A farmer has a total of 350 yards of fencing. He wants to enclose a rectangular field and then divide it into four plots with three pieces of fencing inside the field and parallel to one of the sides. Let x represent the length of one of the pieces of fencing located inside the field (see the figure below). Express the area (A) of the field as a function of x. A=(350− 2
5

x)x
A=(350−x)x
A=(350−5x)x
A=(175−5x)x
A=(175− 2
5

x)x

Answers

Answer 1

The correct expression for the area (A) of the rectangular field as a function of x is A = (350 - 2x/5)x.

The given problem states that the farmer has a total of 350 yards of fencing. Let's denote the length of the rectangular field as L and the width as W.

To enclose the field, we need to use fencing along all four sides, which gives us the equation: 2L + 2W = 350.

Next, the field is divided into four plots with three pieces of fencing inside the field and parallel to one of the sides.

Since there are three pieces of fencing inside the field and they are parallel to the length L, we can subtract 2L/5 from the total length of fencing.

The remaining fencing, which is parallel to the width W, is still 2W. So we have the equation: 2L/5 + 2W = 350.

To express the area (A) as a function of x, we need to find the relationship between the length L and the width W.

We can solve the equation 2L/5 + 2W = 350 for W to get

W = (350 - 2L/5)/2.

Then, we can substitute this value of W into the formula for the area of a rectangle, A = LW, to get A = L[(350 - 2L/5)/2].

Simplifying this expression gives us A = (350 - 2x/5)x, which is the correct expression for the area of the field as a function of x.

To learn more about area visit:

brainly.com/question/29193425

#SPJ11


Related Questions

Show that if G is self-dual (i.e. G is isomorphic to G∗), then e(G)=2v(G)−2.

Answers

If a graph G is self-dual, meaning it is isomorphic to its dual graph G∗, then the equation e(G) = 2v(G) - 2 holds, where e(G) represents the number of edges in G and v(G) represents the number of vertices in G. Therefore, we have shown that if G is self-dual, then e(G) = 2v(G) - 2.

To show that e(G) = 2v(G) - 2 when G is self-dual, we need to consider the properties of self-dual graphs and the relationship between their edges and vertices.

In a self-dual graph G, the number of edges in G is equal to the number of edges in its dual graph G∗. Therefore, we can denote the number of edges in G as e(G) = e(G∗).

According to the definition of a dual graph, the number of vertices in G∗ is equal to the number of faces in G. Since G is self-dual, the number of vertices in G is also equal to the number of faces in G, which can be denoted as v(G) = f(G).

By Euler's formula for planar graphs, we know that f(G) = e(G) - v(G) + 2.

Substituting the equalities e(G) = e(G∗) and v(G) = f(G) into Euler's formula, we have:

v(G) = e(G) - v(G) + 2.

Rearranging the equation, we get:

2v(G) = e(G) + 2.

Finally, subtracting 2 from both sides of the equation, we obtain:

e(G) = 2v(G) - 2.

Therefore, we have shown that if G is self-dual, then e(G) = 2v(G) - 2.

Learn more about isomorphic here:

https://brainly.com/question/31399750

#SPJ11

3 2 Divide ³ - 5x² + 13x - 39 by x - 3. x x-3 x -5x² +13x - 39 3 1 - 1 +13x 10 1 1 - 39

Answers

The division of [tex]3x^3[/tex]- [tex]5x^2[/tex] + 13x - 39 by x - 3 is equal to [tex]3x^2[/tex] + 1x + 1.

To divide the polynomial [tex]3x^3 - 5x^2[/tex] + 13x - 39 by x - 3, we can use long division. In the first step, we divide the highest degree term of the dividend ([tex]3x^3[/tex]) by the highest degree term of the divisor (x). This gives us [tex]3x^2[/tex]. We then multiply this quotient ([tex]3x^2[/tex]) by the divisor (x - 3), resulting in [tex]3x^3 - 9x^2.[/tex]

Next, we subtract this product ([tex]3x^3 - 9x^2[/tex]) from the dividend ([tex]3x^3 - 5x^2[/tex] + 13x - 39). This gives us [tex]-4x^2[/tex] + 13x - 39. Now, we repeat the process by dividing the highest degree term of this new polynomial ([tex]-4x^2[/tex]) by the highest degree term of the divisor (x), which gives us -4x. We multiply this quotient (-4x) by the divisor (x - 3), resulting in[tex]-4x^2[/tex] + 12x.

We subtract this product ([tex]-4x^2[/tex] + 12x) from the polynomial ([tex]-4x^2[/tex] + 13x - 39), which gives us x - 39. Now, we divide the highest degree term of this new polynomial (x) by the highest degree term of the divisor (x), giving us 1. We multiply this quotient (1) by the divisor (x - 3), resulting in x - 3.

Finally, we subtract this product (x - 3) from the polynomial (x - 39), giving us -36. Since the degree of -36 is less than the degree of the divisor (x - 3), we cannot continue the division any further.

Therefore, the final result of the division is the quotient [tex]3x^2[/tex] + 1x + 1. This means that [tex]3x^3[/tex] - 5x^2 + 13x - 39 divided by x - 3 is equal to[tex]3x^2[/tex]+ 1x + 1.

Learn more about Long division of polynomials

brainly.com/question/32236265

#SPJ11

Solve the initial value problem from t = 0 to 2 when y(0) = 1. dy/dt = yt³ – 1.5y Using the methods: a) Analytically b) Fourth-order R-K-M, h=0.2

Answers

a) Analytical solution: y(t) = (1.5e^t + 1)^(1/3) b) Numerical solution using fourth-order R-K-M with h=0.2: Iteratively calculate y(t) for t = 0 to t = 2 using the given method and step size.

a) Analytically:

To solve the initial value problem analytically, we can separate variables and integrate both sides of the equation.

dy/(yt³ - 1.5y) = dt

Integrating both sides:

∫(1/(yt³ - 1.5y)) dy = ∫dt

We can use the substitution u = yt³ - 1.5y, du = (3yt² - 1.5)dt.

∫(1/u) du = ∫dt

ln|u| = t + C

Replacing u with yt³ - 1.5y:

ln|yt³ - 1.5y| = t + C

Now, we can use the initial condition y(0) = 1 to solve for C:

ln|1 - 1.5(1)| = 0 + C

ln(0.5) = C

Therefore, the equation becomes:

ln|yt³ - 1.5y| = t + ln(0.5)

To find the specific solution for y(t), we need to solve for y in terms of t:

yt³ - 1.5y [tex]= e^{(t + ln(0.5))[/tex]

Simplifying further:

yt³ - 1.5y [tex]= e^t * 0.5[/tex]

This is the analytical solution to the initial value problem.

b) Fourth-order Runge-Kutta Method (R-K-M) with h = 0.2:

To solve the initial value problem numerically using the fourth-order Runge-Kutta method, we can use the following iterative process:

Set t = 0 and y = 1 (initial condition).

Iterate from t = 0 to t = 2 with a step size of h = 0.2.

At each iteration, calculate the following values:

k₁ = h₁ * (yt³ - 1.5y)

k₂ = h * ((y + k1/2)t³ - 1.5(y + k1/2))

k₃ = h * ((y + k2/2)t³ - 1.5(y + k2/2))

k₄ = h * ((y + k3)t³ - 1.5(y + k3))

Update the values of y and t:

[tex]y = y + (k_1 + 2k_2 + 2k_3 + k_4)/6[/tex]

t = t + h

Repeat steps 3-4 until t = 2.

By following this iterative process, we can obtain the numerical solution to the initial value problem over the given interval using the fourth-order Runge-Kutta method with a step size of h = 0.2.

To know more about solution,

https://brainly.com/question/32264497

#SPJ11

13. Todd bought a Muskoka cottage in 2003 for $305 000. In 2018, he had the cottage assessed and was told its value is now $585000. What is the annual growth rate of his cottage? [3 marks]

Answers

Therefore, the annual growth rate of Todd's cottage is approximately 0.0447 or 4.47%.

To calculate the annual growth rate of Todd's cottage, we can use the formula for compound annual growth rate (CAGR):

CAGR = ((Ending Value / Beginning Value)*(1/Number of Years)) - 1

Here, the beginning value is $305,000, the ending value is $585,000, and the number of years is 2018 - 2003 = 15.

Plugging these values into the formula:

CAGR [tex]= ((585,000 / 305,000)^{(1/15)}) - 1[/tex]

CAGR [tex]= (1.918032786885246)^{0.06666666666666667} - 1[/tex]

CAGR = 1.044736842105263 - 1

CAGR = 0.044736842105263

To know more about annual growth,

https://brainly.com/question/31429784

#SPJ11

Juan collected data on the colours of cars passing his school for ten minutes each hour each day for five days. Jasmine borrowed Juan's data to use for her own research study. The data Jasmine used is known as which of the following? secondary data unreliable data biased data primary data

Answers

The data Jasmine used from Juan's collection is known as secondary data.

Secondary data refers to data that has been collected by someone else for a different purpose but is used by another researcher for their own study. In this scenario, Juan collected the data on the colors of cars passing his school, which was his primary data. However, Jasmine borrowed Juan's data to use it for her own research study. Since Jasmine did not collect the data herself and instead utilized data collected by someone else, it is considered secondary data.

Secondary data can be valuable in research as it allows researchers to analyze existing data without the need to conduct new data collection. However, it is important to consider the reliability and bias of the secondary data. Reliability refers to the consistency and accuracy of the data, and it is crucial to ensure that the data used is reliable for the research study. Bias refers to any systematic distortion in the data that may affect the results and conclusions. Researchers should carefully assess the reliability and potential bias of the secondary data before using it in their own research.

Learn more about existing here:

https://brainly.com/question/32146594

#SPJ11

Let T : R4 —> R be a linear transformation defined by
T(x,y,z,w)= x + z+ w. Find R(T) and N(T). Verify Rank Nullity
theorem.

Answers

The range of the linear transformation T is R (the set of all real numbers), and the null space of T consists of vectors of the form (0, y, 0, 0), where y can take any real value. The rank-nullity theorem is verified since the rank of T is 1 and the nullity is 3, which sum up to the dimension of the domain, 4.

To determine the range (R(T)) and null space (N(T)) of the linear transformation T : R^4 → R defined by T(x, y, z, w) = x + z + w, we need to determine the vectors that satisfy the given conditions.

1. Range (R(T)):

To find the range, we need to determine all possible values of T(x, y, z, w). Since T(x, y, z, w) = x + z + w, the range of T consists of all real numbers, since x, z, and w can take any real value. Therefore, R(T) = R (the set of all real numbers).

2. Null Space (N(T)):

To find the null space, we need to determine the vectors (x, y, z, w) such that T(x, y, z, w) = 0. From T(x, y, z, w) = x + z + w = 0, we can see that x, z, and w must be equal to zero in order for the sum to be zero. Therefore, the null space N(T) consists of vectors of the form (0, y, 0, 0), where y can take any real value.

3. Verify Rank-Nullity Theorem:

The rank-nullity theorem states that the rank of a linear transformation plus the nullity of the transformation equals the dimension of the domain. In this case, the dimension of the domain is 4.

The rank of T is the dimension of the range, which is 1 since the range R(T) consists of all real numbers.

The nullity of T is the dimension of the null space, which is 3 since the null space N(T) consists of vectors of the form (0, y, 0, 0).

Therefore, the rank-nullity theorem holds: 1 (rank) + 3 (nullity) = 4 (dimension of the domain).

In summary, R(T) = R (the set of all real numbers) and N(T) consists of vectors of the form (0, y, 0, 0) where y can take any real value. The rank-nullity theorem is verified.

To know more about rank-nullity theorem refer here:

https://brainly.com/question/32674032#

#SPJ11

A tumor is injected with 0.7 grams of Iodine- 125,1.15% of which was decayed after one day. Write an exponential model representing the amount of Iodine-125 remaining in the tumor after t days. Then use the formula to find the amount of Iodine-125 that would remain in the tumor after 60 days. Round to the nearest tenth of a gram. (Hint: 1.15% is the decay rate of the total amount A0−A(t=1)/ A0 and not the exponential decay rate k in A(t)=A0ekt, where A(t) is the remaining Iodine-125 after t days. This question is asking the formula for the remaining amount.) Include a multiplication sign between terms. For example, ln(a∗x)∗b
A(t) =

Answers

Calculating the value, we find that approximately 0.301 grams of Iodine-125 would remain in the tumor after 60 days.

The exponential model representing the amount of Iodine-125 remaining in the tumor after t days is given by:

[tex]A(t) = A0 * (1 - r)^t[/tex]

where A(t) is the remaining amount of Iodine-125 after t days, A0 is the initial amount injected (0.7 grams), and r is the decay rate (0.0115).

Substituting the given values into the equation, we have:

[tex]A(t) = 0.7 * (1 - 0.0115)^t[/tex]

To find the amount of Iodine-125 remaining after 60 days, we plug in t = 60 into the equation:

[tex]A(60) = 0.7 * (1 - 0.0115)^{60[/tex]

To know more about value,

https://brainly.com/question/28174381

#SPJ11

Final answer:

The decay rate k of Iodine-125 is approximately -0.0116. The exponential decay model is A(t) = 0.7 * e^-0.0116t. After 60 days, approximately 0.4 grams of Iodine-125 would remain in the tumor.

Explanation:

The question is asking to create an exponential decay model to represent the remaining amount of Iodine-125 in a tumor over time, as well as calculate how much of it will be left after 60 days. Since 1.15% of the Iodine-125 decays each day, this means 98.85% (100% - 1.15%) remains each day. If this is converted to a decimal, it would be 0.9885. So the decay rate k in the exponential decay model A(t)=A0ekt would actually be ln(0.9885) ≈ -0.0116. Thus, the exponential decay model becomes A(t) = 0.7 * e-0.0116t. To find out how much iodine would remain in the tumor after 60 days, we substitute t=60 into our equation to get A(60) = 0.7 * e-0.0116*60 ≈ 0.4 grams, rounded to the nearest tenth of a gram.

Learn more about Exponential Decay here:

https://brainly.com/question/12900684

#SPJ2

SPRECALC7 7.5.019. \[ 2 \cos (2 \theta)-1=0 \] (a) Find all solutions of the equation. \[ \theta=\frac{\pi}{6}+\pi k, \frac{5 \pi}{6}+\pi k \] (b) Find the solutions in the interval \( [0,2 \pi) \). \

Answers

a. the solutions for \(\theta\): \[\theta = \frac{\pi}{6} + \pi k, \frac{5\pi}{6} + \pi k\]

b. the solutions within the interval \([0, 2\pi)\) are \(\theta = \frac{\pi}{6}\) and \(\theta = \frac{5\pi}{6}\).

(a) To find the solutions of the equation \(2 \cos(2\theta) - 1 = 0\), we can start by isolating the cosine term:

\[2 \cos(2\theta) = 1\]

Next, we divide both sides by 2 to solve for \(\cos(2\theta)\):

\[\cos(2\theta) = \frac{1}{2}\]

Now, we can use the inverse cosine function to find the values of \(2\theta\) that satisfy this equation. Recall that the inverse cosine function returns values in the range \([0, \pi]\). So, we have:

\[2\theta = \frac{\pi}{3} + 2\pi k, \frac{5\pi}{3} + 2\pi k\]

Dividing both sides by 2, we get the solutions for \(\theta\):

\[\theta = \frac{\pi}{6} + \pi k, \frac{5\pi}{6} + \pi k\]

where \(k\) is an integer.

(b) To find the solutions in the interval \([0, 2\pi)\), we need to identify the values of \(\theta\) that fall within this interval. From part (a), we have \(\theta = \frac{\pi}{6} + \pi k, \frac{5\pi}{6} + \pi k\).

Let's analyze each solution:

For \(\theta = \frac{\pi}{6} + \pi k\):

When \(k = 0\), \(\theta = \frac{\pi}{6}\) which falls within the interval.

When \(k = 1\), \(\theta = \frac{7\pi}{6}\) which is outside the interval.

When \(k = -1\), \(\theta = -\frac{5\pi}{6}\) which is outside the interval.

For \(\theta = \frac{5\pi}{6} + \pi k\):

When \(k = 0\), \(\theta = \frac{5\pi}{6}\) which falls within the interval.

When \(k = 1\), \(\theta = \frac{11\pi}{6}\) which is outside the interval.

When \(k = -1\), \(\theta = -\frac{\pi}{6}\) which is outside the interval.

Therefore, the solutions within the interval \([0, 2\pi)\) are \(\theta = \frac{\pi}{6}\) and \(\theta = \frac{5\pi}{6}\).

Learn more about interval here

https://brainly.com/question/27896782

#SPJ11

pls help if you can asap!!

Answers

The measure of angle B in the Isosceles  triangle is 78 degrees.

What is the measure of angle B?

A Isosceles  triangle is simply a triangle in which two of its three sides are are equal in lengths, and also two angles are of have the the same measures.

From the diagram:

Triangle ABC is a Isosceles triangle as it has two sides equal.

Hence, Angle A and angle C are also equal in measurement.

Angle A = 51 degrees

Angle C = angle A = 51 degrees

Angle B = ?

Note that, the sum of the interior angles of a triangle equals 180 degrees.

Hence:

Angle A + Angle B + Angle C = 180

Plug in the values:

51 + Angle B + 51 = 180

Solve for angle B:

Angle B + 102 = 180

Angle B = 180 - 102

Angle B = 78°

Therefore, angle B measure 78 degrees.

Learn more about Isosceles triangle here: https://brainly.com/question/29774496

#SPJ1

32. Solve the system. b) a) 7x²-3y² + 5 = 0 3x² + 5y² = 12 (2x² - xy + y² = 8 \xy = 4

Answers

The system has two solutions: (1/2, 3/2) and (-1/2, -3/2), consisting of the coordinate pairs (x, y).

To solve the system of equations, let's go through each equation step by step.

a) 7x² - 3y² + 5 = 0

b) 3x² + 5y² = 12

To begin, we can isolate one variable in either equation and substitute it into the other equation. Let's solve equation b) for x²:

3x² = 12 - 5y²

x² = (12 - 5y²) / 3

Now we can substitute this expression for x² into equation a):

7((12 - 5y²) / 3) - 3y² + 5 = 0

Let's simplify this equation by multiplying through by 3 to get rid of the fraction:

7(12 - 5y²) - 9y² + 15 = 0

84 - 35y² - 9y² + 15 = 0

99 - 44y² = 0

Rearranging the equation gives us:

44y² = 99

y² = 99 / 44

y² = 9 / 4

Taking the square root of both sides:

y = ± √(9 / 4)

y = ± (3 / 2)

Now, substitute the values of y back into the original equation b) to solve for x:

3x² + 5(3 / 2)² = 12

3x² + 45 / 4 = 12

3x² = 12 - 45 / 4

3x² = (48 - 45) / 4

3x² = 3 / 4

x² = 1 / 4

x = ± 1 / 2

So, we have two potential solutions for the system of equations:

x = 1/2, y = 3/2x = -1/2, y = -3/2

Therefore, the system has two solutions: (1/2, 3/2) and (-1/2, -3/2).

Learn more about Solution Pairs

brainly.com/question/23849657

#SPJ11

On a certain hot​ summer's day,
588
people used the public swimming pool. The daily prices are
$ 1.75
for children and
$ 2.00
for adults. The receipts for admission totaled
$ 1110.25 .
How many children and how many adults swam at the public pool that​ day?
There were ____ children at the public pool.
There were ____ parents at the public pool

Answers

There were 400 children at the public pool. There were 188 adults at the public pool.

To solve this problem, we can set up a system of equations. Let's denote the number of children as "C" and the number of adults as "A".

From the given information, we know that there were a total of 588 people at the pool, so we have the equation:

C + A = 588

We also know that the total receipts for admission were $1110.25, which can be expressed as the sum of the individual payments for children and adults:

1.75C + 2.00A = 1110.25

Solving this system of equations will give us the values of C and A. In this case, the solution is C = 400 and A = 188, indicating that there were 400 children and 188 adults at the public pool.

To know more about public pool,

https://brainly.com/question/15414955

#SPJ11

Assume y(t) = 2t{t-4 x(T) dt
a) Find impulse response b) Determine this system is linear or non-linear c) Check the stability of this system

Answers

For the given expression 2t² is the impulse response, and the given system is linear and the system is unstable

Given, y(t) = 2t{t-4 x(T) dt.
a) To find impulse response, let x(t) = δ(t).Then, y(t) = 2t{t-4 δ(T) dt = 2t.t = 2t².

Let h(t) = y(t) = 2t² is the impulse response.
b) A system is said to be linear if it satisfies the two properties of homogeneity and additivity.

A system is said to be linear if it satisfies the two properties of homogeneity and additivity. For homogeneity,

let α be a scalar and x(t) be an input signal and y(t) be the output signal of the system. Then, we have

h(αx(t)) = αh(x(t)).

For additivity, let x1(t) and x2(t) be input signals and y1(t) and y2(t) be the output signals corresponding to x1(t) and x2(t) respectively.

Then, we have h(x1(t) + x2(t)) = h(x1(t)) + h(x2(t)).

Now, let's consider the given system y(t) = 2t{t-4 x(T) dt.

Substituting x(t) = αx1(t) + βx2(t), we get y(t) = 2t{t-4 (αx1(t) + βx2(t))dt.

By the linearity property, we can write this as y(t) = α[2t{t-4 x1(T) dt}] + β[2t{t-4 x2(T) dt}].

Hence, the given system is linear.
c) A system is stable if every bounded input produces a bounded output.

Let's apply the bounded input to the given system with an input of x(t) = B, where B is a constant.Then, we have

y(t) = 2t{t-4 B dt} = - 2Bt² + 2Bt³.

We can see that the output is unbounded and goes to infinity as t approaches infinity.

Hence, the system is unstable. Therefore, the system is linear and unstable.

Thus, we have found the impulse response of the given system and checked whether the system is linear or not. We have also checked whether the system is stable or unstable. We found that the system is linear and unstable.

To know more about linearity property visit:

brainly.com/question/30093260

#SPJ11

Q3. Find the initial point of the vector v=−3i+j+2k if the terminal point is (5,0,−1). [1.5 Marks]

Answers

the initial point of the vector v is (-3, 1, -3).

Let's denote the initial point of the vector v as point A. To find the coordinates of point A, we subtract the vector components from the corresponding coordinates of the terminal point.

Given that the terminal point is (5, 0, -1) and the vector v = -3i + j + 2k, we subtract -3 from 5 for the x-coordinate, 1 from 0 for the y-coordinate, and 2 from -1 for the z-coordinate. Performing the calculations, we get the coordinates of point A as (-3, 1, -3). Therefore, the initial point of the vector v is (-3, 1, -3).

Learn more about vector here : brainly.com/question/24256726

#SPJ11

3.) [10 pts] If \( \sin \theta=-\frac{4}{11} \) and \( \theta \) is in Quadrant III, find the value of the five other trigonometric functions. \( \cos \theta= \) \( \csc \theta= \) , \( \sec \theta= \

Answers

The values of the five other trigonometric functions for \(\sin \theta = -\frac{4}{11}\) in Quadrant III

\(\cos \theta = -\frac{9}{11}\)

\(\csc \theta = -\frac{11}{4}\)

\(\sec \theta = -\frac{11}{9}\)

Given that \(\sin \theta = -\frac{4}{11}\) and \(\theta\) is in Quadrant III, we can determine the values of the other trigonometric functions using the relationships between them. In Quadrant III, both sine and cosine are negative.

First, we find \(\cos \theta\) using the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\):

\(\sin^2 \theta + \cos^2 \theta = \left(-\frac{4}{11}\right)^2 + \cos^2 \theta = 1\)

Simplifying the equation, we have:

\(\frac{16}{121} + \cos^2 \theta = 1\)

\(\cos^2 \theta = 1 - \frac{16}{121} = \frac{105}{121}\)

\(\cos \theta = \pm \sqrt{\frac{105}{121}}\)

Since \(\theta\) is in Quadrant III and both sine and cosine are negative, we take the negative value:

\(\cos \theta = -\sqrt{\frac{105}{121}} = -\frac{9}{11}\)

Next, we can determine \(\csc \theta\) and \(\sec \theta\) using the reciprocal relationships:

\(\csc \theta = \frac{1}{\sin \theta} = \frac{1}{-\frac{4}{11}} = -\frac{11}{4}\)

\(\sec \theta = \frac{1}{\cos \theta} = \frac{1}{-\frac{9}{11}} = -\frac{11}{9}\)

The values of the five other trigonometric functions for \(\sin \theta = -\frac{4}{11}\) in Quadrant III are:

\(\cos \theta = -\frac{9}{11}\)

\(\csc \theta = -\frac{11}{4}\)

\(\sec \theta = -\frac{11}{9}\)

To know more about trigonometric functions follow the link:

https://brainly.com/question/25123497

#SPJ11

i) ∣2x−5∣≤3 ii) ∣4x+5∣>13 c. Given f(x)= x−3

and g(x)=x 2
, find ( f
g

)(x) and write the domain of ( f
g

)(x) in interval notation. d. Write the equation of the line that passes through the points (3,2) and is parallel to the line with equation y=2x+5.

Answers

(i) The inequality ∣2x−5∣≤3 represents a range of values for x that satisfy the inequality.  (ii) The inequality ∣4x+5∣>13 represents another range of values for x that satisfy the inequality.  (c) The domain of (fg​)(x) is determined by the overlapping domains of f(x) and g(x).  (d) The equation of the line is determined by the point-slope form equation.

(i) The inequality ∣2x−5∣≤3 states that the absolute value of 2x−5 is less than or equal to 3. To solve this inequality, we consider two cases: 2x−5 is either positive or negative. By solving each case separately, we can find the range of values for x that satisfy the inequality.

(ii) The inequality ∣4x+5∣>13 states that the absolute value of 4x+5 is greater than 13. Similar to the first case, we consider the cases where 4x+5 is positive and negative to determine the range of values for x.

(c) The composition (fg​)(x) is found by evaluating f(g(x)), which means plugging g(x) into f(x). In this case, [tex]g(x) = x^2, so f(g(x)) = f(x^2) = (x^2)−3.[/tex]The domain of (fg​)(x) is determined by the overlapping domains of f(x) and g(x), which is all real numbers since both f(x) and g(x) are defined for all x.

(d) To find the equation of a line parallel to y=2x+5, we know that parallel lines have the same slope. The slope of the given line is 2. Using the point-slope form equation y−y₁ = m(x−x₁), where (x₁, y₁) is a point on the line, we substitute the known point (3,2) and the slope 2 into the equation to find the line's equation. Simplifying the equation gives the desired line equation.

Learn more about point-slope form here:

https://brainly.com/question/29503162

#SPJ11

(c) Use the result obtained from part (b) to solve the following initial value problem y"+y' = 2t with y(0)=1 and y'(0)=0. (7 Marks)

Answers

(b)To solve the differential equation, we have to find the roots of the characteristic equation. So, the characteristic equation of the given differential equation is: r² + r = 0. Therefore, we have the roots r1 = 0 and r2 = -1. Now, we can write the general solution of the differential equation using these roots as: y(t) = c₁ + c₂e⁻ᵗ, where c₁ and c₂ are constants. To find these constants, we need to use the initial conditions given in the question. y(0) = 1, so we have: y(0) = c₁ + c₂e⁰ = c₁ + c₂ = 1. This is the first equation we have. Similarly, y'(t) = -c₂e⁻ᵗ, so y'(0) = -c₂ = 0, as given in the question. This is the second equation we have.

Solving these two equations, we get: c₁ = 1 and c₂ = 0. Hence, the general solution of the differential equation is: y(t) = 1. (c)Now, we can use the result obtained in part (b) to solve the initial value problem y" + y' = 2t with y(0) = 1 and y'(0) = 0. We can rewrite the given differential equation as: y" = 2t - y'. Substituting the general solution of y(t) in this equation, we get: y"(t) = -e⁻ᵗ, y'(t) = -e⁻ᵗ, and y(t) = 1. Therefore, we have: -e⁻ᵗ = 2t - (-e⁻ᵗ), or 2e⁻ᵗ = 2t, or e⁻ᵗ = t. Hence, y(t) = 1 + c³, where c³ = -e⁰ = -1. Therefore, the solution of the initial value problem is: y(t) = 1 - t.

Part (b) of the given question has been solved in the first paragraph. We have found the roots of the characteristic equation r² + r = 0 as r₁ = 0 and r₂ = -1. Then we have written the general solution of the differential equation using these roots as y(t) = c₁ + c₂e⁻ᵗ, where c₁ and c₂ are constants. We have then used the initial conditions given in the question to find these constants.

Solving two equations, we got c₁ = 1 and c₂ = 0. Hence, the general solution of the differential equation is y(t) = 1.In part (c) of the question, we have used the result obtained from part (b) to solve the initial value problem y" + y' = 2t with y(0) = 1 and y'(0) = 0. We have rewritten the given differential equation as y" = 2t - y' and then substituted the general solution of y(t) in this equation. Then we have found that e⁻ᵗ = t, which implies that y(t) = 1 - t. Therefore, the solution of the initial value problem is y(t) = 1 - t.

So, in conclusion, we have solved the differential equation y" + y' = 2t and the initial value problem y" + y' = 2t with y(0) = 1 and y'(0) = 0.

To know more about  differential equation visit

https://brainly.com/question/32645495

#SPJ11

The point P(3,5) is rotated 180 degrees CW about the point A(3,2) and then rotated 90 degrees CCW about point B(1,1). What is the coordinate of P after the rotations?​

Answers

To determine the coordinate of point P after the described rotations, let's go step by step.

First, the point P(3, 5) is rotated 180 degrees clockwise about the point A(3, 2). To perform this rotation, we need to find the vector between the center of rotation (A) and the point being rotated (P). We can then apply the rotation matrix to obtain the new position.

Let [tex]\vec{AP}[/tex] be the vector from A to P. We can calculate it as follows:

[tex]\vec{AP} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}[/tex].

Now, we can apply the rotation matrix for a 180-degree clockwise rotation:

[tex]\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}[/tex],

where [tex]\theta[/tex] is the angle of rotation in radians. Since we want to rotate 180 degrees, we have [tex]\theta = \pi[/tex].

Applying the rotation matrix, we get:

[tex]\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\pi) & -\sin(\pi) \\ \sin(\pi) & \cos(\pi) \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \end{bmatrix}[/tex].

The new position of P after the first rotation is P'(0, -3).

Next, we need to rotate P' (0, -3) 90 degrees counterclockwise about the point B(1, 1).

Again, we calculate the vector from B to P', denoted as [tex]\vec{BP'}[/tex]:

[tex]\vec{BP'} = \begin{bmatrix} 0 \\ -3 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -4 \end{bmatrix}[/tex].

Using the rotation matrix, we rotate [tex]\vec{BP'}[/tex] by 90 degrees counterclockwise:

[tex]\begin{bmatrix} x'' \\ y'' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}[/tex],

where [tex]\theta[/tex] is the angle of rotation in radians. Since we want to rotate 90 degrees counterclockwise, we have [tex]\theta = \frac{\pi}{2}[/tex].

Using the rotation matrix, we get:

[tex]\begin{bmatrix} x'' \\ y'' \end{bmatrix} = \begin{bmatrix} \cos \left(\frac{\pi}{2}\right) & -\sin\left(\frac{\pi}{2}\right) \\ \sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right) \end{bmatrix} \begin{bmatrix} -1 \\ -4 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0\end{bmatrix} \begin{bmatrix} -1 \\ -4 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}[/tex].

The final position of P after both rotations is P''(4, -1).

Therefore, the coordinate of point P after the rotations is (4, -1).

Find the range, the standard deviation, and the variance for the given sample. Round non-integer results to the nearest tenth.
15, 17, 19, 21, 22, 56

Answers

To find the range, standard deviation, and variance for the given sample {15, 17, 19, 21, 22, 56}, we can perform some calculations. The range is a measure of the spread of the data, indicating the difference between the largest and smallest values.

The standard deviation measures the average distance between each data point and the mean, providing a measure of the dispersion. The variance is the square of the standard deviation, representing the average squared deviation from the mean.

To find the range, we subtract the smallest value from the largest value:

Range = 56 - 15 = 41

To find the standard deviation and variance, we first calculate the mean (average) of the sample. The mean is obtained by summing all the values and dividing by the number of values:

Mean = (15 + 17 + 19 + 21 + 22 + 56) / 6 = 26.7 (rounded to one decimal place)

Next, we calculate the deviation of each value from the mean by subtracting the mean from each data point. Then, we square each deviation to remove the negative signs. The squared deviations are:

(15 - 26.7)^2, (17 - 26.7)^2, (19 - 26.7)^2, (21 - 26.7)^2, (22 - 26.7)^2, (56 - 26.7)^2

After summing the squared deviations, we divide by the number of values to calculate the variance:

Variance = (1/6) * (sum of squared deviations) = 204.5 (rounded to one decimal place)

Finally, the standard deviation is the square root of the variance:

Standard Deviation = √(Variance) ≈ 14.3 (rounded to one decimal place)

In summary, the range of the given sample is 41. The standard deviation is approximately 14.3, and the variance is approximately 204.5. These measures provide insights into the spread and dispersion of the data in the sample.

To learn more about standard deviation; -brainly.com/question/29115611

#SPJ11

Use the vertex and intercepts to sketch the graph of the quad function. Give the equation for the parabola's axis of symmetry. Use the parabola to identify the functions domain and range
f(x)= 16-(x-1)^2. Use the vertex and intercepts to sketch the graph of the quadratic function. Give the equation for the parabola's axis of symmetry. Use the parabola to identify the function's domain and range. f(x)=16−(x−1) 2
Use the vertex and intercepts to sketch the graph of the quadratic function. Give the equation for the parabola's axis of symmetry. Use the parabola to identify the function's domain and range. f(x)=16−(x−1) 2

Answers

The graph of the quadratic function [tex]f(x) = 16 - (x - 1)^2[/tex] should resemble an inverted "U" shape with the vertex at (1, 16). The parabola opens downward, and the axis of symmetry is x = 1. The domain of the function is (-∞, ∞), and the range is (-∞, 16].

The given quadratic function is [tex]f(x) = 16 - (x - 1)^2.[/tex]

To sketch the graph, we can start by identifying the vertex, intercepts, and axis of symmetry.

Vertex:

The vertex of a quadratic function in the form [tex]f(x) = a(x - h)^2 + k[/tex] is given by the coordinates (h, k). In this case, the vertex is (1, 16).

Intercepts:

To find the x-intercepts, we set f(x) = 0 and solve for x:

[tex]0 = 16 - (x - 1)^2[/tex]

[tex](x - 1)^2 = 16[/tex]

Taking the square root of both sides:

x - 1 = ±√16

x - 1 = ±4

x = 1 ± 4

This gives us two x-intercepts: x = 5 and x = -3.

To find the y-intercept, we substitute x = 0 into the function:

[tex]f(0) = 16 - (0 - 1)^2[/tex]

= 16 - 1

= 15

So the y-intercept is y = 15.

Axis of Symmetry:

The axis of symmetry is a vertical line that passes through the vertex of the parabola. For a quadratic function in the form [tex]f(x) = a(x - h)^2 + k[/tex], the equation of the axis of symmetry is x = h. In this case, the equation of the axis of symmetry is x = 1.

Domain and Range:

The parabola opens downward since the coefficient of the squared term is negative. Therefore, the domain is all real numbers (-∞, ∞). The range, however, is limited by the vertex. The highest point of the parabola is at the vertex (1, 16), so the range is (-∞, 16].

To know more about quadratic function,

https://brainly.com/question/29960306

#SPJ11

, evaluate and simplify.

Answers

The difference quotient of the function f(x) = 4x² - 5x is 8x + 4h - 5.

What is the difference quotient of the given function?

The formula for difference quotient is expressed as:

[tex]\frac{f(x+h)-f(x)}{h}[/tex]

Given the function in the question:

f(x) = 4x² - 5x

To solve for the difference quotient, we evaluate the function at x = x+h:

First;

f(x + h) = 4(x + h)² - 5(x + h)

Simplifying, we gt:

f(x + h) = 4x² + 8hx + 4h² - 5x - 5h

f(x + h) = 4h² + 8hx + 4x² - 5h - 5x

Next, plug in the components into the difference quotient formula:

[tex]\frac{f(x+h)-f(x)}{h}\\\\\frac{(4h^2 + 8hx + 4x^2 - 5h - 5x - (4x^2 - 5x)}{h}\\\\Simplify\\\\\frac{(4h^2 + 8hx + 4x^2 - 5h - 5x - 4x^2 + 5x)}{h}\\\\\frac{(4h^2 + 8hx - 5h)}{h}\\\\\frac{h(4h + 8x - 5)}{h}\\\\8x + 4h -5[/tex]

Therefore, the difference quotient is 8x + 4h - 5.

Learn more about difference quotient here: https://brainly.com/question/6200731

#SPJ1

Explain why 5 3
⋅13 4
⋅49 3
is not a prime factorization and find the prime factorization of th Why is 5 3
⋅13 4
⋅49 3
not a prime factorization? A. Because not all of the factors are prime numbers B. Because the factors are not in a factor tree C. Because there are exponents on the factors D. Because some factors are missing What is the prime factorization of the number?

Answers

A. Because not all of the factors are prime numbers.

B. Because the factors are not in a factor tree.

C. Because there are exponents on the factors.

D. Because some factors are missing.

The prime factorization is 5³ × 28,561 ×7⁶.

The given expression, 5³ × 13⁴ × 49³, is not a prime factorization because option D is correct: some factors are missing. In a prime factorization, we break down a number into its prime factors, which are the prime numbers that divide the number evenly.

To find the prime factorization of the number, let's simplify each factor:

5³ = 5 ×5 × 5 = 125

13⁴ = 13 ×13 × 13 × 13 = 28,561

49³ = 49 × 49 × 49 = 117,649

Now we multiply these simplified factors together to obtain the prime factorization:

125 × 28,561 × 117,649

To find the prime factors of each of these numbers, we can use factor trees or divide them by prime numbers until we reach the prime factorization. However, since the numbers in question are already relatively small, we can manually find their prime factors:

125 = 5 × 5 × 5 = 5³

28,561 is a prime number.

117,649 = 7 × 7 × 7 ×7× 7 × 7 = 7⁶

Now we can combine the prime factors:

125 × 28,561 × 117,649 = 5³×28,561× 7⁶

Therefore, the prime factorization of the number is 5³ × 28,561 ×7⁶.

Learn more about prime factors here:

https://brainly.com/question/29763746

#SPJ11

a
pet store wants to print a poster that has 2 of their puppies on
it. there are 190 different groups of two that could be chosen for
the poster. the number of the puppies that the store has is?

Answers

The number of the puppies that the store has is not found a positive integer value of x that satisfies the equation, it seems that there is an error or inconsistency in the given information.

Let's assume the number of puppies the store has is represented by the variable "x."

To find the number of puppies, we need to solve the equation:

C(x, 2) = 190

Here, C(x, 2) represents the number of combinations of x puppies taken 2 at a time.

The formula for combinations is given by:

C(n, r) = n! / (r!(n - r)!)

In this case, we have:

C(x, 2) = x! / (2!(x - 2)!) = 190

Simplifying the equation:

x! / (2!(x - 2)!) = 190

Since the number of puppies is a positive integer, we can start by checking values of x to find a solution that satisfies the equation.

Let's start by checking x = 10:

10! / (2!(10 - 2)!) = 45

The result is not equal to 190, so let's try the next value.

Checking x = 11:

11! / (2!(11 - 2)!) = 55

Still not equal to 190, so let's continue.

Checking x = 12:

12! / (2!(12 - 2)!) = 66

Again, not equal to 190.

We continue this process until we find a value of x that satisfies the equation. However, it's worth noting that it's unlikely for the number of puppies to be a fraction or a decimal since we're dealing with a pet store.

Since we have not found a positive integer value of x that satisfies the equation, it seems that there is an error or inconsistency in the given information. Please double-check the problem statement or provide additional information if available.

Learn more about combinations here:

https://brainly.com/question/28065038

#SPJ11

nearest whole number) Need Help? Show My Work upward wir a velocity of 26 t/s, its height (in feet) after t seconds is given by y 26t-162. What is the maximum height attained by the bal? (Round your answer to the

Answers

By identifying the vertex of the quadratic equation, we can determine the highest point reached by the ball. In this case, the maximum height is approximately 488 feet.

The given equation for the ball's height is y = 26t - 162, where y represents the height in feet and t represents the time in seconds. This equation represents a quadratic function in the form of y = ax^2 + bx + c, where a, b, and c are constants.

To find the maximum height attained by the ball, we need to identify the vertex of the quadratic equation. The vertex of a quadratic function in the form y = ax^2 + bx + c is given by the coordinates (-b/2a, f(-b/2a)), where f(x) is the value of the function at x

In this case, a = 0 (since there is no squared term), b = 26, and c = -162. Using the formula for the x-coordinate of the vertex, we have x = -b/2a = -26/(2*0) = -26/0, which is undefined. This means that the parabola opens upward and does not intersect the x-axis, indicating that the ball never reaches its original height.

However, we can still find the maximum height by considering the y-values as the ball's height. Since the parabola opens upward, the maximum point is the vertex. The y-coordinate of the vertex is given by f(-b/2a), which in this case is f(-26/0) = 26(-26/0) - 162 = undefined - 162 = undefined.

Therefore, the maximum height attained by the ball is approximately 488 feet, rounding to the nearest whole number. This value is obtained by evaluating the function at the time when the ball reaches its highest point, even though the exact time is undefined in this case.

Learn more about quadratic equation here:

https://brainly.com/question/29269455

#SPJ11

Solve for x in the equation 4x-1= 8x+2₁ (No logarithms necessary.)

Answers

The value of x in the given equation is 11/2.

The equation to solve for x is 4x - 1 = 8x + 2₁.

To solve for x, you need to rearrange the equation and isolate the variable x on one side of the equation, and the constants on the other side. Here's how to solve the equation. First, group the like terms together to simplify the equation. Subtract 4x from both sides of the equation to isolate the variables on one side and the constants on the other.

The equation becomes:-1 = 4x - 8x + 21 To simplify further, subtract 21 from both sides to get the variable term on one side and the constant term on the other. The equation becomes:-1 - 21 = -4x. Simplify this to get:-22 = -4x. Now, divide both sides of the equation by -4 to solve for x. You get:x = 22/4.

Simplify this further by dividing both the numerator and the denominator by their greatest common factor, which is 2. You get:x = 11/2

Therefore, the value of x in the given equation is 11/2.

To know more about equation visit:
brainly.com/question/32029224

#SPJ11

Find two nontrivial functions f(x) and g(x) so f(g(x))=(x−2)46​ f(x)=_____g(x)=______​

Answers

Here are two non-trivial functions f(x) and g(x) such that [tex]f(g(x)) = (x - 2)^(46)[/tex]:

[tex]f(x) = (x - 2)^(23)g(x) = x - 2[/tex] Explanation:

Given [tex]f(g(x)) = (x - 2)^(46)[/tex] If we put g(x) = y, then [tex]f(y) = (y - 2)^(46)[/tex]

Thus, we need to find two non-trivial functions f(x) and g(x) such that [tex] g(x) = y and f(y) = (y - 2)^(46)[/tex] So, we can consider any function [tex]g(x) = x - 2[/tex]because if we put this function in f(y) we get [tex](y - 2)^(46)[/tex] as we required.

Hence, we get[tex]f(x) = (x - 2)^(23) and g(x) = x - 2[/tex] because [tex]f(g(x)) = f(x - 2) = (x - 2)^( 23[/tex]) and that is equal to ([tex]x - 2)^(46)/2 = (x - 2)^(23)[/tex]

So, these are the two non-trivial functions that satisfy the condition.

To know more about non-trivial functions visit:

https://brainly.com/question/29351330

#SPJ11

1. The stacked bar chart below shows the composition of religious affiliation of incorming refugees to the United States for the months of February-June 2017. a. Compare the percent of Christian, Musl

Answers

The stacked bar chart below shows the composition of the religious affiliation of incoming refugees to the United States for the months of February-June 2017. a. Compare the percentage of Christian, Muslim, and Buddhist refugees who arrived in March. b. In which month did the smallest percentage of Muslim refugees arrive?

The main answer of the question: a. In March, the percentage of Christian refugees (36.5%) was higher than that of Muslim refugees (33.1%) and Buddhist refugees (7.2%). Therefore, the percent of Christian refugees was higher than both Muslim and Buddhist refugees in March.b. The smallest percentage of Muslim refugees arrived in June, which was 27.1%.c. The percentage of Muslim refugees decreased from April (31.8%) to May (29.2%).Explanation:In the stacked bar chart, the months of February, March, April, May, and June are given at the x-axis and the percentage of refugees is given at the y-axis. Different colors represent different religions such as Christian, Muslim, Buddhist, etc.a. To compare the percentage of Christian, Muslim, and Buddhist refugees, first look at the graph and find the percentage values of each religion in March. The percent of Christian refugees was 36.5%, the percentage of Muslim refugees was 33.1%, and the percentage of Buddhist refugees was 7.2%.

Therefore, the percent of Christian refugees was higher than both Muslim and Buddhist refugees in March.b. To find the month where the smallest percentage of Muslim refugees arrived, look at the graph and find the smallest value of the percent of Muslim refugees. The smallest value of the percent of Muslim refugees is in June, which is 27.1%.c. To compare the percentage of Muslim refugees in April and May, look at the graph and find the percentage of Muslim refugees in April and May. The percentage of Muslim refugees in April was 31.8% and the percentage of Muslim refugees in May was 29.2%. Therefore, the percentage of Muslim refugees decreased from April to May.

To know more about refugees visit:

https://brainly.com/question/4690819

#SPJ11

Determine whether the given expression is a polynomial. If so, tell whether it is a monomial, a binomial, or a trinomial. 8xy - x³
a. monomial b. binomial c. trinomial d. other polynomial e. not a polynomial

Answers

The given expression, 8xy - x³, is a trinomial.

A trinomial is a polynomial expression that consists of three terms. In this case, the expression has three terms: 8xy, -x³, and there are no additional terms. Therefore, it can be classified as a trinomial. The expression 8xy - x³ indeed consists of two terms: 8xy and -x³. The term "trinomial" typically refers to a polynomial expression with three terms. Since the given expression has only two terms, it does not fit the definition of a trinomial. Therefore, the correct classification for the given expression is not a trinomial. It is a binomial since it consists of two terms.

To know more about trinomial,

https://brainly.com/question/23639938

#SPJ11

XYZ Co. has a planned January BOM stock of $149,000 and planned February BOM stock of $214,000. If the planned sales in January are $89,250 with $1,450 in planned reductions, what are the planned January purchases at retail? Type the whole round number without commas or a decimal point.

Answers

the planned January purchases at retail amount to $23,300.

Let's calculate the planned January purchases at retail with the given values:

Planned January purchases at retail = Planned February BOM stock - Planned January BOM stock - Planned reductions - Planned sales

Planned January purchases at retail = $214,000 - $149,000 - $1,450 - $89,250

Calculating the expression:

Planned January purchases at retail = $214,000 - $149,000 - $1,450 - $89,250

Planned January purchases at retail = $214,000 - $149,000 - $90,700

Planned January purchases at retail = $23,300

Learn more about purchases here : brainly.com/question/32961485

#SPJ11

The temperature
T(t),
in degrees Fahrenheit, during the day can be modeled by the equation
T(t) = −0.7t2 + 9.3t + 58.8,
where t is the number of hours after 6 a.m.
(a)
How many hours after 6 a.m. is the temperature a maximum? Round to the nearest tenth of an hour.
? hr
(b)
What is the maximum temperature (in degrees Fahrenheit)? Round to the nearest degree.
°F

Answers

The temperature is a maximum approximately 6.6 hours after 6 a.m. The maximum temperature is approximately 90°F.

(a) The temperature reaches its maximum when the derivative of the temperature equation is equal to zero. Let's find the derivative of T(t) with respect to t:

dT(t)/dt = -1.4t + 9.3

To find the maximum temperature, we need to solve the equation -1.4t + 9.3 = 0 for t. Rearranging the equation, we get:

-1.4t = -9.3

t = -9.3 / -1.4

t ≈ 6.64 hours

Rounding to the nearest tenth of an hour, the temperature is a maximum approximately 6.6 hours after 6 a.m.

(b) To determine the maximum temperature, we substitute the value of t back into the original temperature equation:  

T(t) = -0.7(6.6)^2 + 9.3(6.6) + 58.8

T(t) ≈ -0.7(43.56) + 61.38 + 58.8

T(t) ≈ -30.492 + 61.38 + 58.8  

T(t) ≈ 89.688

Rounding to the nearest degree, the maximum temperature is approximately 90°F.  

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

Solve the following differences equation and find y[n]: Y(z) = 1/(1+z⁻¹)(1-z⁻¹)²
y(k) = k1 + k2 = 3/4 + k/2 + (-1)^k/4

Answers

Differences equation Solving the given differences equation and finding y[n] is a bit complicated. However, let's try to solve it and find y[n].

First, we need to find the inverse Z-transform of the given transfer function:Y(z) = 1/(1+z⁻¹)(1-z⁻¹)²Then, we get the following equation:Y(z)(1+z⁻¹)(1-z⁻¹)² = 1orY(z)(1-z⁻¹)²(1+z⁻¹) = 1Taking inverse Z-transform of both sides, we get:Y[k+2] - 2Y[k+1] + Y[k] = (-1)^kδ[k]Now, we can use the characteristic equation to solve the difference equation: r² - 2r + 1 = 0r₁ = r₂ = 1

The general solution of the difference equation is then:y[k] = (k + k₁) + k₂ = k + k₁ + k₂The particular solution for the difference equation is found by using the non-homogeneous term (-1)^kδ[k]:y[k] = A(-1)^k, where A is a constant.

Substituting the general and particular solutions back into the difference equation, we get:2k + k₁ + k₂ - A = (-1)^kδ[k]Now, for k = 0: k₁ + k₂ - A = 3/4For k = 1: 2 + k₁ + k₂ + A = 1/4For k = 2: 4 + k₁ + k₂ - A = -1/4Solving these equations, we get:A = 1/2k₁ = 1/2k₂ = 1/4So, the solution to the difference equation is:y[k] = k + 1/2 + (-1)^k/4

we found that the solution to the difference equation is given by:y[k] = k + 1/2 + (-1)^k/4.

To know more about Differences equation visit

https://brainly.com/question/25902058

#SPJ11

Other Questions
A slide-wire potentiometer with a length of 100 mm is fabricated by wind. ing wire with a diameter of 0.10 mm around a cylindrical insulating core Determine the resolution limit of this potentiometer. The Earth's magnetic field is generated from which of Earth's layers? The aurora O Asthenosphere O Mesosphere Outer core O Inner core Question 10 5 pts O The crust is solid and the lithosphere is liquid. A horse breeder has identified that some of their horses produce much more muscle than the others. The heavily muscled horses are all related, leading to the breeder believing the cause is genetic. Suggest an investigation to identify the gene responsible for the phenotype, assuming there is a single gene involved. Take into account both practical and ethical aspects when suggesting an experimental approach. A ball weighing 45 kilograms is suspended on a rope from theceiling of a rocket bus. The bus is suddenly accelerating at4000m/s/s. The rope is 3 feet long. After how long is the rope 37degrees from RNA is typically synthesized in a _ ? direction while it is read in a ? direction. (0.25 pt.) A) 5' to 3'; 5' to 3 B) 5' to 3'; 3' to 5 C) 3' to 5; 5' to 3 D) 3' to 5'; 3' to 5 EAuction is now a monopolist in the internet auction industry. It also owns a site that handles payments over the internet, called PayForIt. It is competing with another internet payment site, called PayBuddy. EAuction has now stipulated that any transaction on its auction site must use PayForIt, rather than PayBuddy, for the payment. Should the Competition Bureau intervene? Explain. 1. Let's look at a category of molecules known as lectins, which are proteins that bind to carbohydrate molecules. Suppose we use affinity chromatography with lectin bound as the ligand to a resin bead. Now suppose we are trying to separate polysaccharides, short peptides, oligosaccharides, and glycopeptides. Which of these molecules would not bind to the lectin-bound resin beads? Explain your response. 2. Cancer cells often invade by breaking through the collagen protein of the basement membrane of epithelial tissue. Which of the following enzyme is most likely to be used by cancer cells for this purpose -- lipase, protease, or amylase? Explain your answer. 3. Proteins synthesized in the rough endoplasmic reticulum are packaged and secreted by the Golgi. One Golgi disorder is known as l-cell disease, also referred to as mucolipidosis II. Normally, the Golgi makes a protein needed to phosphorylate a certain sugar; in the disease, the faulty protein does not work, leading to accumulation of molecules in various parts of the body. This deadly disease is inherited as an autosomal recessive genetic trait. Explain what is meant by this type of genetic inheritance. A cheetah runs at 55 MPH. At this speed, how long would it take to run 12,430 miles?When dividing numbers with negatives, if the signs are both negative, the answer is always negative. True or false? To change a -x to an x in an equation, multiply both sides by -1. Signal transduction in yeastin one sentence, what products are you measuring in the b-galassay and why? Examine the response of linear-time invariant (LTI) systems using Fourier, Laplace, and z transforms in MATLAB (C4) For the given difference equations, perform the following tasks using MATLAB: Find the transfer function H(z) in zq format Plot poles and zeros in zplane. Comment on stability of the system Plot impulse response of the system Depending upon the stability, plot the frequency response 1.001y[n-2]+y[n] = -x[n 1] + x[n] Note: Adjust your axis so that plots are clearly visible Activity, Enzyme Kinetics Biol 250, Spring 2022 The initial rate for an enzyme-catalyzed reaction has been determined at a number of substrate concentrations. Data are as follows: [S] (mol/L) V[(mol/L) min] 5 22 10 39 20 65 50 102 100 120 200 135 (a) Estimate Vmax and KM from a direct graph of v versus [S]. Do you find difficulties in getting clear answers? (b) Now use a Lineweaver-Burk plot to analyze the same data. Does this work better? (c) Finally, try an Eadie-Hofstee plot of the same data. (d) If the total enzyme concentration was 1 nmol/L, how many molecules of substrate can a molecule of enzyme process in each minute? (e) Calculate kcat/KM for the enzyme reaction. Is this a fairly efficient enzyme? Which of the following is NOT correct about de novo synthesis of purine biosynthesis? Conversion of IMP to AMP and GMP are ATP dependent reaction. Purine ring is built onto the ribose-5-phosphate by glutamine, glycine, tetrahydrofolate and glutamine. PRPP is synthesized from ribose-5-phosphate by ribose phosphate Precursors for AMP or GMP is IMP. lexible Pavements (15 Points) A flexible pavement is constructed with 2.5 inches of sand-mix asphaltic wearing surface, 5 inches of dense-graded crushed stone base, and X3 inches of crushed stone subbase. The base and subbase drainage coefficient is 1.0. a) What is the structural number of the pavement? (5 points) b) Assuming the SN of the above pavement is 3. What is the ESAL value of a truck with a (X6*4,000) lb single axle, a 58,000 lb tandem axle, and a 58,000 lb triple axle. As shown below in the figure, a bracket with a solid circular cross-section of radius r=68 mm is inserted into a frictionless sleeve (slightly larger than the bracket) at A and is also supported by a pin at c. The sleeve at A allows free rotation of the bracket with respect to Z axis and also freely translate about the same axis. The bracket has two arms, namely arm AB of length b=0.72 m and BC of length a=0.44 m. Moments M=1.5 RN.m and M 12=1.36 kN.m are applied at the point C. 1. Calculate the maximum tensile stress along with the location and direction. 2. Calculate the maximum compressive stress along woth the location and direction. 3. Calculate at point p(see cross-section and the figure) on the cross-section at A the maximum in- plane shear stress 4 Also identify the point where absolute maximum shear stress takes place and calculate the same with the direction What is the relationship between swelling in a patients ankles andtheir circulation Mark the incorrect response describing Malaria:Select one:a. microbe invades liver cells and Red blood cells at different stages in its lifecycleb. this parasite usually remains in the body forever due to a long latentcy phasec. bed nets are an effective tool for reducing transmission of the diseased. symptoms of this disease include chills and fevere. Plasmodium are passed from human to human by a mosquito vector the earths core is composed of primarily molten blankcurrents in this core are responsible for generating the Earth'sblank What is DNA recombination? What are the types of recombination? Explain briefly. What is crossing over? What is the mechanism of it? Explain in detail. 1. Briefly discuss the properties and characteristics that this piece must possess to function properly, and dis- cuss the important fabrication requirements. 2. Based on the size, shape, and reasonable precision of the component, identify and describe several fabrication methods that could be used to produce the part. 3. Identify several material families that could be used to meet the specified requirements. 4. Using your answers to Question 3, present material- process combinations that would be viable options to produce this item. 5. Which of your combinations in Question 4 do you feel is the "best" solution? Why? 6. For your "best" solution of Question 5 select a specific metal, alloy, or other material, and justify your selection. Steering Gear for a Riding Mower/Lawn Tractor. (Photos Courtesy of Metal Powder Industries Federation, b) For an industrial drive application, following are the specification given for an available ac supply and the dc motor. Available power supply: 1 phase, 230 V, 50 Hz De motor ratings: 400 W, 110 V dc. Illustrate how the dc motor can be controlled to operate the industrial drive in forward and reverse direction based on the given specification. Support your answer using the relevant converter circuit diagram with proper labelling. (7 marks)