when the remainder is zero. The final quotient is 9x - 12.

Therefore, (9x² - 21x - 20) / (x - 1) = 9x - 12.

To know more about long division refer here:

https://brainly.com/question/24662212

#SPJ11

Set A contains all integers from 50 to 100, inclusive, and Set B contains all integers from 69 to 13 8, exclusive. How many integers are included in both Set A and Set B

Answers

There are 32 integers included in both Set A and Set B.

To find the number of integers included in both Set A and Set B, we need to determine the overlapping range of values between the two sets. Set A contains all integers from 50 to 100 (inclusive), while Set B contains all integers from 69 to 138 (exclusive).

To calculate the number of integers included in both sets, we need to identify the common range between the two sets. The common range is the intersection of the ranges represented by Set A and Set B.

The common range can be found by determining the maximum starting point and the minimum ending point between the two sets. In this case, the maximum starting point is 69 (from Set B) and the minimum ending point is 100 (from Set A).

Therefore, the common range of integers included in both Set A and Set B is from 69 to 100 (inclusive). To find the number of integers in this range, we subtract the starting point from the ending point and add 1 (since both endpoints are inclusive).

Number of integers included in both Set A and Set B = (100 - 69) + 1 = 32.

Therefore, there are 32 integers included in both Set A and Set B.

Learn more about integers here:

brainly.com/question/33503847

#SPJ11

TIME REMAINING
01:34:01
Parallelogram R S T U is shown. Angle S is 70 degrees.

What are the missing angle measures in parallelogram RSTU?

m∠R = 70°, m∠T = 110°, m∠U = 110°
m∠R = 110°, m∠T = 110°, m∠U = 70°
m∠R = 110°, m∠T = 70°, m∠U = 110°
m∠R = 70°, m∠T = 110°, m∠U = 70°

Answers

The missing angle measures in parallelogram RSTU are:

m∠R = 110°, m∠T = 110°, m∠U = 70°

How to find the missing angle measures

The opposite angles of the parallelogram are the same.

From the diagram:

∠S = ∠U and ∠R = ∠T

Given:

∠S = 70°Since ∠S = ∠U, hence ∠U = 70°

Since the sum of angles in a quadrilateral is 360 degrees, hence:

[tex]\angle\text{R}+\angle\text{S}+\angle\text{T}+\angle\text{U} = 360[/tex]

Since ∠R = ∠T, then:

[tex]\angle\text{Y}+\angle\text{S}+\angle\text{T}+\angle\text{U} = 360[/tex]

[tex]2\angle\text{T} + 70+70 = 360[/tex]

[tex]2\angle\text{T} =360-140[/tex]

[tex]2\angle\text{T} = 220[/tex]

[tex]\angle\text{T} = \dfrac{220}{2}[/tex]

[tex]\bold{\angle T = 110^\circ}[/tex]

Since ∠T = ∠R, then ∠R = 110°

Hence, m∠R = 110°, m∠T = 110°, m∠U = 70°. Option B is correct.

To solve more questions on angles, refer:

https://brainly.com/question/30377304

An exponential growth or decay model is given. g(t) = 400 e-0.75t (a) Determine whether the model represents growth or decay. Ogrowth decay (b) Find the instantaneous growth or decay rate.

Answers

Exponential Growth or Decay Model:

(a) The given model represents decay.

(b) The instantaneous growth or decay rate is -300.

(a) The model represents decay because the exponential term in the equation is negative (-0.75t). In exponential growth, the exponent would be positive, indicating an increase over time.

However, since the exponent is negative, the value of g(t) decreases as t increases, which is characteristic of decay.

(b) To find the instantaneous growth or decay rate, we can differentiate the given function with respect to time (t). The derivative of g(t) = 400e^(-0.75t) is found by applying the chain rule, resulting in g'(t) = -300e^(-0.75t).

The negative sign indicates the decay rate, while the coefficient of -300 represents the magnitude of the decay. Therefore, the instantaneous growth or decay rate is -300.

exponential growth and decay models to gain a deeper understanding of how the exponential function behaves in different scenarios.

Learn more about Exponential

\brainly.com/question/29160729

#SPJ11

Help me i'm stuck 4 math

Answers

Answer:

5a. V = (1/3)π(8²)(15) = 320π in.³

5b. V = about 1,005.3 in.³

Find a polynomial function of degree 3 with the given numbers as zeros. Assume that the leading coefficient is 1
-3, 6.7
The polynomial function is f(x)= [
(Simplify your answer. Use integers or fractions for any numbers in the expression.)

Answers

The polynomial function is f(x) = x^3 - 3.7x^2 - 20.1x.

To find a polynomial function of degree 3 with the given zeros, we can use the fact that if a number "a" is a zero of a polynomial function, then (x - a) is a factor of the polynomial.

Given zeros: -3 and 6.7

The polynomial function can be written as:

f(x) = (x - (-3))(x - 6.7)(x - k)

To find the third zero "k," we know that the polynomial is of degree 3, so it has three distinct zeros. Since -3 and 6.7 are given zeros, we need to find the remaining zero.

Since the leading coefficient is 1, we can expand the equation:

f(x) = (x + 3)(x - 6.7)(x - k)

To simplify further, we can use the fact that the product of the zeros gives the constant term of the polynomial. Therefore, (-3)(6.7)(-k) should be equal to the constant term.

We can solve for "k" by setting this expression equal to zero:

(-3)(6.7)(-k) = 0

Simplifying the equation:

20.1k = 0

From this, we can determine that k = 0.

Therefore, the polynomial function is:

f(x) = (x + 3)(x - 6.7)(x - 0)

Simplifying:

f(x) = (x + 3)(x - 6.7)x

Expanding further:

f(x) = x^3 - 6.7x^2 + 3x^2 - 20.1x

Combining like terms:

f(x) = x^3 - 3.7x^2 - 20.1x

So, the polynomial function is f(x) = x^3 - 3.7x^2 - 20.1x.

Learn more about Polynomial function here

https://brainly.com/question/14571793

#SPJ11

Consider p(x) = -(x-1)(x+1)(x+2022) characteristic polynomial of A.
Which of the following is true? Please justify
a) A is diagonalizable
b) A2= 0
c) The eigenvalues of A2022 are all different
d) A is not invertible
THANK YOU

Answers

The correct statement about p(x) = -(x-1)(x+1)(x+2022) characteristic polynomial of A are A is diagonalizable

and the eigenvalues of [tex]A^{2022}[/tex] are all different. Option a and c is correct.

For a matrix to be diagonalizable, it must have a complete set of linearly independent eigenvectors. To verify this, we need to compute the eigenvalues of matrix A.

The eigenvalues are the roots of the characteristic polynomial, p(x). From the given polynomial, we can see that the eigenvalues of A are -1, 1, and -2022. Since A has distinct eigenvalues, it is diagonalizable. Therefore, statement a) is true.

The eigenvalues of [tex]A^{2022}[/tex] can find by raising the eigenvalues of A to the power of 2022. The eigenvalues of [tex]A^{2022}[/tex] will be [tex]-1^{2022}[/tex], [tex]1^{2022}[/tex], and [tex](-2022)^{2022}[/tex]. Since all of these values are different, statement c) is true.

Therefore, a and c is correct.

Learn more about polynomial https://brainly.com/question/28813567

#SPJ11



Find the value of each expression in radians to the nearest thousandth. If the expression is undefined, write Undefined. cos ⁻¹(-2.35)

Answers

The expression `cos⁻¹(-2.35)` is undefined.

What is the inverse cosine function?

The inverse cosine function, denoted as `cos⁻¹(x)` or `arccos(x)`, is the inverse function of the cosine function.

The inverse cosine function, cos⁻¹(x), is only defined for values of x between -1 and 1, inclusive. The range of the cosine function is [-1, 1], so any value outside of this range will not have a corresponding inverse cosine value.

In this case, -2.35 is outside the valid range for the input of the inverse cosine function.

The result of `cos⁻¹(x)` is the angle θ such that `cos(θ) = x` and `0 ≤ θ ≤ π`.

When `x < -1` or `x > 1`, `cos⁻¹(x)` is undefined.

Therefore, the expression cos⁻¹(-2.35) is undefined.

To know more about cos refer here:

https://brainly.com/question/22649800

#SPJ11

The mid-points of sides of a triangle are (3, 0), (4, 1) and (2, 1) respectively. Find the vertices of the triangle.​

Answers

Answer:

(1, 0), (3, 2), (5, 0)

Step-by-step explanation:

To find the vertices of the triangle given the midpoints of its sides, we can use the midpoint formula:

[tex]\boxed{\begin{minipage}{7.4 cm}\underline{Midpoint between two points}\\\\Midpoint $=\left(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2}\right)$\\\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ are the endpoints.\\\end{minipage}}[/tex]

Let the vertices of the triangle be:

[tex]A (x_A,y_A)[/tex][tex]B (x_B,y_B)[/tex][tex]C (x_C, y_C)[/tex]

Let the midpoints of the sides of the triangle be:

D (2, 1) = midpoint of AB.E (4, 1) = midpoint of BC.F (3, 0) = midpoint of AC.

Since D is the midpoint of AB:

[tex]\left(\dfrac{x_B+x_A}{2},\dfrac{y_B+y_A}{2}\right)=(2,1)[/tex]

[tex]\implies \dfrac{x_B+x_A}{2}=2 \qquad\textsf{and}\qquad \dfrac{y_B+y_A}{2}\right)=1[/tex]

[tex]\implies x_B+x_A=4\qquad\textsf{and}\qquad y_B+y_A=2[/tex]

Since E is the midpoint of BC:

[tex]\left(\dfrac{x_C+x_B}{2},\dfrac{y_C+y_B}{2}\right)=(4,1)[/tex]

[tex]\implies \dfrac{x_C+x_B}{2}=4 \qquad\textsf{and}\qquad \dfrac{y_C+y_B}{2}\right)=1[/tex]

[tex]\implies x_C+x_B=8\qquad\textsf{and}\qquad y_C+y_B=2[/tex]

Since F is the midpoint of AC:

[tex]\left(\dfrac{x_C+x_A}{2},\dfrac{y_C+y_A}{2}\right)=(3,0)[/tex]

[tex]\implies \dfrac{x_C+x_A}{2}=3 \qquad\textsf{and}\qquad \dfrac{y_C+y_A}{2}\right)=0[/tex]

[tex]\implies x_C+x_A=6\qquad\textsf{and}\qquad y_C+y_A=0[/tex]

Add the x-value sums together:

[tex]x_B+x_A+x_C+x_B+x_C+x_A=4+8+6[/tex]

[tex]2x_A+2x_B+2x_C=18[/tex]

[tex]x_A+x_B+x_C=9[/tex]

Substitute the x-coordinate sums found using the midpoint formula into the sum equation, and solve for the x-coordinates of the vertices:

[tex]\textsf{As \;$x_B+x_A=4$, then:}[/tex]

[tex]x_C+4=9\implies x_C=5[/tex]

[tex]\textsf{As \;$x_C+x_B=8$, then:}[/tex]

[tex]x_A+8=9 \implies x_A=1[/tex]

[tex]\textsf{As \;$x_C+x_A=6$, then:}[/tex]

[tex]x_B+6=9\implies x_B=3[/tex]

Add the y-value sums together:

[tex]y_B+y_A+y_C+y_B+y_C+y_A=2+2+0[/tex]

[tex]2y_A+2y_B+2y_C=4[/tex]

[tex]y_A+y_B+y_C=2[/tex]

Substitute the y-coordinate sums found using the midpoint formula into the sum equation, and solve for the y-coordinates of the vertices:

[tex]\textsf{As \;$y_B+y_A=2$, then:}[/tex]

[tex]y_C+2=2\implies y_C=0[/tex]

[tex]\textsf{As \;$y_C+y_B=2$, then:}[/tex]

[tex]y_A+2=2 \implies y_A=0[/tex]

[tex]\textsf{As \;$y_C+y_A=0$, then:}[/tex]

[tex]y_B+0=2\implies y_B=2[/tex]

Therefore, the coordinates of the vertices A, B and C are:

A (1, 0)B (3, 2)C (5, 0)

dz (16P) Use the chain rule to find dt for: Z= = xexy, x = 3t², y

Answers

dt = 6t * exy + (3t²) * exy * (dy/dt)

To find dt using the chain rule, we'll start by differentiating Z with respect to t.

Given: Z = xexy, x = 3t², and y is a variable.

First, let's express Z in terms of t.

Substitute the value of x into Z:
Z = (3t²) * exy

Now, we can apply the chain rule.

1. Differentiate Z with respect to t:
dZ/dt = d/dt [(3t²) * exy]

2. Apply the product rule to differentiate (3t²) * exy:
dZ/dt = (d/dt [3t²]) * exy + (3t²) * d/dt [exy]

3. Differentiate 3t² with respect to t:
d/dt [3t²] = 6t

4. Differentiate exy with respect to t:
d/dt [exy] = exy * (dy/dt)

5. Substitute the values back into the equation:
dZ/dt = 6t * exy + (3t²) * exy * (dy/dt)

Finally, we have expressed the derivative of Z with respect to t, which is dt. So, dt is equal to:
dt = 6t * exy + (3t²) * exy * (dy/dt)

To know more about  "chain rule"

https://brainly.com/question/30895266

#SPJ11

Sol: P is a moving point such that P is equidistant from a point A (3. k) and a (12 marks) straight line L: y=-3. Find the equation of the locus of P. A (3. k) x# P B (12,-3)

Answers

The equation of the locus of P is y² - 2xy + (k² + 2k - 18)x + (k² + 4k) - 9 = 0.

Consider a point P(x, y) on the locus of P, which is equidistant from point A(3, k) and the straight line L: y = -3.

The perpendicular distance from a point (x, y) to a straight line Ax + By + C = 0 is given by |Ax + By + C|/√(A² + B²).

The perpendicular distance from point P(x, y) to the line L: y = -3 is given by |y + 3|/√(1² + 0²) = |y + 3|.

The perpendicular distance from point P(x, y) to point A(3, k) is given by √[(x - 3)² + (y - k)²].

Now, as per the given problem, the point P(x, y) is equidistant from point A(3, k) and the straight line L: y = -3.

So, |y + 3| = √[(x - 3)² + (y - k)²].

Squaring on both sides, we get:

y² + 6y + 9 = x² - 6x + 9 + y² - 2ky + k²

Simplifying further, we have:

y² - x² + 6x - 2xy + y² - 2ky = k² + 2k - 9

Combining like terms, we get:

y² - 2xy + (k² + 2k - 18)x + (k² + 4k) - 9 = 0

Hence, the required equation of the locus of P is given by:

y² - 2xy + (k² + 2k - 18)x + (k² + 4k) - 9 = 0.

Thus, The equation of the locus of P is y² - 2xy + (k² + 2k - 18)x + (k² + 4k) - 9 = 0.

Learn more about equidistant from

https://brainly.com/question/29886214

#SPJ11

If f(x) = x + 4 and g(x)=x²-1, what is (gof)(x)?
(gof)(x)=x²-1
(gof)(x)=x² +8x+16
(gof)(x)=x²+8x+15
(gof)(x)=x²+3

Answers

Answer:

(g ○ f)(x) = x² + 8x + 15

Step-by-step explanation:

to find (g ○ f)(x) substitute x = f(x) into g(x)

(g ○ f)(x)

= g(f(x))

= g(x + 4)

= (x + 4)² - 1 ← expand factor using FOIL

= x² + 8x + 16 - 1 ← collect like terms

= x² + 8x + 15

The substitution best suited for computing the integral /1+4-² x=5+ √2tan 0 x=2+√5 sin 0 x=3 sin 0 x=3+ sin 0 is x=2+√5 sec

Answers

The integral is solved by substituting x = 2 + √5 secθ. The correct substitution option is B) -√5 secθ.

To solve the given integral ∫ (2 + √5 secθ) / (1 + 4x²) dx, we can substitute x = 2 + √5 secθ. This substitution simplifies the integral, transforming it into ∫ (2 + √5 secθ) / (1 + 4(2 + √5 secθ)²) dx. By expanding and simplifying, we get ∫ (2 + √5 secθ) / (21 + 4√5 secθ + 20 sec²θ) dx. This integral can then be solved using trigonometric identities and integration techniques. The correct option for the substitution is B) -√5 secθ.

Learn more about Integration here: brainly.com/question/31744185
#SPJ11

Question 23 of 30
The ideal length of a metal rod is 38.5 cm. The measured length may vary
from the ideal length by at most 0.055 cm. What is the range of acceptable
lengths for the rod?
A. 38.445 2x2 38.555
B. 38.4452x≤ 38.555
C. 38.445≤x≤ 38.555
D. x≤ 38.445 or x2 38.555

Answers

Answer:

C. [tex]38.445\leq x\leq 38.555[/tex]

Step-by-step explanation:

The measured length varies from the ideal length by 0.055 cm at most, so to find the range of possible lengths, we subtract 0.055 from the ideal, 38.5.

[tex]38.5-0.055=38.445\\38.5+0.055=38.555[/tex]

The measured length can be between 38.445 and 38.555 inclusive. This can be written in an equation using greater-than-or-equal-to signs:

[tex]38.445\leq x\leq 38.555[/tex]

38.445 is less than or equal to X, which is less than or equal to 38.555.

So the answer to your question is C.

If \( D \) is the region enclosed by \( y=\frac{x}{2}, x=2 \), and \( y=0 \), then: \[ \iint_{D} 96 y^{2} d A=16 \] Select one: True False

Answers

False.

The given integral is \(\iint_{D} 96 y^{2} dA\), where \(D\) is the region enclosed by \(y=\frac{x}{2}\), \(x=2\), and \(y=0\).

To evaluate this integral, we need to determine the limits of integration for \(x\) and \(y\). The region \(D\) is bounded by the lines \(y=0\) and \(y=\frac{x}{2}\). The line \(x=2\) is a vertical line that intersects the region \(D\) at \(x=2\) and \(y=1\).

Since the region \(D\) lies below the line \(y=\frac{x}{2}\) and above the x-axis, the limits of integration for \(y\) are from 0 to \(\frac{x}{2}\). The limits of integration for \(x\) are from 0 to 2.

Therefore, the integral becomes:

\(\int_{0}^{2} \int_{0}^{\frac{x}{2}} 96 y^{2} dy dx\)

Evaluating this integral gives a result different from 16. Hence, the statement " \(\iint_{D} 96 y^{2} dA=16\) " is false.

Learn more about region enclosed

brainly.com/question/32672799

#SPJ11

help me pls!! (screenshot) ​

Answers

Answer: f(-6) = 44

Step-by-step explanation:

You replace every x with -6

2(-6) squared +  5(-6) - -6/3

36 x 2 -30 + 2

72 - 30 + 2

42 + 2

44

An experiment has been conducted for four treatments with eight blocks. Complete the following analysis of variance table.


Source-of-Variation Sum-of-Square Degrees-of-freedom Mean-square F

Treatment 1,100. . .

Blocks 600. .

Error. . .

Total 2,300.

Use

α

=
. 05

to test for any significant differences.


- The p-value _____


- What is your conclusion?

Answers

- The p-value is greater than 0.05.

- Based on the given p-value, we fail to reject the null hypothesis.

To complete the analysis of variance (ANOVA) table, we need to calculate the sum of squares, degrees of freedom, mean squares, and F-value for the Treatment, Blocks, and Error sources of variation.

1. Treatment:

The sum of squares for Treatment is given as 1,100. We need to determine the degrees of freedom (df) for Treatment, which is equal to the number of treatments minus 1. Since the number of treatments is not specified, we cannot calculate the degrees of freedom for Treatment. Thus, the degrees of freedom for Treatment will be denoted as dfTreatment = k - 1. Similarly, we cannot calculate the mean square for Treatment.

2. Blocks:

The sum of squares for Blocks is given as 600. The degrees of freedom for Blocks is equal to the number of blocks minus 1, which is 8 - 1 = 7. To calculate the mean square for Blocks, we divide the sum of squares for Blocks by the degrees of freedom for Blocks: Mean square (MS)Blocks = SSBlocks / dfBlocks = 600 / 7.

3. Error:

The sum of squares for Error is not given explicitly, but we can calculate it using the formula: SSError = SSTotal - (SSTreatment + SSBlocks). Given that the Total sum of squares (SSTotal) is 2,300 and the sum of squares for Treatment and Blocks, we can substitute the values to calculate the sum of squares for Error. After obtaining SSError, the degrees of freedom for Error can be calculated as dfError = dfTotal - (dfTreatment + dfBlocks). The mean square for Error is then calculated as Mean square (MS)Error = SSError / dfError.

Now, we can calculate the F-value for testing significant differences:

F = (Mean square (MS)Treatment) / (Mean square (MS)Error).

To test for significant differences, we compare the obtained F-value with the critical F-value at the given significance level (α = 0.05). If the obtained F-value is greater than the critical F-value, we reject the null hypothesis; otherwise, we fail to reject the null hypothesis.

Unfortunately, without the values for the degrees of freedom for Treatment and the specific calculations, we cannot determine the p-value or reach a conclusion regarding the significance of differences between treatments.

For more such questions on hypothesis, click on:

https://brainly.com/question/606806

#SPJ8

Performs polynomial division x3−13⋅x−12/ x−4

Answers

The polynomial division of (x^3 - 13x - 12) divided by (x - 4) results in a quotient of x^2 + 4x + 3 and a remainder of 0.

To perform polynomial division, we divide the given polynomial (x^3 - 13x - 12) by the divisor (x - 4). We start by dividing the highest degree term of the dividend (x^3) by the highest degree term of the divisor (x). This gives us x^2 as the first term of the quotient.

Next, we multiply the divisor (x - 4) by the first term of the quotient (x^2) and subtract the result from the dividend (x^3 - 13x - 12). This step cancels out the x^3 term and brings down the next term (-4x^2).

We repeat the process by dividing the highest degree term of the remaining polynomial (-4x^2) by the highest degree term of the divisor (x). This gives us -4x as the second term of the quotient.

We continue the steps of multiplication, subtraction, and division until we have no more terms left in the dividend. In this case, after further calculations, we obtain a final quotient of x^2 + 4x + 3 with a remainder of 0.

Therefore, the polynomial division of (x^3 - 13x - 12) by (x - 4) results in a quotient of x^2 + 4x + 3 and a remainder of 0.

to learn more about polynomial click here:

brainly.com/question/29110563

#SPJ11

Other Questions
In the image a particle is ejected from the nucleus of an atom. If the nucleus increases in atomic number (Z -> Z+1) than the small particle ejected from the nucleus is one of a(n) _________ or _________. However had the particle ejected been a helium nuclei, we would classify this type of decay as being _______ decay. please explain if answer is vague so its easier to understand.especially #25, thank you. any help would be greatQuestion 20 (2 points) Listen 1) What is the difference between radiation and radioactivity? Radioactivity and radiation are synonymous. Radioactive decays include the release of matter particles, but Question 2 - Pump and Pipelines (x^2 means the square of x) It is planned to pump water to a reservoir, through a pipe system with 22.6mm diameter. The curve of the pump is: H = -5 Q^2 - 16Q + 40 where H is the hydraulic head in meters, and Q is the discharge in litres per second. Consider the friction factor as f= 0.0171. Find out the following: a) Plot the curve: head (H) vs. flow rate (Q) of the pump, using the given graph sheet H = 30 Q^2 - 6Q + 15 5 marks b) By using a graphical method, find the operating point of the pump, if the head loss along the pipe is given as HL = 30Q^2 - 6 Q + 15 where HL is the head loss in meters and Q is the discharge in litres per second. 5 marks c) Compute the required power in watts. 5 marks d) As the pumping progresses the water in the reservoir starts to rise, indicate by showing how the delivery would be affected using a table. 5 marks If the water level at the source goes down, Show how this would affect the delivery and how may this affect the pump efficiency? 5 marks Total 25 Marks Please write 1 paragraph with a thesis on the following 2 texts and use the outline I created below to help discuss the 2 texts.WEB DuBoiss "Close Ranks" Article in Crisis (1918)andSoviet Union, The History of the Communist Party of the Soviet Union (1938)Introductory paragraphThesis and brief layout At 66C a sample of ammonia gas (NH3 ) exe4rts a pressure of2.3 atm. What is the density of the gas in g/L? ( 7 14N) (11H) 3i) Find the range of possible values for a: ax + 9x1 = 0 2 Answer both Part A and Part B. Explain your answers in detail. Part A: Define the term "civil litigation" and identify and describe the six-stages involved in most civil litigation lawsuits. Part B: Define the term "alternative dispute resolution," then compare and contrast the civil litigation and ADR processes. 1.Explain method and approach for obtaining informed consent from clients or people seeking assistance for a social condition or issue.2.Describe the ways to protect privacy and anonymity of clients, community members, and collaborators as a sociological practitioner.3.Discuss how to prevent physical and emotional harm when addressing the social conditions people face or confront. Explain the boundaries and code of conduct for maintaining professional relationships with clients, community members, and collaborators. Two years ago, you purchased 100 shares of General Mills Corporation. Your purchase price was $61 a share, plus a total commission of $38 to purchase the stock. During the last two years, you have received total dividends of $2.48 per share. Also, assume that at the end of two years, you sold your General Mills stock for $65 a share minus a total commission of $36 to sell the stock. Calculate the total return for your investment and the annualized holding period yield.Total return on the investment: $574. Annualized holding period yield: 4.70%.Total return on the investment: $674. Annualized holding period yield: 5.52%.Total return on the investment: $774. Annualized holding period yield: 6.34%.Total return on the investment: $874. Annualized holding period yield: 7.16%. Describe the political system of mexicoProvide a definition for the political system.Provide evidence for how the political system in the country works.Support your narrative with at least one academic source and at least one visual source (picture or video). To what extent do you feel arguments, even wars, result because people construe events with different construct systems? Discuss your answer using Kelly's Personal Construct Theory. Discovery-based science does not test hypotheses. why is this approach useful to scientists? How many acres are in a description reading, "The NW of the SE and the S of the SW of the NE of Section 4"? How far did the coconut fall if it was in the air for 2 seconds before hitting the ground? 2. John has a forward jump acceleration of 3.6 m/s2. How far did he travel in 0.5 seconds? Reflect on your performance in this consulting simulation session. What did you do well? What did you need to improve upon? How did it feel to play the role of an actual OD consultant? Provide specific examples.What specific skills do you believe you need to develop based on your simulation experience? Why?Describe your interactions in terms of the following: use of assessment strategies/tactics, verbal/nonverbal communication, employee resistance, observations of transference/countertransference, use of APA code of ethics.Share your observations about your assessment strategies and tactics and discuss what you observed to be the organizations key issues. Correct the italicized sentence fragment shown below. Rewrite it into a complete sentence.Because they were so tired of war.6. Write a sentence that you make up using the word there.7. Write a sentence that you make up using the word their.8. Write a sentence that you make up using the word they're.9. Write a sentence that you make up using the word it's.10. Write a sentence that you make up using the word its. Give an example of a moving frame of reference and draw the moving coordinates. D Question 10 The self-inductance of a solenoid increases under which of the following conditions? Only the cross sectional area is decreased. Only the number of coils per unit length is decreased. Only the number of coils is increased. Only the solenoid length is increased. 1 pts A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector 7 = (2.00 mi - (3.00 m) + (2.00 m), the force is F = F/+ (7.00 N)5 - (6.70 N) and the corresponding torque about the origin is(6.10 Nm)i + (3.00 Nm)j + (-1.60 Nm). Determine Fx N Carbon-14 is radioactive, and has a half-life of 5,730 years. Its used for dating archaeological artifacts. Suppose one starts with 264 carbon-14 atoms. After 5,730 years, how many of these atoms will still be carbon-14 atoms? Write this number in standard scientific notation here. (Hint: remember that 264/2 isnt 232, its 263.)