A fair die having six faces is rolled once. Find the probability of
(a) playing the number 1
(b) playing the number 5
(c) playing the number 6
(d) playing the number 8

Answers

Answer 1

The probability of playing the number 1, 5, and 6 is 1/6, and the probability of playing the number 8 is 0.

In a fair die, since there are six faces numbered 1 to 6, the probability of rolling a specific number is given by:

Probability = Number of favorable outcomes / Total number of possible outcomes

(a) Probability of rolling the number 1:

There is only one face with the number 1, so the number of favorable outcomes is 1. The total number of possible outcomes is 6.

Probability of playing the number 1 = 1/6

(b) Probability of rolling the number 5:

There is only one face with the number 5, so the number of favorable outcomes is 1. The total number of possible outcomes is 6.

Probability of playing the number 5 = 1/6

(c) Probability of rolling the number 6:

There is only one face with the number 6, so the number of favorable outcomes is 1. The total number of possible outcomes is 6.

Probability of playing the number 6 = 1/6

(d) Probability of rolling the number 8:

Since the die has only six faces numbered 1 to 6, there is no face with the number 8. Therefore, the number of favorable outcomes is 0.

Probability of playing the number 8 = 0/6 = 0

So, the probability of playing the number 1, 5, and 6 is 1/6, and the probability of playing the number 8 is 0.

Learn more about  probability   from

https://brainly.com/question/30390037

#SPJ11


Related Questions

2. Plot a direction field for each of the following differential equations along with a few on their integral curves. You may use dfield or any other direction (aka slope) field plotter, or Python. (a) y ′ =cos(t+y). (b) y ′ = 1+y 2 z​ .

Answers

To plot the direction field and integral curves for the given differential equations, we can use Python and its libraries like Matplotlib and NumPy. Let's consider the two equations =cos(t+y)We can define a function for this equation in Python, specifying the derivative with respect toy. Then, using the meshgrid function from NumPy, we can create a grid of points in the t−y plane. For each point on the grid, we evaluate the derivative and plot an arrow with the corresponding slope.

To plot integral curves, we need to solve the differential equation numerically. We can use a numerical integration method like Euler's method or a higher-order method like Runge-Kutta. By specifying initial conditions and stepping through the time variable, we can obtain points that trace out the integral curves. These points can be plotted on the direction field.Similarly, we define a function for this equation, specifying the derivative with respect toy, and  Then, we create a grid of points in the t−y plane and evaluate the derivative at each point to plot the direction field.To plot integral curves, we need to solve the system of differential equations numerically. We can use a method like the fourth-order Runge-Kutta method to obtain the points on the integral curves.Using Python and its plotting capabilities, we can visualize the direction field and plot a few integral curves for each of the given differential equations, gaining insights into their behavior in the

Leran more about differential equations here

https://brainly.com/question/32514740

#SPJ11

Remark: How many different bootstrap samples are possible? There is a general result we can use to count it: Given N distinct items, the number of ways of choosing n items with replacement from these items is given by ( N+n−1
n

). To count the number of bootstrap samples we discussed above, we have N=3 and n=3. So, there are totally ( 3+3−1
3

)=( 5
3

)=10 bootstrap samples.

Answers

Therefore, there are 10 different bootstrap samples possible.

The number of different bootstrap samples that are possible can be calculated using the formula (N+n-1)C(n), where N is the number of distinct items and n is the number of items to be chosen with replacement.

In this case, we have N = 3 (the number of distinct items) and n = 3 (the number of items to be chosen).

Using the formula, the number of bootstrap samples is given by (3+3-1)C(3), which simplifies to (5C3).

Calculating (5C3), we get:

(5C3) = 5! / (3! * (5-3)!) = 5! / (3! * 2!) = (5 * 4 * 3!) / (3! * 2) = (5 * 4) / 2 = 10

To know more about samples,

https://brainly.com/question/15358252

#SPJ11

Can you give me the answer to this question

Answers

Assuming you are trying to solve for the variable "a," you should first multiply each side by 2 to cancel out the 2 in the denominator in 5/2. Your equation will then look like this:

(8a+2)/(2a-1) = 5

Then, you multiply both sides by (2a-1) to cancel out the (2a-1) in (8a+2)/(2a-1)

Your equation should then look like this:

8a+2 = 10a-5

Subtract 2 on both sides:

8a=10a-7

Subtract 10a on both sides:

-2a=-7

Finally, divide both sides by -2

a=[tex]\frac{7}{2}[/tex]

Hope this helped!

Is it possible to construct a contradictory sentence in LSL using no sentential connectives other than conjunction and disjunction? If so, give an example. If not, explain why not.

Answers

It is not possible to construct a contradictory sentence in LSL using no sentential connectives other than conjunction and disjunction.

To prove is it possible to construct a contradictory sentence in LSL using no sentential connectives other than conjunction and disjunction.

It is not possible.

Conjunction: The truth table for conjunction (&) is a two place connective. so we need to display two formula.

T           T              T

T           F               F

F           T               F

F           F               F

A = p, B = q, C = p & q

Conjunction: The truth table for conjunction (&) is a two place connective. so we need to display two formula.

Disjunction:  Disjunction always as meaning inclusive disjunction. so the disjunction i true when either p is true ,q is true or both p and q are true. Therefore, the top row of the table for 'v' contains T.

 

T              T               T

T               F               T

F               T               T

F               F                F

A = p, B = q, c = p v q (or)

Disjunction:  Disjunction always as meaning inclusive disjunction. so the disjunction i true when either p is true ,q is true or both p and q are true. Therefore, the top row of the table for 'v' contains T.

 

Learn more about conjunction and disjunction here;

https://brainly.com/question/32355977

#SPJ4

Given a Binomial distribution with n=5,p=0.3, and q=0.7 where p is the probability of success in each trial and q is the probability of failure in each trial. Based on these information, the expected

Answers

If a Binomial distribution with n = 5, p = 0.3, and q = 0.7 where p is the probability of success in each trial and q is the probability of failure in each trial, then the expected number of successes is 1.5.

A binomial distribution is used when the number of trials is fixed, each trial is independent, the probability of success is constant, and the probability of failure is constant.

To find the expected number of successes, follow these steps:

The formula to calculate the expected number of successes is n·p, where n is the number of trials and p is the number of successes.Substituting n=5 and p= 0.3 in the formula, we get the expected number of successes= np = 5 × 0.3 = 1.5

Therefore, the expected number of successes in the binomial distribution is 1.5.

Learn more about binomial distribution:

brainly.com/question/15246027

#SPJ11

Determine which of the following subsets of R 3
are subspaces of R 3
. Consider the three requirements for a subspace, as in the previous problem. Select all which are subspaces. The set of all (b 1

,b 2

,b 3

) with b 3

=b 1

+b 2

The set of all (b 1

,b 2

,b 3

) with b 1

=0 The set of all (b 1

,b 2

,b 3

) with b 1

=1 The set of all (b 1

,b 2

,b 3

) with b 1

≤b 2

The set of all (b 1

,b 2

,b 3

) with b 1

+b 2

+b 3

=1 The set of all (b 1

,b 2

,b 3

) with b 2

=2b 3

none of the above

Answers

The subsets of R^3 that are subspaces of R^3 are:

The set of all (b1, b2, b3) with b1 = 0.

The set of all (b1, b2, b3) with b1 = 1.

The set of all (b1, b2, b3) with b1 ≤ b2.

The set of all (b1, b2, b3) with b1 + b2 + b3 = 1.

To determine whether a subset of R^3 is a subspace, we need to check three requirements:

The subset must contain the zero vector (0, 0, 0).

The subset must be closed under vector addition.

The subset must be closed under scalar multiplication.

Let's analyze each subset:

The set of all (b1, b2, b3) with b3 = b1 + b2:

Contains the zero vector (0, 0, 0) since b1 = b2 = b3 = 0 satisfies the condition.

Closed under vector addition: If (b1, b2, b3) and (c1, c2, c3) are in the subset, then (b1 + c1, b2 + c2, b3 + c3) is also in the subset since (b3 + c3) = (b1 + b2) + (c1 + c2).

Closed under scalar multiplication: If (b1, b2, b3) is in the subset and k is a scalar, then (kb1, kb2, kb3) is also in the subset since (kb3) = k(b1 + b2).

The set of all (b1, b2, b3) with b1 = 0:

Contains the zero vector (0, 0, 0).

Closed under vector addition: If (0, b2, b3) and (0, c2, c3) are in the subset, then (0, b2 + c2, b3 + c3) is also in the subset.

Closed under scalar multiplication: If (0, b2, b3) is in the subset and k is a scalar, then (0, kb2, kb3) is also in the subset.

The set of all (b1, b2, b3) with b1 = 1:

Does not contain the zero vector (0, 0, 0) since (b1 = 1) ≠ (0).

Not closed under vector addition: If (1, b2, b3) and (1, c2, c3) are in the subset, then (2, b2 + c2, b3 + c3) is not in the subset since (2 ≠ 1).

Not closed under scalar multiplication: If (1, b2, b3) is in the subset and k is a scalar, then (k, kb2, kb3) is not in the subset since (k ≠ 1).

The set of all (b1, b2, b3) with b1 ≤ b2:

Contains the zero vector (0, 0, 0) since (b1 = b2 = 0) satisfies the condition.

Closed under vector addition: If (b1, b2, b3) and (c1, c2, c3) are in the subset, then (b1 + c1, b2 + c2, b3 + c3) is also in the subset since (b1 + c1) ≤ (b2 + c2).

Closed under scalar multiplication: If (b1, b2, b3) is in the subset and k is a scalar, then (kb1, kb2, kb3) is also in the subset since (kb1) ≤ (kb2).

The set of all (b1, b2, b3) with b1 + b2 + b3 = 1:

Contains the zero vector (0, 0, 1) since (0 + 0 + 1 = 1).

Closed under vector addition: If (b1, b2, b3) and (c1, c2, c3) are in the subset, then (b1 + c1, b2 + c2, b3 + c3) is also in the subset since (b1 + c1) + (b2 + c2) + (b3 + c3) = (b1 + b2 + b3) + (c1 + c2 + c3)

= 1 + 1

= 2.

Closed under scalar multiplication: If (b1, b2, b3) is in the subset and k is a scalar, then (kb1, kb2, kb3) is also in the subset since (kb1) + (kb2) + (kb3) = k(b1 + b2 + b3)

= k(1)

= k.

The subsets that are subspaces of R^3 are:

The set of all (b1, b2, b3) with b1 = 0.

The set of all (b1, b2, b3) with b1 ≤ b2.

The set of all (b1, b2, b3) with b1 + b2 + b3 = 1.

To know more about subspace, visit

https://brainly.com/question/26727539

#SPJ11

-8 × 10=
A) -18
B) -80
C) 18
D) 80
E) None​

Answers

Answer:

b

Step-by-step explanation:

Answer:

-80

Explanation:

A negative times a positive results in a negative.

So let's multiply:

-8 × 10

-80

Hence, the answer is -80.

The probablity that a randomly selected person has high blood pressure (the eveat H) is P(H)=02 and the probabtity that a randomly selected person is a runner (the event R is P(R)=04. The probabality that a randomly selected person bas high blood pressure and is a runner is 0.1. Find the probability that a randomly selected persor has bigh blood pressure, given that be is a runner a) 0 b) 0.50 c) 1 d) 025 e) 0.17 9) None of the above

Answers

the problem is solved using the conditional probability formula, where the probability of high blood pressure given that a person is a runner is found by dividing the probability of both events occurring together by the probability of being a runner. The probability is calculated to be 0.25.So, correct option is d

Given:

Probability of high blood pressure: P(H) = 0.2

Probability of being a runner: P(R) = 0.4

Probability of having high blood pressure and being a runner: P(H ∩ R) = 0.1

To find: Probability of having high blood pressure, given that the person is a runner: P(H | R)

Formula used: P(A | B) = P(A ∩ B) / P(B)

Explanation:

We use the conditional probability formula to calculate the probability of high blood pressure, given that the person is a runner. The formula states that the probability of event A occurring given that event B has occurred is equal to the probability of both A and B occurring together divided by the probability of event B.

In this case, we are given P(H), P(R), and P(H ∩ R). To find P(H | R), we can use the formula P(H | R) = P(H ∩ R) / P(R).

Substituting the given values, we have:

P(H | R) = P(H ∩ R) / P(R) = 0.1 / 0.4 = 0.25

Therefore, the probability that a randomly selected person has high blood pressure, given that they are a runner, is 0.25. Option (d) is the correct answer.

To know more about probability Visit:

https://brainly.com/question/30034780

#SPJ11

You are given the following life table extract. Compute the following quantities: 1. 0.2 q_{52.4} assuming UDD 2. 0.2 q_{52.4} assuming Constant Force of Mortality 3. 5.7 p_{52.4} as

Answers

Compute 0.2 q_{52.4} using the given life table extract, assuming the Ultimate Deferment of Death (UDD) method.

To compute 0.2 q_{52.4} using the Ultimate Deferment of Death (UDD) method, locate the age group closest to 52.4 in the given life table extract.

Identify the corresponding age-specific mortality rate (q_x) for that age group. Let's assume it is q_{52}.

Apply the UDD method by multiplying q_{52} by 0.2 (the given proportion) to obtain 0.2 q_{52}.

To compute 0.2 q_{52.4} assuming a Constant Force of Mortality, use the same approach as above but instead of the UDD method, assume a constant force of mortality for the age group 52-53.

The value of 0.2 q_{52.4} calculated using the Constant Force of Mortality method may differ from the value obtained using the UDD method.

To compute 5.7 p_{52.4}, locate the age group closest to 52.4 in the life table and find the corresponding probability of survival (l_x).

Subtract the probability of survival (l_x) from 1 to obtain the probability of dying (q_x) for that age group.

Multiply q_x by 5.7 to calculate 5.7 p_{52.4}, which represents the probability of dying multiplied by 5.7 for the given age group.

To learn more about “probability” refer to the https://brainly.com/question/13604758

#SPJ11

If A={1/n:n is natural number }. In the usual topological space, A2 = a. A b. ϕ c. R d. (O)

Answers

In the usual topological space, None of the given options (a, b, c, d) accurately represents A^2.

In the usual topological space, the notation A^2 refers to the set of all possible products of two elements, where each element is taken from the set A. Let's calculate A^2 for the given set A = {1/n: n is a natural number}.

A^2 = {a * b: a, b ∈ A}

Substituting the values of A into the equation, we have:

A^2 = {(1/n) * (1/m): n, m are natural numbers}

To simplify this expression, we can multiply the fractions:

A^2 = {1/(n*m): n, m are natural numbers}

Therefore, A^2 is the set of reciprocals of the product of two natural numbers.

Now, let's analyze the given options:

a) A^2 ≠ a, as a is a specific value, not a set.

b) A^2 ≠ ϕ (empty set), as A^2 contains elements.

c) A^2 ≠ R (the set of real numbers), as A^2 consists of specific values related to the product of natural numbers.

d) A^2 ≠ (O) (the empty set), as A^2 contains elements.

Therefore, none of the given options (a, b, c, d) accurately represents A^2.

Learn more about topological space here:-

https://brainly.com/question/32645200

#SPJ11

State the definition of commensurable and incommensurable numbers. Are (a) 7 and 8/9 (b) 7 and , (c) and commensurable or not? Mimic Pythagoras's proof to show that the diagonal of a rectangles with one side the double of the other is not commensurable with either side. Hint: At some point you will obtain that h ∧ 2=5a ∧ 2. You should convince yourself that if h ∧ 2 is divisible by 5 , then also h is divisible by 5 . [Please write your answer here]

Answers

The numbers 7 and 8/9 are incommensurable. The numbers 7 and √2 are incommensurable. The diagonal of a rectangle with one side being the double of the other is not commensurable with either side.

Commensurable numbers are rational numbers that can be expressed as a ratio of two integers. Incommensurable numbers are irrational numbers that cannot be expressed as a ratio of two integers.

(a) The numbers 7 and 8/9 are incommensurable because 8/9 cannot be expressed as a ratio of two integers.

(b) The numbers 7 and √2 are incommensurable since √2 is irrational and cannot be expressed as a ratio of two integers.

To mimic Pythagoras's proof, let's consider a rectangle with sides a and 2a. According to the Pythagorean theorem, the diagonal (h) satisfies the equation h^2 = a^2 + (2a)^2 = 5a^2. If h^2 is divisible by 5, then h must also be divisible by 5. However, since a is an arbitrary positive integer, there are no values of a for which h is divisible by 5. Therefore, the diagonal of the rectangle (h) is not commensurable with either side (a or 2a).

Learn more about Commensurable here : brainly.com/question/17269143

#SPJ11

4. Consider the differential equation dy/dt = ay- b.
a. Find the equilibrium solution ye b. LetY(t)=y_i
thus Y(t) is the deviation from the equilibrium solution. Find the differential equation satisfied by (t)

Answers

a.  The equilibrium solution is y_e = b/a.

b. The solution of the differential equation dy/dt = ay - b is given by: y(t) = Ce^(at) + y_e

a. To find the equilibrium solution y_e, we set dy/dt = 0 and solve for y:

dy/dt = ay - b = 0

ay = b

y = b/a

Therefore, the equilibrium solution is y_e = b/a.

b. Let Y(t) = y(t) - y_e be the deviation from the equilibrium solution. Then we have:

y(t) = Y(t) + y_e

Taking the derivative of both sides with respect to t, we get:

dy/dt = d(Y(t) + y_e)/dt

Substituting dy/dt = aY(t) into this equation, we get:

aY(t) = d(Y(t) + y_e)/dt

Expanding the right-hand side using the chain rule, we get:

aY(t) = dY(t)/dt

Therefore, Y(t) satisfies the differential equation dY/dt = aY.

Note that this is a first-order linear homogeneous differential equation with constant coefficients. Its general solution is given by:

Y(t) = Ce^(at)

where C is a constant determined by the initial conditions.

Substituting Y(t) = y(t) - y_e, we get:

y(t) - y_e = Ce^(at)

Solving for y(t), we get:

y(t) = Ce^(at) + y_e

where C is a constant determined by the initial condition y(0).

Therefore, the solution of the differential equation dy/dt = ay - b is given by: y(t) = Ce^(at) + y_e

where y_e = b/a is the equilibrium solution and C is a constant determined by the initial condition y(0).

Learn more about equation from

https://brainly.com/question/29174899

#SPJ11

PLEASE HELP!
OPTIONS FOR A, B, C ARE: 1. a horizontal asymptote
2. a vertical asymptote
3. a hole
4. a x-intercept
5. a y-intercept
6. no key feature
OPTIONS FOR D ARE: 1. y = 0
2. y = 1
3. y = 2
4. y = 3
5. no y value

Answers

For the rational expression:

a. Atx = - 2 , the graph of r(x) has (2) a vertical asymptote.

b At x = 0, the graph of r(x) has (5) a y-intercept.

c. At x = 3, the graph of r(x) has (6) no key feature.

d. r(x) has a horizontal asymptote at (3) y = 2.

How to determine the asymptote?

a. Atx = - 2 , the graph of r(x) has a vertical asymptote.

The denominator of r(x) is equal to 0 when x = -2. This means that the function is undefined at x = -2, and the graph of the function will have a vertical asymptote at this point.

b At x = 0, the graph of r(x) has a y-intercept.

The numerator of r(x) is equal to 0 when x = 0. This means that the function has a value of 0 when x = 0, and the graph of the function will have a y-intercept at this point.

c. At x = 3, the graph of r(x) has no key feature.

The numerator and denominator of r(x) are both equal to 0 when x = 3. This means that the function is undefined at x = 3, but it is not a vertical asymptote because the degree of the numerator is equal to the degree of the denominator. Therefore, the graph of the function will have a hole at this point, but not a vertical asymptote.

d. r(x) has a horizontal asymptote at y = 2.

The degree of the numerator of r(x) is less than the degree of the denominator. This means that the graph of the function will approach y = 2 as x approaches positive or negative infinity. Therefore, the function has a horizontal asymptote at y = 2.

Find out more on asymptote here: https://brainly.com/question/4138300

#SPJ1

A cyclist is riding along at a speed of 12(m)/(s) when she decides to come to a stop. The cyclist applies the brakes, at a rate of -2.5(m)/(s^(2)) over the span of 5 seconds. What distance does she tr

Answers

The cyclist will travel a distance of 35 meters before coming to a stop.when applying the brakes at a rate of -2.5 m/s^2 over a period of 5 seconds.

To find the distance traveled by the cyclist, we can use the equation of motion:

s = ut + (1/2)at^2

Where:

s = distance traveled

u = initial velocity

t = time

a = acceleration

Given:

Initial velocity, u = 12 m/s

Acceleration, a = -2.5 m/s^2 (negative because it's in the opposite direction of the initial velocity)

Time, t = 5 s

Plugging the values into the equation, we get:

s = (12 m/s)(5 s) + (1/2)(-2.5 m/s^2)(5 s)^2

s = 60 m - 31.25 m

s = 28.75 m

Therefore, the cyclist will travel a distance of 28.75 meters before coming to a stop.

The cyclist will travel a distance of 28.75 meters before coming to a stop when applying the brakes at a rate of -2.5 m/s^2 over a period of 5 seconds.

To know more about distance follow the link:

https://brainly.com/question/26550516

#SPJ11

a) Find the first four successive (Picard) approximations of the solutions to y' = 1 + y²,y(0) = 0. b) Use separation of variables to solve y' = 1+ y², y(0) = 0 and compare y'(0), y" (0), y"' (0) with y'_4(0), y"_4(0), y"'_4(0) respectively.

Answers

a) The first four successive (Picard) approximations are: y₁ = 10, y₂ = 1010, y₃ = 1010001, y₄ ≈ 1.01000997×10¹².

b) The solution to y' = 1 + y² with y(0) = 0 is y = tan(x). The derivatives of y(0) are: y'(0) = 1, y''(0) = 0, y'''(0) = 2.

a) The first four successive (Picard) approximations of the solutions to the differential equation y' = 1 + y² with the initial condition y(0) = 0 are:

1st approximation: y₁ = 10

2nd approximation: y₂ = 1010

3rd approximation: y₃ = 1010001

4th approximation: y₄ ≈ 1.01000997×10¹²

b) Using separation of variables, the solution to the differential equation y' = 1 + y² with the initial condition y(0) = 0 is y = tan(x).

When comparing the derivatives of y(0) and y₄(0), we have:

y'(0) = 1

y''(0) = 0

y'''(0) = 2

Note: The given values for y'_4(0), y"_4(0), y"'_4(0) are not specified in the question.

Learn more about derivatives here :-

https://brainly.com/question/25324584

#SPJ11

For the function y = (x2 + 3)(x3 − 9x), at (−3, 0) find the
following. (a) the slope of the tangent line (b) the instantaneous
rate of change of the function

Answers

The instantaneous rate of change of the function is given byf'(-3) = 2(-3)(4(-3)2 - 9)f'(-3) = -162The instantaneous rate of change of the function is -162.

Given function is y

= (x2 + 3)(x3 − 9x). We have to find the following at (-3, 0).(a) the slope of the tangent line(b) the instantaneous rate of change of the function(a) To find the slope of the tangent line, we use the formula `f'(a)

= slope` where f'(a) represents the derivative of the function at the point a.So, the derivative of the given function is:f(x)

= (x2 + 3)(x3 − 9x)f'(x)

= (2x)(x3 − 9x) + (x2 + 3)(3x2 − 9)f'(x)

= 2x(x2 − 9) + 3x2(x2 + 3)f'(x)

= 2x(x2 − 9 + 3x2 + 9)f'(x)

= 2x(3x2 + x2 − 9)f'(x)

= 2x(4x2 − 9)At (-3, 0), the slope of the tangent line is given byf'(-3)

= 2(-3)(4(-3)2 - 9)f'(-3)

= -162 The slope of the tangent line is -162.(b) The instantaneous rate of change of the function is given by the derivative of the function at the given point. The derivative of the function isf(x)

= (x2 + 3)(x3 − 9x)f'(x)

= (2x)(x3 − 9x) + (x2 + 3)(3x2 − 9)f'(x)

= 2x(x2 − 9) + 3x2(x2 + 3)f'(x)

= 2x(x2 − 9 + 3x2 + 9)f'(x)

= 2x(3x2 + x2 − 9)f'(x)

= 2x(4x2 − 9)At (-3, 0).The instantaneous rate of change of the function is given byf'(-3)

= 2(-3)(4(-3)2 - 9)f'(-3)

= -162The instantaneous rate of change of the function is -162.

To know more about instantaneous visit:

https://brainly.com/question/11615975

#SPJ11

Find the area of the region inside the rose curve r = 4 sin(3θ) and outside the circle r = 2 (in polar coordinates).

Answers

The area of the region inside the rose curve r = 4 sin(3θ) and outside the circle r = 2 is approximately 12.398 square units.

How to calculate area of the region inside the rose curve

To find the area of the region, first step is to find the limits of integration for θ and set up the integral in polar coordinates.

2 = 4 sin(3θ)

sin(3θ) = 0.5

3θ = pi/6 + kpi,

where k is an integer

θ = pi/18 + kpi/3

The valid values of k that give us the intersection points are k=0,1,2,3,4,5. Hence, there are six intersection points between the rose curve and the circle.

We can get the area of the shaded region if we subtract the area of the circle from the area of the shaded region inside the rose curve.

The area inside the rose curve is given by the integral:

[tex]A = (1/2) \int[\theta1,\theta2] r^2 d\theta[/tex]

where θ1 and θ2 are the angles of the intersection points between the rose curve and the circle.

[tex]r = 4 sin(3\theta) = 4 (3 sin\theta - 4 sin^3\theta)[/tex]

So, the integral for the area inside the rose curve is:

[tex]\intA1 = (1/2) \int[pi/18, 5pi/18] (4 (3 sin\theta - 4 sin^3\theta))^2 d\theta[/tex]

[tex]A1 = 72 \int[pi/18, 5pi/18] sin^2\theta (1 - sin^2\theta)^2 d\theta[/tex]

[tex]A1 = 72 \int[1/6, \sqrt(3)/6] u^2 (1 - u^2)^2 du[/tex]

To evaluate this integral, expand the integrand and use partial fractions to obtain:

[tex]A1 = 72 \int[1/6, \sqrt(3)/6] (u^2 - 2u^4 + u^6) du\\= 72 [u^3/3 - 2u^5/5 + u^7/7] [1/6, \sqrt(3)/6]\\= 36/35 (5\sqrt(3) - 1)[/tex]

we can find the area of the circle now, which is given by

[tex]A2 = \int[0,2\pi ] (2)^2 d\theta = 4\pi[/tex]

Therefore, the area of the shaded region is[tex]A = A1 - A2 = 36/35 (5\sqrt(3) - 1) - 4\pi[/tex]

So, the area of the region inside the rose curve r = 4 sin(3θ) and outside the circle r = 2 is approximately 12.398 square units.

Learn more on area of a circle on https://brainly.com/question/12374325

#SPJ4

Question 17 (1 point)
Find the surface area of the figure. Hint: the surface area from the missing prism
inside the prism must be ADDED!

2 ft 5ft
10 ft
7 ft
6 ft

Answers

The surface area of the rectangular prism is 462 square feet.

What is the surface area of the rectangular prism?

Length, L = 10 ft

Width, W = 6 ft

Height, H = 7 ft

SA= 2(LW + LH + WH)

= 2(10×7 + 10×6 + 6×7)

= 2(70+60+42)

= 2(172)

= 344 square feet

Surface area of the missing prism:

Length, L = 5 ft

Width, W = 2 ft

Height, H = 7 ft

SA= 2(LW + LH + WH)

= 2(5×2 + 5×7 + 2×7)

= 2(10 + 35 + 14)

= 2(59)

= 118 square feet

Therefore, the surface area of the figure

= 344 square feet + 118 square feet

= 462 square feet

Read more on surface area of rectangular prism;

https://brainly.com/question/1310421

#SPJ1

0.721 0.779 0.221
Use the Z Standard Normal probability distribution tables to obtain P(Z> -0.77) (NOTE MINUS SIGNI)
0.279

Answers

Rounding to three decimal places, we get:

P(Z > -0.77) ≈ 0.779

To obtain P(Z > -0.77) using Z Standard Normal probability distribution tables, we can look for the area under the standard normal curve to the right of -0.77 (since we want the probability that Z is greater than -0.77).

We find that the area to the left of -0.77 is 0.2206. Since the total area under the standard normal curve is 1, we can calculate the area to the right of -0.77 by subtracting the area to the left of -0.77 from 1:

P(Z > -0.77) = 1 - P(Z ≤ -0.77)

= 1 - 0.2206

= 0.7794

Rounding to three decimal places, we get:

P(Z > -0.77) ≈ 0.779

Learn more about decimal from

https://brainly.com/question/1827193

#SPJ11

f(x,y,z)=Σ(2,3,5,7) Make a circuit for f using only NAND or NOT gates. Draw a truth table.

Answers

As we can see from the above truth table, the output of the function f(x,y,z) is 0 for all the input combinations except (0,0,0) for which the output is 1.

Hence, the circuit represented by NAND gates only can be used to implement the given function f(x,y,z).

The given function is f(x,y,z)= Σ(2,3,5,7). We can represent this function using NAND gates only.

NAND gates are universal gates which means that we can make any logic circuit using only NAND gates.Let us represent the given function using NAND gates as shown below:In the above circuit, NAND gate 1 takes the inputs x, y, and z.

The output of gate 1 is connected as an input to NAND gate 2 along with another input z. The output of NAND gate 2 is connected as an input to NAND gate 3 along with another input y.

Finally, the output of gate 3 is connected as an input to NAND gate 4 along with another input x.

The output of NAND gate 4 is the output of the circuit which represents the function f(x,y,z).Now, let's draw the truth table for the given function f(x,y,z). We have three variables x, y, and z.

To know more about represent visit:

https://brainly.com/question/31291728

#SPJ11

Use a sum or difference formula to find the exact value of the following. sin(140 ∘
)cos(20 ∘
)−cos(140 ∘
)sin(20 ∘
)

Answers

substituting sin(60°) into the equation: sin(60°) = sin(40°)cos(20°) + cos(40°)sin(20°)  This gives us the exact value of the expression as sin(60°).

We can use the difference-of-angles formula for sine to find the exact value of the given expression:

sin(A - B) = sin(A)cos(B) - cos(A)sin(B)

In this case, let A = 140° and B = 20°. Substituting the values into the formula, we have:

sin(140° - 20°) = sin(140°)cos(20°) - cos(140°)sin(20°)

Now we need to find the values of sin(140°) and cos(140°).

To find sin(140°), we can use the sine of a supplementary angle: sin(140°) = sin(180° - 140°) = sin(40°).

To find cos(140°), we can use the cosine of a supplementary angle: cos(140°) = -cos(180° - 140°) = -cos(40°).

Now we substitute these values back into the equation:

sin(140° - 20°) = sin(40°)cos(20°) - (-cos(40°))sin(20°)

Simplifying further:

sin(120°) = sin(40°)cos(20°) + cos(40°)sin(20°)

Now we use the sine of a complementary angle: sin(120°) = sin(180° - 120°) = sin(60°).

Finally, substituting sin(60°) into the equation:

sin(60°) = sin(40°)cos(20°) + cos(40°)sin(20°)

This gives us the exact value of the expression as sin(60°).

Know more about supplementary angle here:

https://brainly.com/question/18362240

#SPJ11

A t-shirt that cost AED 200 last month is now on sale for AED 100. Describe the change in price.

Answers

The T-shirt's price may have decreased for a number of reasons. It can be that the store wants to get rid of its stock to make place for new merchandise, or perhaps there is less demand for the T-shirt now than there was a month ago.

The change in price of a T-shirt that cost AED 200 last month and is now on sale for AED 100 can be described as a decrease. The decrease is calculated as the difference between the original price and the sale price, which in this case is AED 200 - AED 100 = AED 100.

The percentage decrease can be calculated using the following formula:

Percentage decrease = (Decrease in price / Original price) x 100

Substituting the values, we get:

Percentage decrease = (100 / 200) x 100

Percentage decrease = 50%

This means that the price of the T-shirt has decreased by 50% since last month.

There could be several reasons why the price of the T-shirt has decreased. It could be because the store wants to clear its inventory and make room for new stock, or it could be because there is less demand for the T-shirt now compared to last month.

Whatever the reason, the decrease in price is good news for customers who can now purchase the T-shirt at a lower price. It is important to note, however, that not all sale prices are good deals. Customers should still do their research to ensure that the sale price is indeed a good deal and not just a marketing ploy to attract customers.

To know more about price refer here :

https://brainly.com/question/33097741#

#SPJ11

Use a linear approximation to approximate 3.001^5 as follows: The linearization L(x) to f(x)=x^5 at a=3 can be written in the form L(x)=mx+b where m is: and where b is: Using this, the approximation for 3.001^5 is The edge of a cube was found to be 20 cm with a possible error of 0.4 cm. Use differentials to estimate: (a) the maximum possible error in the volume of the cube (b) the relative error in the volume of the cube
(c) the percentage error in the volume of the cube

Answers

The percentage error in the volume of the cube is 2%.

Given,The function is f(x) = x⁵ and we are to use a linear approximation to approximate 3.001⁵ as follows:

The linearization L(x) to f(x)=x⁵ at a=3 can be written in the form L(x)=mx+b where m is: and where b is:

Linearizing a function using the formula L(x) = f(a) + f'(a)(x-a) and finding the values of m and b.

L(x) = f(a) + f'(a)(x-a)

Let a = 3,

then f(3) = 3⁵

= 243.L(x)

= 243 + 15(x - 3)

The value of m is 15 and the value of b is 243.

Using this, the approximation for 3.001⁵ is,

L(3.001) = 243 + 15(3.001 - 3)

L(3.001) = 244.505001

The value of 3.001⁵ is approximately 244.505001 when using a linear approximation.

The volume of a cube with an edge length of 20 cm can be calculated by,

V = s³

Where, s = 20 cm.

We are given that there is a possible error of 0.4 cm in the edge length.

Using differentials, we can estimate the maximum possible error in the volume of the cube.

dV/ds = 3s²

Therefore, dV = 3s² × ds

Where, ds = 0.4 cm.

Substituting the values, we get,

dV = 3(20)² × 0.4

dV = 480 cm³

The maximum possible error in the volume of the cube is 480 cm³.

Using the formula for relative error, we get,

Relative Error = Error / Actual Value

Where, Error = 0.4 cm

Actual Value = 20 cm

Therefore,

Relative Error = 0.4 / 20

Relative Error = 0.02

The relative error in the volume of the cube is 0.02.

The percentage error in the volume of the cube can be calculated using the formula,

Percentage Error = Relative Error x 100

Therefore, Percentage Error = 0.02 x 100

Percentage Error = 2%

Thus, we have calculated the maximum possible error in the volume of the cube, the relative error in the volume of the cube, and the percentage error in the volume of the cube.

To know more about cube visit:

https://brainly.com/question/28134860

#SPJ11

Let g:R^2→R be given by
g(v,ω)=v^2−w^2
This exercise works out the contour plot of g via visual reasoning; later it will be an important special case for the study of what are called "saddle points" in the multivariable second derivative test. (a) Sketch the level set g(v,ω)=0.

Answers

The correct option in the multivariable second derivative test is (C) Two lines, v = w and v = -w.

Given the function g: R^2 → R defined by g(v, ω) = v^2 - w^2. To sketch the level set g(v, ω) = 0, we need to find the set of all pairs (v, ω) for which g(v, ω) = 0. So, we have

v^2 - w^2 = 0

⇒ v^2 = w^2

This is a difference of squares. Hence, we can rewrite the equation as (v - w)(v + w) = 0

Therefore, v - w = 0 or

v + w = 0.

Thus, the level set g(v, ω) = 0 consists of all pairs (v, ω) such that either

v = w or

v = -w.

That is, the level set is the union of two lines: the line v = w and the line

v = -w.

The sketch of the level set g(v, ω) = 0.

To know more about the derivative, visit:

https://brainly.com/question/29144258

#SPJ11

If you graph the function f(x)=(1-e^1/x)/(1+e^1/x) you'll see that ƒ appears to be an odd function. Prove it.

Answers

To prove that the function f(x) = (1 - e^(1/x))/(1 + e^(1/x)) is odd, we need to show that f(-x) = -f(x) for all values of x.

First, let's evaluate f(-x):

f(-x) = (1 - e^(1/(-x)))/(1 + e^(1/(-x)))

Simplifying this expression, we have:

f(-x) = (1 - e^(-1/x))/(1 + e^(-1/x))

Now, let's evaluate -f(x):

-f(x) = -((1 - e^(1/x))/(1 + e^(1/x)))

To prove that f(x) is odd, we need to show that f(-x) is equal to -f(x). We can see that the expressions for f(-x) and -f(x) are identical, except for the negative sign in front of -f(x). Since both expressions are equal, we can conclude that f(x) is indeed an odd function.

To prove that the function f(x) = (1 - e^(1/x))/(1 + e^(1/x)) is odd, we must demonstrate that f(-x) = -f(x) for all values of x. We start by evaluating f(-x) by substituting -x into the function:

f(-x) = (1 - e^(1/(-x)))/(1 + e^(1/(-x)))

Next, we simplify the expression to get a clearer form:

f(-x) = (1 - e^(-1/x))/(1 + e^(-1/x))

Now, let's evaluate -f(x) by negating the entire function:

-f(x) = -((1 - e^(1/x))/(1 + e^(1/x)))

To prove that f(x) is an odd function, we need to show that f(-x) is equal to -f(x). Upon observing the expressions for f(-x) and -f(x), we notice that they are the same, except for the negative sign in front of -f(x). Since both expressions are equivalent, we can conclude that f(x) is indeed an odd function.

This proof verifies that f(x) = (1 - e^(1/x))/(1 + e^(1/x)) is an odd function, which means it exhibits symmetry about the origin.

Learn more about function f(x) here:

brainly.com/question/28887915

#SPJ11

a drug test has a sensitivity of 0.6 and a specificity of 0.91. in reality, 5 percent of the adult population uses the drug. if a randomly-chosen adult person tests positive, what is the probability they are using the drug?

Answers

Therefore, the probability that a randomly-chosen adult person who tests positive is using the drug is approximately 0.397, or 39.7%.

The probability that a randomly-chosen adult person who tests positive is using the drug can be determined using Bayes' theorem.

Let's break down the information given in the question:
- The sensitivity of the drug test is 0.6, meaning that it correctly identifies 60% of the people who are actually using the drug.
- The specificity of the drug test is 0.91, indicating that it correctly identifies 91% of the people who are not using the drug.


- The prevalence of drug use in the adult population is 5%.

To calculate the probability that a person who tests positive is actually using the drug, we need to use Bayes' theorem.

The formula for Bayes' theorem is as follows:
Probability of using the drug given a positive test result = (Probability of a positive test result given drug use * Prevalence of drug use) / (Probability of a positive test result given drug use * Prevalence of drug use + Probability of a positive test result given no drug use * Complement of prevalence of drug use)

Substituting the values into the formula:
Probability of using the drug given a positive test result = (0.6 * 0.05) / (0.6 * 0.05 + (1 - 0.91) * (1 - 0.05))

Simplifying the equation:
Probability of using the drug given a positive test result = 0.03 / (0.03 + 0.0455)

Calculating the final probability:
Probability of using the drug given a positive test result ≈ 0.397


Learn more about: drug

https://brainly.in/question/54923976

#SPJ11

Find the first and second derivatives of the function. f(x) = x/7x + 2
f ' (x) = (Express your answer as a single fraction.)
f '' (x) = Express your answer as a single fraction.)

Answers

The derivatives of the function are

f'(x) = 2/(7x + 2)²f''(x) = -28/(7x + 2)³How to find the first and second derivatives of the functions

From the question, we have the following parameters that can be used in our computation:

f(x) = x/(7x + 2)

The derivative of the functions can be calculated using the first principle which states that

if f(x) = axⁿ, then f'(x) = naxⁿ⁻¹

Using the above as a guide, we have the following:

f'(x) = 2/(7x + 2)²

Next, we have

f''(x) = -28/(7x + 2)³

Read more about derivatives at

brainly.com/question/5313449

#SPJ4

y=2−4x^2;P(4,−62) (a) The slope of the curve at P is (Simplify your answer.) (b) The equation for the tangent line at P is (Type an equation.)

Answers

The equation of the tangent line at P is `y = -256x + 1026`

Given function:y = 2 - 4x²and a point P(4, -62).

Let's find the slope of the curve at P using the formula below:

dy/dx = lim Δx→0 [f(x+Δx)-f(x)]/Δx

where Δx is the change in x and Δy is the change in y.

So, substituting the values of x and y into the above formula, we get:

dy/dx = lim Δx→0 [f(4+Δx)-f(4)]/Δx

Here, f(x) = 2 - 4x²

Therefore, substituting the values of f(x) into the above formula, we get:

dy/dx = lim Δx→0 [2 - 4(4+Δx)² - (-62)]/Δx

Simplifying this expression, we get:

dy/dx = lim Δx→0 [-64Δx - 64]/Δx

Now taking the limit as Δx → 0, we get:

dy/dx = -256

Therefore, the slope of the curve at P is -256.

Now, let's find the equation of the tangent line at point P using the slope-intercept form of a straight line:

y - y₁ = m(x - x₁)

Here, the coordinates of point P are (4, -62) and the slope of the tangent is -256.

Therefore, substituting these values into the above formula, we get:

y - (-62) = -256(x - 4)

Simplifying this equation, we get:`y = -256x + 1026`.

Know more about the tangent line

https://brainly.com/question/30162650

#SPJ11

At the beginning of the year 1995, the population of Townsville was 3754. By the beginning of the year 2015, the population had reached 4584. Assume that the population is grr g exponentially, answer the following.
A) Estimate the population at the beginning of the year 2019. The population at the beginning of 2019 will be about
B) How long (from the beginning of 1995) will it take for the population to reach 9000? The population will reach 9000 about years after the beginning of 1995.
C) In what year will/did the population reach 9000?
The population will (or did) hit 9000 in the year.

Answers

A = 4762 (approx) . Therefore, the population will reach 9000 about 0.12*12 = 1.44 years after the beginning of 1995.the population will reach 9000 in 1995 + 1.44 = 1996.44 or around September 1996.

Given: At the beginning of the year 1995, the population of Townsville was 3754. By the beginning of the year 2015, the population had reached 4584.A) Estimate the population at the beginning of the year 2019.As the population is growing exponentially, we can use the formula:  

A = P(1 + r/n)ntWhere,

A = final amount

P = initial amount

r = annual interest rate

t = number of years

n = number of times interest is compounded per year

To find the population at the beginning of 2019,P = 4584 (given)

Let's find the annual growth rate first.

r = (4584/3754)^(1/20) - 1

r = 0.00724A

= 4584(1 + 0.00724/1)^(1*4)

A = 4762 (approx)

Therefore, the population at the beginning of 2019 will be about 4762.

B) How long (from the beginning of 1995) will it take for the population to reach 9000?We need to find the time taken to reach the population of 9000.

A = P(1 + r/n)nt9000

= 3754(1 + 0.00724/1)^t(20)

ln 9000/3754

= t ln (1.00724/1)(20)

ln 2.397 = 20t.

t = 0.12 years (approx)

Therefore, the population will reach 9000 about 0.12*12 = 1.44 years after the beginning of 1995.

C) In what year will/did the population reach 9000?

In the previous step, we have found that it takes approximately 1.44 years to reach a population of 9000 from the beginning of 1995.

So, the population will reach 9000 in 1995 + 1.44 = 1996.44 or around September 1996.

To know more about population visit;

brainly.com/question/15889243

#SPJ11

n annual marathon covers a route that has a distance of approximately 26 miles. Winning times for this marathon are all over 2 hours. he following data are the minutes over 2 hours for the winning male runners over two periods of 20 years each. (a) Make a stem-and-leaf display for the minutes over 2 hours of the winning times for the earlier period. Use two lines per stem. (Use the tens digit as the stem and the ones digit as the leaf. Enter NONE in any unused answer blanks. For more details, view How to Split a Stem.) (b) Make a stem-and-leaf display for the minutes over 2 hours of the winning times for the recent period. Use two lines per stem. (Use the tens digit as the stem and the ones digit as the leaf. Enter NONE in any unused answer blanks.) (c) Compare the two distributions. How many times under 15 minutes are in each distribution? earlier period times recent period times

Answers

Option B is the correct answer.

LABHRS = 1.88 + 0.32 PRESSURE The given regression model is a line equation with slope and y-intercept.

The y-intercept is the point where the line crosses the y-axis, which means that when the value of x (design pressure) is zero, the predicted value of y (number of labor hours required) will be the y-intercept. Practical interpretation of y-intercept of the line (1.88): The y-intercept of 1.88 represents the expected value of LABHRS when the value of PRESSURE is 0. However, since a boiler's pressure cannot be zero, the y-intercept doesn't make practical sense in the context of the data. Therefore, we cannot use the interpretation of the y-intercept in this context as it has no meaningful interpretation.

Learn more about regression

https://brainly.com/question/32505018

#SPJ11

Other Questions
A company has current liabilities of $700 million, and its current ratio is 2.4. What is the total of its current assets? $_________________. If this firms quick ratio is 1.6, how much inventory does it have __________________ all auditor test counts must be documented in the working papers. a) true b) false A nurse is caring for a client who is breastfeeding and states that her nipples are sore. Which of the following interventions should the nurse suggest?A. Apply mineral oil to the nipples between feedingsB. Keep the nipples covered between breastfeeding sessionsC. Increase the length of time between feedingsD. Change the newborn's position on the nipples with According to Wheeler (Axiom 7): "Every data set contains noise. Some data sets also contain signals. Before you can detect the signals within your data, you must filter out the noise". Explain the importance of this Axiom when making business decisions.Explain as long as answer. Please don't post some random stuff as answers. I will mark downvote. "The direct question or closed-ended question requires short answer and will provide little feedback or information. True False " product planners need to consider products and services on three levels. at the second level, product planners must ________. In MATLAB using SimuLink do the following1. The block of a counter subsystem, which consists of two variants: ascending and descending.The block must be able to start counting at a value determined by an input.The step (eg 1 in 1, 2 in 2, etc.) of the count is determined by another input.The counter runs indefinitely until the simulation time runs outThe counting algorithm must be done in code in a MATLAB-function block, blocks that perform preset functions are not allowed.Hint: They most likely require the "Unit Delay (1/z)" block. What is the noun form of Compete? Final Paper Instructions A technical writer may be assigned the task of compiling an emergency plan for a company. A strategic emergency is nem to understand what to do in the case of an emergency. Please think of the current pandemic and write a 1-2 page document outlining a return to work plan after a pandemic. Please include the following areas: 1. How to phase employees back into the workplace 2. Social distancing plan 3. How to handle emergencies in the workplace (employee illness) 4. How to relay the emergency plan to employees Your paper will be due next week in week 12 of the class. Please submit within the week 12 module. Q.Review the common-size financial statements of at least two businesses within your industry. Provide copies of balance sheets and income statements of each of these businesses and discuss the information you can derive from those financial statements and how you can apply that to your business. The review of the financial statements should be specific to those statements provided, and not a generalized discussion of what financial statements are?note: my business is cafe serve cofee and beverages in San Diego California Suppose the Social Security tax rate is 6.2 percent of eamings up to a maximum of $117,000, beyond which there is no additional tax. Zia has earnings of $130,000 and Paul has earnings of $60,000. Zia's average tax rate is percent and Paul's average tax rate is percent. (Round your responses to two decimal places.) The Social Security tax is an example of a tax. The Social Security tax is an example of a tax. regressive proportional progressive Please show the graph with correct points in x and y. Please specify if its a hollow dot or solid dot for each point. Ill give good rating! Thank you! upon regaining consciousness after a near-fatal automobile accident, morris said he had watched from above while emts attempted to revive him at the scene? what did morris experience? Make Yourself at Home: Ambiguous Expressions Invite New Friends ( L.O.3) To end conversations, North Americans often issue casual invitations to new acquaintances and even virtual strangers, such as Visit me when you come to New York, or Come on over anytime. However, nonnative speakers and visitors may misinterpret such casual remarks. They may embarrass their hosts and suffer disappointment by taking the offhand invitation literally and acting on it. Those interacting across cultures would be wise to avoid using expressions that have multiple meanings. Your Task Assume you are a businessperson engaged in exporting and importing. As such, you are in constant communication with suppliers and customers around the world. In messages sent abroad or in situations with nonnative speakers of English at home, what kinds of ambiguous expressions should you avoid? In teams or individually, list three to five original examples of idioms, slang, acronyms, sports references, abbreviations, jargon, and two-word verbs. Which phrases or behavior could be taken literally by a person from a different culture? The author uses the term "culture as commodity" to characterize which aspect of Haitian voodoo?The charging of admission at voodoo sessionsThe molding of voodoo to fit audience expectationsThe sale of voodoo trinkets and other artifactsA.I onlyB.III onlyC.I and II onlyD.II and III only do the plates in a and b consist of continental lithosphere? oceanic lithosphere? both? Use the cognitive appraisal theory of emotions to explain how aconsumer may feel the following emotions in different consumptionexperiences (scenarios): disgust, anger, anxiety and joy. Useexamples A student in lab determined the value of the rate constant, k, for a certain chemical reaction at several different temperatures. She graphed In k vs. 1/T and found the best-fit linear trendline to have the equation y-5638.3x + 16.623. What is the activation energy, Ea, for this reaction? (R 8.314 J/mol K) O a. 46.88 kJ/mol O b. 5.638 kJ/mol O c. 678.2 kJ/mol d. 138.2 kJ/mol O e. 0.6782 kJ/mol Managerial accounting deals with determining the costs andprofitability of the company's activities.This is True or False? Find dy/dx for the following function, and place your answer in the box below: x^3+xe^y=2 y+y^2