A dolmuş driver in Istanbul would like to purchase an engine for his dolmuş either from brand S or brand J. To estimate the difference in the two engine brands' performances, two samples with 12 sizes are taken from each brand. The engines are worked untile there will stop to working. The results are as follows:
Brand S: 136, 300 kilometers, s₁ = 5000 kilometers.
Brand J: 238, 100 kilometers, s₁ = 6100 kilometers.
Compute a %95 confidence interval for us - by asuming that the populations are distubuted approximately normal and the variances are not equal

Answers

Answer 1

The 95% confidence interval for the difference in engine performance between brands S and J is approximately (-102 ± 4422.47) kilometers.

To compute a 95% confidence interval for the difference in the two engine brands' performances, we can use the two-sample t-test with unequal variances. Here are the given values:

For Brand S:

Sample size (n₁) = 12

Sample mean (x'₁) = 136

Sample standard deviation (s₁) = 5000

For Brand J:

Sample size (n₂) = 12

Sample mean (x'₂) = 238

Sample standard deviation (s₂) = 6100

First, we calculate the standard error (SE) of the difference in means using the formula:

SE = sqrt((s₁² / n₁) + (s₂² / n₂))

SE = sqrt((5000² / 12) + (6100² / 12))

Next, we calculate the t-value for a 95% confidence level with (n₁ + n₂ - 2) degrees of freedom. Since the sample sizes are equal, the degrees of freedom would be (12 + 12 - 2) = 22.

Using a t-table or a t-distribution calculator, we find the t-value corresponding to a 95% confidence level with 22 degrees of freedom (two-tailed test). Let's assume the t-value is t.

Finally, we can calculate the margin of error (ME) and construct the confidence interval:

ME = t * SE

Confidence Interval = (x'₁ - x'₂) ± ME

Substituting the values:

ME = t * SE

Confidence Interval = (136 - 238) ± ME

Now, we need the value of t to calculate the confidence interval. Since it is not provided, let's assume a t-value of 2.079 (for a two-tailed test at a 95% confidence level with 22 degrees of freedom).

Using this t-value, we can calculate the margin of error (ME) and the confidence interval:

SE ≈ 2126.274

ME ≈ 2.079 * 2126.274

Confidence Interval ≈ (136 - 238) ± (2.079 * 2126.274)

Calculating the values:

ME ≈ 4422.47

Confidence Interval ≈ -102 ≈ (136 - 238) ± 4422.47

Therefore, the 95% confidence interval for the difference in engine performance between brands S and J is approximately (-102 ± 4422.47) kilometers.

Learn more about Confidence interval:

brainly.com/question/15712887

#SPJ11


Related Questions

If the work required to stretch a spring 3 ft beyond its natural length is 9 ft-lb, how much work is needed to stretch it 18 in. beyond its natural length?

Answers

The work that is done in stretching of the spring is  3.4 J.

What is Hooke's law?

Hooke's Law states that when a spring or elastic material is squeezed or stretched, it will produce a force that is directed in the opposite direction from the displacement. The displacement influences the stiffness of the material, and the force's strength is proportional to the displacement.

Using the Hooke's law;

F = ke

k = F/e

k= 9/3

k = 3 ft-lb/ft

We have the extension now as 18 in or 1.5 ft

W = 1/2k[tex]e^2[/tex]

W = 0.5 * 3 *[tex](1.5)^2[/tex]

W = 3.4 J

Learn more about Hooke's law:https://brainly.com/question/30379950

#SPJ4

The statistics computed below use data from a number of recent releases that includes the USGross (in $), the Budget ($), the Run Time (minutes), and the average number of stars awarded by reviewers. The multiple regression equation is shown below. A middle manager at an entertainment company, upon seeing this analysis, concludes that the longer you make a movie, the less money it will make. He argues that his company's films should all be cut by 25 minutes to improve their gross. Explain the flaw in his interpretation of this model.

USGross= - 22.9898 + 1.13442Budget + 24.9724Stars - 0.403296RunTime

Choose the correct answer below.
A. The model says that longer films had larger gross incomes after allowing for Budget and Stars, so making a movie longer will increase its gross.
B. The model says that longer films had smaller gross incomes after allowing for Budget and Stars, but it does not say that making a movie shorter will increase its gross.
C. Since the coefficient for Run Time is less than one, making a movie shorter may or may not increase its gross.
D. Since the coefficient for Run Time is so small, the studio should cut the films by more than 25 minutes to increase gross income.

Answers

The correct answer is B. The model says that longer films had smaller gross incomes after allowing for Budget and Stars, but it does not say that making a movie shorter will increase its gross.

In the given multiple regression equation, the coefficient for the Run Time variable is -0.403296, which indicates that there is a negative relationship between the duration of a film and its gross income after accounting for the effects of Budget and Stars. However, it is important to note that correlation does not imply causation. The middle manager's interpretation assumes that the negative coefficient for Run Time means that reducing the duration of the films by 25 minutes will lead to an increase in gross income. This assumption is flawed because the regression model only captures associations between variables and not causal relationships. Additionally, the coefficient of -0.403296 suggests that for every one unit increase in Run Time (in minutes), the gross income decreases by 0.403296 units, after controlling for Budget and Stars. It does not provide a direct basis for concluding that a specific reduction in Run Time, such as 25 minutes, will lead to a proportional increase in gross income. Therefore, the correct interpretation is that the model shows that longer films had smaller gross incomes after accounting for Budget and Stars, but it does not provide evidence to support the claim that making a movie shorter will necessarily increase its gross.

Learn more about multiple regression equation here: brainly.com/question/14473435

#SPJ11




Let the sequence (ōh)hez be given as 1, h = 0 h = ±1 Ph -0.8, h +2 0, h ≥ 3 a) Is ōn the autocorrelation function of a stationary stochastic process? = 0.4,

Answers

Let the sequence (ōh)hez be given as 1, h = 0 h = ±1 Ph -0.8, h +2 0, h ≥ 3,  the sequence (ōh)hez is not the autocorrelation function of a stationary stochastic process.

To determine if ōn is the autocorrelation function of a stationary stochastic process, we need to check if it satisfies the properties of autocorrelation.

For a stationary stochastic process, the autocorrelation function should satisfy the following properties:

1. Autocorrelation at lag 0 (ō0) should be equal to 1.

2. Autocorrelation at any lag h should be within the range [-1, 1].

3. Autocorrelation should only depend on the lag h and not on the specific time values.

In the given sequence, ōh is defined as follows:

ōh = 1, for h = 0

ōh = ±1, for h = ±1

ōh = -0.8, for h = ±2

ōh = 0, for h ≥ 3

Here, the autocorrelation at lag 0 is not equal to 1, as ō0 = 1. Hence, it does not satisfy the first property of autocorrelation.

Therefore, the sequence (ōh)hez is not the autocorrelation function of a stationary stochastic process

Learn more about stochastic here:

https://brainly.com/question/29737056

#SPJ11.

Chad drove his car 20 miles and used 2 gallons of gas. What is the unit rate of miles per gallon?

Answers

Chad's car achieved an average rate of 10 miles per gallon.

The unit rate of miles per gallon can be calculated by dividing the total miles driven by the amount of gas consumed.

In this case, Chad drove 20 miles and used 2 gallons of gas.

To find the unit rate, we divide the miles by the gallons:

20 miles / 2 gallons = 10 miles per gallon.

Therefore, the unit rate of miles per gallon for Chad's car is 10 miles per gallon.

This means that for every gallon of gas Chad's car consumes, it is able to travel a distance of 10 miles.

It's important to note that the unit rate can vary depending on factors such as driving conditions, speed, and the type of car, but in this scenario, Chad's car achieved an average rate of 10 miles per gallon.

For such more questions on rate

https://brainly.com/question/11627203

#SPJ8

The number of incidents in which police were needed for a sample of 12 schools in one county is 4845 27 4 25 28 46 1638 14 6 36 Send data to Excel Find the first and third quartiles for the data

Answers

First, let's arrange the given data set in ascending order:4 6 14 25 27 28 36 46 1638 4845 Then we use the following formula to find the first quartile: [tex]Q1 = L + [(N/4 - F)/f] * i[/tex] where L is the lower class boundary of the median class, N is the total number of observations, F is the cumulative frequency of the class before the median class, f is the frequency of the median class, and i is the class interval.In this case, N = 10 and i = 10.

The median class is 14 - 24, which has a frequency of 2. The cumulative frequency before this class is 2. Plugging these values into the formula, we get: Q1 = 14 + [(10/4 - 2)/2] * 10Q1 = 14 + (2/2) * 10Q1 = 24 Therefore, the first quartile is 24. To find the third quartile, we use the same formula but with N/4 * 3 instead of [tex]N/4.Q3 = L + [(3N/4 - F)/f] * i[/tex]  Again, i = 10. The median class is 28 - 38, which has a frequency of 3. The cumulative frequency before this class is 5. Plugging these values into the formula, we get: Q3 = 28 + [(30/4 - 5)/3] * 10 Q3 = 28 + (5/3) * 10Q3 = 44 Therefore, the third quartile is 44. Q 1 = L + [(N/4 - F)/f] * i to find the first quartile and Q3 = L + [(3N/4 - F)/f] * i .

The lower and upper class boundaries of the median class are used as L, N is the total number of observations, F is the cumulative frequency of the class before the median class, f is the frequency of the median class, and i is the class interval.

To know more about Class Interval visit-

https://brainly.com/question/28183595

#SPJ11

A midpoint Riemann sum approximates the area under the curve f(x) = log(1 + 16x2) over the interval [0, 4] using 4
equal subdivisions as
a) 5.205.
b) 6.410.
c) 6.566.
d) 7.615.

Answers

A midpoint Riemann sum approximates the area under the curve f(x) = log(1 + 16x2) over the interval [0, 4] using 4 equal subdivisions as 6.566. The correct option is c.

To approximate the area under the curve f(x) = log(1 + 16x^2) over the interval [0, 4] using a midpoint Riemann sum with 4 equal subdivisions, we need to calculate the sum of the areas of 4 rectangles. The width of each rectangle is 4/4 = 1 since we have 4 equal subdivisions.

To find the height of each rectangle, we evaluate the function f(x) = log(1 + 16x^2) at the midpoint of each subdivision. The midpoints are x = 0.5, 1.5, 2.5, and 3.5. We substitute these values into the function and calculate the corresponding heights.

Next, we calculate the area of each rectangle by multiplying the width by the height. Then, we sum up the areas of all 4 rectangles to obtain the approximation of the area under the curve.

Performing these calculations, the midpoint Riemann sum approximation of the area under the curve f(x) = log(1 + 16x^2) over the interval [0, 4] using 4 equal subdivisions is approximately 6.566.

Visit here to learn more about curve:

brainly.com/question/29364263

#SPJ11

You may need to use the appropriate appendix table or technology to answer this question. A simple random sample with n = 57 provided a sample mean of 23.5 and a sample standard deviation of 4.4. (Round your answers to one decimal place.) (a) Develop a 90% confidence interval for the population mean.

Answers

The 90% confidence interval for the population mean with sample mean of 23.5 and a sample standard deviation of 4.4 with 57 observations is 22.3 to 24.7.

The formula for calculating the 90% confidence interval for the population mean is given as:

[tex]\[\bar x\pm z_{\alpha /2}\frac s{\sqrt n}\][/tex]

Where,

[tex]\[\bar x\][/tex] = sample mean, s = sample standard deviation, n = sample size,

[tex]\[z_{\alpha /2}\][/tex] = z-value for 90% confidence level.

From the Z-table, the corresponding z-value for a 90% confidence level is 1.645.

Plugging in the given values in the formula, we get:

[tex]\[23.5\pm 1.645\times \frac{4.4}{\sqrt{57}}\][/tex]

Solving this expression, we get the 90% confidence interval for the population mean as 22.3 to 24.7.

Therefore, we can be 90% confident that the true population mean lies between 22.3 and 24.7 based on the given sample data.

Learn more about confidence interval here:

https://brainly.com/question/32546207

#SPJ11

One weer to purchase the new backhoes. Old Backhoes New Backhoes Purchase cost when new $91400 $199.994 $41.400 $54,112 Salvage value now Investment in major overhaul needed in next year Salvage value in 8 years Remaining life Net cash flow generated each year $15,200 588.000 Byears 8 years 330.400 344,300 Click here to view PV table (a) Evaluate in the following ways whether to purchase the new equipment or overhaul the old equipment. (Hint: For the old machine the initial investment is the cost of the overhaul. For the new machine, subtract the salvage value of the old machine to determine the initial cost of the investment) (1) Using the net present value method for buying new or keeping the old. (For calculation purposes, use 5 decimal places as displayed in the factor table provided. If the net present value is negative, use either a negative sign preceding the number es 45 or parentheses es (45). Round hinal answer to o decimal places, ex 5.275) New Backhoes Old Backhoes Question 1 of 1 9.17 /10 Waterways should retain Old Backhoes equipment (3) Comparing the profitability index for each choice. (Round answers to 2 decimal places, e.s. 1.25) New Backhoes Old Backhoes Profitability Index 1:20 365 Waterways should retain On Backhoe equipment. Calculate the internal rate of return factor for the new and old blackhoes (Round answers to 5 decimal places, e.3. 5.276473 New Backhoes Old Backhoes

Answers

Waterways should retain the old backhoes equipment.

To determine whether it is more favorable to purchase new backhoes or overhaul the old ones, we will evaluate the net present value (NPV), profitability index (PI), and internal rate of return (IRR) for both options.

Net Present Value (NPV):

For the new backhoes:

The initial cost of investment = Purchase cost when new - Salvage value now

= $199,994 - $15,200 = $184,794

The net cash flow generated each year for the new backhoes remains unspecified, so we cannot calculate its NPV.

For the old backhoes:

Initial investment = Cost of the overhaul = $41,400

Net cash flow generated each year = $15,200

Using the provided PV table, we can calculate the NPV for the old backhoes:

NPV = Net cash flow generated each year * PV factor for 8 years - Initial investment

= $15,200 * 5.76162 - $41,400 ≈ $55,689.69

Since the NPV for the old backhoes is positive, retaining the old equipment is favorable.

Profitability Index (PI):

The profitability index is calculated by dividing the present value of cash inflows by the initial investment.

For the new backhoes:

Since the net cash flow generated each year is unspecified, we cannot calculate the PI.

For the old backhoes:

PI = (Net cash flow generated each year * PV factor for 8 years) / Initial investment

= ($15,200 * 5.76162) / $41,400 ≈ 2.11

The profitability index for the old backhoes is 2.11.

Based on the PI, the old backhoes have a higher profitability index than the new backhoes, indicating that retaining the old equipment is more profitable.

Internal Rate of Return (IRR):

The IRR factor for the new and old backhoes is not provided, so we cannot calculate the exact IRR.

In summary, based on the net present value (NPV) and profitability index (PI), it is more favorable for Waterways to retain the old backhoes equipment.

For more questions like Cost click the link below:

https://brainly.com/question/30045916

#SPJ11




Find the exact directional derivative of the function √√x y z at the point (9, 3, 3) in the direction (2,1,2).

Answers

The exact directional derivative of √√(xyz) at the point (9, 3, 3) in the direction (2, 1, 2) is 4.

To find the exact directional derivative of the function √√(xyz) at the point (9, 3, 3) in the direction (2, 1, 2), we use the formula for the directional derivative. The exact value of the directional derivative can be obtained by evaluating the gradient of the function at the given point and then taking the dot product with the direction vector.

The formula for the directional derivative of a function f(x, y, z) in the direction of a unit vector u = (a, b, c) is given by:

D_u f(x, y, z) = ∇f(x, y, z) · u,

where ∇f(x, y, z) represents the gradient of f(x, y, z).

To find the gradient of √√(xyz), we compute the partial derivatives with respect to x, y, and z:

∂f/∂x = (1/2)√(y)z / (√√(xyz)),

∂f/∂y = (1/2)√(x)z / (√√(xyz)),

∂f/∂z = (1/2)√(xy) / (√√(xyz)).

Evaluating these partial derivatives at the point (9, 3, 3), we obtain:

∂f/∂x = (1/2)√(3)(3) / (√√(9*3*3)) = 9 / 6,

∂f/∂y = (1/2)√(9)(3) / (√√(9*3*3)) = 3 / 6,

∂f/∂z = (1/2)√(9*3) / (√√(9*3*3)) = 3 / 6.

The gradient vector ∇f(x, y, z) at the point (9, 3, 3) is given by (∂f/∂x, ∂f/∂y, ∂f/∂z) = (9/6, 3/6, 3/6).

Taking the dot product of the gradient vector and the direction vector (2, 1, 2), we have:

(9/6, 3/6, 3/6) · (2, 1, 2) = (3/2) + (1/2) + (3/2) = 4.

to learn more about directional derivative click here:

brainly.com/question/31773073

#SPJ11

Find f'(1) if f(x) = x+1/√x+1
a. 2 O
b. ¼
c. ½
d. -4

Answers

We need to find the value of f'(1) given the function f(x) = x + 1/√(x + 1). The options provided are 2, 1/4, 1/2, and -4.

To find f'(1), we need to differentiate the function f(x) with respect to x and then evaluate it at x = 1. Let's find the derivative of f(x) using the power rule and chain rule:

f(x) = x + 1/√(x + 1)

Taking the derivative, we get:

f'(x) = 1 + (-1/2)*(x + 1)^(-3/2)

Let's find the derivative of f(x) using the power rule and chain rule:

Now, evaluating f'(x) at x = 1, we have:

f'(1) = 1 + (-1/2)(1 + 1)^(-3/2)

= 1 + (-1/2)(2)^(-3/2)

= 1 + (-1/2)(1/√2)^3

= 1 - (1/2)(1/√2)^3

= 1 - (1/2)*(1/2√2)

= 1 - (1/4√2)

= 1 - 1/(4√2)

= 1 - 1/(4√2) * (√2/√2)

= 1 - √2/(4√2)

= 1 - 1/4

= 3/4

Therefore, f'(1) = 3/4, which corresponds to option (b) in the given choices.

To learn more about function click here : brainly.com/question/31062578

#SPJ11

The degree of precision of a quadrature formula whose error term is f"CE) is : a) 1 b) 2 c) 3 d) None of the answers

Answers

The degree of precision of a quadrature formula whose error term is f"CE) is Therefore, the correct option is: d) None of the answers.

The absence of an x term in the error term indicates that the quadrature formula can exactly integrate all polynomials of degree 0, but it cannot capture higher-degree polynomials. This lack of precision suggests that the quadrature formula is not accurate for integrating functions with non-constant second derivatives.

The degree of precision of a quadrature formula refers to the highest power of x that the formula can exactly integrate.

In this case, the error term is given as f"(x)CE, where f"(x) represents the second derivative of the function being integrated and CE represents the error constant.

To determine the degree of precision, we need to examine the highest power of x in the error term. If the error term has the form xⁿ, then the quadrature formula has a degree of precision of n.

In the given error term, f"(x)CE, there is no x term present. This implies that the error term is a constant (CE) and does not depend on x.

A constant term can be considered as x^0, which means the degree of precision is 0.

Therefore, the correct option is: d) None of the answers.

To know more about quadrature formula visit:

https://brainly.com/question/32699021
#SPJ11

Find the variation constant and an equation of variation if y varies directly as x and the following conditions apply. y = 63 when x= 17/7/1 The variation constant is k = The equation of variation is

Answers

The variation constant is k = 63/17. The equation of variation is y = (63/17)x.

To find the variation constant and the equation of variation, we can use the formula for direct variation, which is given by y = kx, where y is the dependent variable, x is the independent variable, and k is the variation constant.

Given that y varies directly as x, and y = 63 when x = 17/7/1, we can substitute these values into the formula to solve for the variation constant.

y = kx

63 = k(17/7/1)

To simplify, we can rewrite 17/7/1 as 17.

63 = k(17)

Now, we can solve for k by dividing both sides of the equation by 17.

k = 63/17

Therefore, the variation constant is k = 63/17.

To find the equation of variation, we substitute the value of k into the formula y = kx.

To know more about variation constant,

https://brainly.com/question/18307756

#SPJ11

two distances are measured as 47.6m and 30,7 m with standand deviations of 0,32 m and 0,16 m respectively. Determine the mean, standand deviation of i) the sum of the distribution ii) the difference of the distribution

Answers

To calculate the mean and standard deviation of the sum and difference of two distributions, we need the mean and standard deviation of each individual distribution.

The mean of the sum of the distribution can be obtained by adding the means of the individual distributions. The standard deviation of the sum can be obtained by taking the square root of the sum of the squares of the individual standard deviations.

The mean of the difference of the distribution can be obtained by subtracting the mean of one distribution from the mean of the other. The standard deviation of the difference can be obtained by taking the square root of the sum of the squares of the individual standard deviations.

i) For the sum of the distribution:

Mean = Mean of distribution 1 + Mean of distribution 2 = 47.6m + 30.7m = 78.3m

Standard Deviation = √(Standard Deviation of distribution 1^2 + Standard Deviation of distribution 2^2) = √(0.32m^2 + 0.16m^2) ≈ 0.36m

ii) For the difference of the distribution:

Mean = Mean of distribution 1 - Mean of distribution 2 = 47.6m - 30.7m = 16.9m

Standard Deviation = √(Standard Deviation of distribution 1^2 + Standard Deviation of distribution 2^2) = √(0.32m^2 + 0.16m^2) ≈ 0.36m

Therefore, the mean and standard deviation of the sum of the distribution are approximately 78.3m and 0.36m, respectively. Similarly, the mean and standard deviation of the difference of the distribution are approximately 16.9m and 0.36m, respectively.

Learn more about standard deviation here:

https://brainly.com/question/13498201

#SPJ11




Use the Riemann's Criterion for integrability to show that the function f(x) = integrable on [0, b] for any b > 0. 1 1 + x

Answers

To show that the function f(x) = 1/(1 + x) is integrable on [0, b] for any b > 0, we can use Riemann's Criterion for integrability. This criterion states that a function is integrable on a closed interval if and only if it is bounded and has a set of discontinuity points of measure zero. By analyzing the properties of f(x), we can conclude that it is bounded on [0, b] and its only point of discontinuity is at x = -1. Since the set of discontinuity points is a single point with measure zero, f(x) satisfies Riemann's Criterion for integrability on [0, b].

To apply Riemann's Criterion for integrability, we need to examine the properties of the function f(x) = 1/(1 + x) on the interval [0, b].

First, let's consider the boundedness of f(x). Since f(x) is a rational function, it is defined for all x except where the denominator equals zero. In this case, the denominator 1 + x is always positive on the interval [0, b] for any positive value of b. Therefore, f(x) is well-defined and bounded on [0, b].

Next, let's analyze the discontinuity points of f(x). The function f(x) is continuous for all x except where the denominator equals zero. The only point where the denominator is zero is at x = -1, which is outside the interval [0, b]. Thus, there are no discontinuity points within the interval [0, b], except possibly at the endpoints, and in this case, x = 0 and x = b are included in the interval.

Since the set of discontinuity points of f(x) within [0, b] is a single point (x = -1) with measure zero, f(x) satisfies Riemann's Criterion for integrability on [0, b]. Therefore, the function f(x) = 1/(1 + x) is integrable on [0, b] for any b > 0.

learn more about riemann here:brainly.com/question/30404402

#SPJ11




Consider a function f whose domain is the interval [a, b]. Show that if \f (c) − f(y)\ < (2 −y), for all x, y = [a, b], then f is a constant function.

Answers

Let's consider a function f with a domain of the interval [a, b]. We want to prove that if the inequality |f(c) - f(y)| < (2 - y) holds for all x, y ∈ [a, b], then f is a constant function.

To prove this, we will assume that f is not a constant function and derive a contradiction. Suppose there exist two points, c and y, in the interval [a, b] such that f(c) ≠ f(y).

Since f is not constant, f(c) and f(y) must have different values. Without loss of generality, let's assume f(c) > f(y).

Now, we have |f(c) - f(y)| < (2 - y). Since f(c) > f(y), we can rewrite the inequality as f(c) - f(y) < (2 - y).

Next, we observe that (2 - y) is a positive quantity for any y in the interval [a, b]. Therefore, (2 - y) > 0.

Combining the previous inequality with (2 - y) > 0, we have f(c) - f(y) < (2 - y) > 0.

However, this contradicts our assumption that |f(c) - f(y)| < (2 - y) for all x, y ∈ [a, b].

Thus, our assumption that f is not a constant function must be false. Therefore, we can conclude that f is indeed a constant function.

In summary, if the inequality |f(c) - f(y)| < (2 - y) holds for all x, y ∈ [a, b], then f is a constant function. This is proven by assuming the contrary and arriving at a contradiction.

To learn more about domain - brainly.com/question/32713915

#SPJ11

A local university administers a comprehensive examination to the candidates for B.S. degrees in Business Administration. Five examinations are selected at random and scored. The scores are shown below.

Grades 80 90 91 62 77

a. Compute the mean and the standard deviation of the sample.
b. Compute the margin of error at 95% confidence.
c. Develop a 95% confidence interval estimate for the mean of the population. Assume the population is normally distributed.

Answers

a. Mean =78 and Standard deviation = √(114.8) ≈ 10.71

b. Margin of Error = 2.776 * (10.71 / √5) ≈ 12.12

c. The 95% confidence interval estimate for the mean of the population is approximately (65.88, 90.12).

a. To compute the mean of the sample, we add up all the scores and divide by the total number of scores:

Mean = (80 + 90 + 91 + 62 + 77) / 5 = 390 / 5 = 78

To compute the standard deviation of the sample, we need to calculate the deviations of each score from the mean, square them, calculate the average of the squared deviations (variance), and then take the square root:

Deviation of 80 from the mean = 80 - 78 = 2

Deviation of 90 from the mean = 90 - 78 = 12

Deviation of 91 from the mean = 91 - 78 = 13

Deviation of 62 from the mean = 62 - 78 = -16

Deviation of 77 from the mean = 77 - 78 = -1

Squared deviations: 2^2, 12^2, 13^2, (-16)^2, (-1)^2 = 4, 144, 169, 256, 1

Variance = (4 + 144 + 169 + 256 + 1) / 5 = 574 / 5 = 114.8

Standard deviation = √(114.8) ≈ 10.71

b. To compute the margin of error at 95% confidence, we need to consider the sample size (n) and the standard deviation (σ). Since the population standard deviation (σ) is unknown, we will use the sample standard deviation (s) as an estimate.

Margin of Error = Critical Value * (s / √n)

The critical value for a 95% confidence level with a sample size of 5 is 2.776 (obtained from the t-distribution table).

Margin of Error = 2.776 * (10.71 / √5) ≈ 12.12

c. To develop a 95% confidence interval estimate for the mean of the population, we will use the formula:

Confidence Interval = Sample Mean ± Margin of Error

Confidence Interval = 78 ± 12.12

The lower bound of the confidence interval is 78 - 12.12 = 65.88

The upper bound of the confidence interval is 78 + 12.12 = 90.12

Therefore, the 95% confidence interval estimate for the mean of the population is approximately (65.88, 90.12).

To learn more about mean

https://brainly.com/question/1136789

#SPJ11

Report no. 2 Applied Mathematics - laboratory 8) For a second order ordinary differential equation: y" + 4y' + 5y = 0 find the analytical solution y(x) for the boundary value problem: y'(0) = 0 {y(1) = e-² (2 sin(1) + cos(1)) Then create sets of algebraic equations using second order differential schemes for the first and second derivative for nodes N = 6 and N = 11 on the interval [0, 1] and solve them numerically using Matlab/Octave. Compare local errors in individual nodes (i.e. the difference between the numerical and analytical solution). On their basis, estimate the order of the method.

Answers

We are given the second order ordinary differential equation as follows:$$y'' + 4y' + 5y = 0$$

Analytical solution:Let us first solve the homogeneous differential equation:

$$y'' + 4y' + 5y = 0$$

The auxiliary equation corresponding to it is:$$m^2 + 4m + 5 = 0$$$$\implies m = -2 \pm i$$

Therefore, the general solution to the homogeneous differential equation is given by:

$$y_h(x) = c_1e^{-2x}\cos(x) + c_2e^{-2x}\sin(x)$$

Now, let us consider the boundary value problem with the given conditions:

$$y'(0) = 0$$$$y(1) = e^{-2}(2\sin(1) + \cos(1))$$

Using the method of undetermined coefficients, we can assume the particular solution to be of the form:

$$y_p(x) = Ae^{-2x}\cos(x) + Be^{-2x}\sin(x)$$

Substituting the given boundary condition

$y'(0) = 0$, we get:$$y_p'(x) = -2Ae^{-2x}\cos(x) - 2Be^{-2x}\sin(x) + Ae^{-2x}\sin(x) - Be^{-2x}\cos(x)$$$$y_p'(0) = -2A = 0 \implies A = 0$$

Substituting $A = 0$ in the particular solution and then substituting the given boundary condition $y(1) = e^{-2}(2\sin(1) + \cos(1))$,

we get:$$y_p(x) = \frac{1}{5}(2\sin(x) + \cos(x))e^{-2x}$$$$\implies y(x) = y_h(x) + y_p(x)$$$$\implies y(x) = c_1e^{-2x}\cos(x) + c_2e^{-2x}\sin(x) + \frac{1}{5}(2\sin(x) + \cos(x))e^{-2x}$$For N = 6 nodes:

Using the second order central difference scheme, we can write:$$y''(x_i) = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + \mathcal{O}(h^2)$$where $h = \frac{1}{N-1}$ is the step size.Let $y_i = y(x_i)$, $f_i = f(x_i) = 0$, and $y_0 = y_6 = 0$,

which are the boundary conditions.Then, using the above scheme, we can write:$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + 4\frac{y_{i+1} - y_{i-1}}{2h} + 5y_i = 0$$$$\implies y_{i+1} - 2y_i + y_{i-1} + 8\frac{y_{i+1} - y_{i-1}}{h} + 10h^2y_i = 0$$Simplifying, we get:$$-(\frac{8}{h} + 2h^2)y_{i-1} + (10h^2 - 2)y_i + (\frac{8}{h} - 2h^2)y_{i+1} = 0$$For N = 11 nodes:

Using the second order central difference scheme, we can write:$$y''(x_i) = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + \mathcal{O}(h^2)$$where $h = \frac{1}{N-1}$ is the step size.Let $y_i = y(x_i)$, $f_i = f(x_i) = 0$, and $y_0 = y_{11} = 0$, which are the boundary conditions.

Then, using the above scheme, we can write:

[tex]$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + 4\frac{y_{i+1} - y_{i-1}}{2h} + 5y_i = 0$$$$\implies y_{i+1} - 2y_i + y_{i-1} + 8\frac{y_{i+1} - y_{i-1}}{h} + 10h^2y_i = 0$$[/tex]

Simplifying, we get:$$-(\frac{8}{h} + 2h^2)y_{i-1} + (10h^2 - 2)y_i + (\frac{8}{h} - 2h^2)y_{i+1} = 0$$

Now, we can form a system of linear equations with the above equations. Solving the system using Matlab/Octave, we can obtain the numerical solution

$y_i^{(N)}$ for the respective nodes $x_i$ for each value of N.

The local error at each node $x_i$ can be computed as the absolute difference between the analytical and numerical solutions at that node, i.e., $\epsilon_i^{(N)} = |y(x_i) - y_i^{(N)}|$

For a scheme of order p, the local error is expected to decrease as $h^p$.

Therefore, we can estimate the order of the scheme by calculating $\log_2(\frac{\epsilon_i^{(N)}}{\epsilon_i^{(2N)}})$ for some node $x_i$. If the values of this expression for different values of $i$ are approximately the same, then the scheme is of order p.

To know more about homogeneous differential equation visit:

https://brainly.com/question/30624850

#SPJ11

By using the Laplace transform, obtain as an integral the solu- tion of the first order PDE оди 12 ди + 2.c = g(t), ar at subject to u(x,0) = 0, u(1, t) = 0. The function g is continuous and g(t) 0 (Hint: In the Laplace inversion recall that rb = eblnr).

Answers

The given problem can be solved with the Laplace Transform by following these steps: Firstly, convert the given PDE into its Laplace form using the Laplace transform. Secondly, we will solve for the new variable, U(x, s), using algebraic manipulations.Thirdly, find the inverse Laplace transform of U(x, s) to get the solution in terms of the original variable, u(x, t).

To solve the problem, follow these steps:The given first-order PDE is given as: `∂u/∂t + 2c∂u/∂x = g(t), where u(x, 0) = 0, u(1, t) = 0`.This PDE is first converted to its Laplace form by applying the Laplace transform to both sides of the PDE.`L{∂u/∂t} + 2cL{∂u/∂x} = L{g(t)}`Using the Laplace transform property, we obtain: `sU(x, s) - u(x, 0) + 2c ∂U(x, s)/∂x = G(s)`Hence, `sU(x, s) + 2c ∂U(x, s)/∂x = G(s)`.Let us solve the above equation using separation of variables and integrating factor methods.`(1) sU(x, s) + 2c ∂U(x, s)/∂x = G(s)``(2) sV'(x) + 2cV'(x) = 0`.

To know more about algebraic visit :-

https://brainly.com/question/31012303

#SPJ11

If Ø (z)= y + ja represents the complex potential for an electric field and a = p² + x/(x+y)²-2xy + (x+y)(x - y) determine the function Ø (z)? "

Answers

The function Ø(z) is given by Ø(z) = y + j(p² + x/(x+y)² - 2xy + (x+y)(x - y)), representing the complex potential for an electric field.

The function Ø(z) is given by Ø(z) = y + ja, where a is defined as a = p² + x/(x+y)² - 2xy + (x+y)(x - y).

Substituting the expression for a into Ø(z), we have Ø(z) = y + j(p² + x/(x+y)² - 2xy + (x+y)(x - y)).

This equation represents the complex potential for an electric field, where the real part is y and the imaginary part is determined by the expression inside the brackets.

The function Ø(z) depends on the variables p, x, and y. By assigning specific values to p, x, and y, the function Ø(z) can be evaluated at any point z.

In summary, the function Ø(z) is given by Ø(z) = y + j(p² + x/(x+y)² - 2xy + (x+y)(x - y)), representing the complex potential for an electric field. The real part is y, and the imaginary part is determined by the expression inside the brackets, which depends on the variables p, x, and y.

To learn more about variables click here, brainly.com/question/29583350

#SPJ11

Question Given two nonnegative numbers a and b such that a+b= 4, what is the difference between the maximum and minimum a²6² of the quantity ?

Answers

The difference between the maximum and minimum values of the expression a² + 6², where a and b are nonnegative numbers satisfying a + b = 4, is 16.

To find the difference between the maximum and minimum values of the expression a² + 6², where a and b are nonnegative numbers and a + b = 4, we need to determine the possible range of values for a and then calculate the corresponding values of the expression.

Given that a + b = 4, we can rewrite it as b = 4 - a. Since both a and b are nonnegative, a can range from 0 to 4, inclusive.

Now we can calculate the expression a² + 6² for the minimum and maximum values of a:

For the minimum value, a = 0:

a² + 6² = 0² + 6² = 36.

For the maximum value, a = 4:

a² + 6² = 4² + 6² = 16 + 36 = 52.

Therefore, the difference between the maximum and minimum values of the expression a² + 6² is:

52 - 36 = 16.

To know more about nonnegative numbers,

https://brainly.com/question/31975635

#SPJ11

Pine parametric equations for the tarot line to the curve of tersection of the paraboloid = x+y and the prod4+ 25 - 26 at the point (-1,1,2) tnter your answers Co-separated into equation and be terms of

Answers

The curve of intersection of the paraboloid `z = x + y` and the ellipsoid `4x^2 + y^2 + 25z^2 = 26` is obtained by substituting `z` in the second equation with the right hand side of the first equation. Therefore, we obtain `4x^2 + y^2 + 25(x + y)^2 = 26`.This equation simplifies to `4x^2 + y^2 + 25x^2 + 50xy + 25y^2 = 26`. To parametrize this curve, we write `x = -1 + t` and `y = 1 + s`.

Substituting these into the equation above, we obtain the following: \[4(-1+t)^2+(1+s)^2+25(-1+t)^2+50(-1+t)(1+s)+25(1+s)^2=26\]\[\Rightarrow29t^2+29s^2+2t^2+2s^2+50t-50s=10\].Rightarrow31t^2+31s^2+50t-50s=10\]We can rewrite this equation in vector form as follows: \[\mathbf{r}(t,s)=\begin{pmatrix}-1\\1\\2\end{pmatrix}+\begin{pmatrix}t\\s\\-\frac{31t^2+31s^2+50t-50s-10}{50}\end{pmatrix}\]The equation in terms of `x`, `y` and `z` is as follows:\[x = -1 + t, y = 1 + s, z = -\frac{31t^2+31s^2+50t-50s-10}{50}\]Therefore, the parametric equations for the curve of intersection are as follows: \[x = -1 + t, y = 1 + s, z = -\frac{31t^2+31s^2+50t-50s-10}{50}\].

To know more about ellipsoid visit :-

https://brainly.com/question/30165920

#SPJ11

let f(x,y,z)=xyz and |e={(x,y,z)∣0≤x≤1,x≤y≤1,y≤z≤x}. then which of the following represents a correct iterated integral of f(x,y,z)f(x,y,z) over ee?

Answers

The correct iterated integral of `f(x,y,z)` over `e` is:`int_{0}^{1} int_{x}^{1} int_{y}^{x} xyz dy dz dx`. The correct otpion is c.

Given that, `f(x,y,z)=xyz` and `e={(x,y,z) | 0≤x≤1, x≤y≤1, y≤z≤x}`.

To evaluate the iterated integral of `f(x,y,z)` over `e`, we need to set the limits of the iterated integral.

We have three variables, and we integrate the variable which is dependent on others first.

So, the correct iterated integral of `f(x,y,z)` over `e` is:`int_{0}^{1} int_{x}^{1} int_{y}^{x} xyz dy dz dx`

Therefore, option C represents a correct iterated integral of `f(x,y,z)` over `e`.

Option A is incorrect as it has the incorrect order of variables to be integrated, and the limits of the variables are also incorrect.

Option B is incorrect as the limits of the variable z are incorrect.

Option D is incorrect as it has the incorrect order of variables to be integrated.

The correct option is c.

Know more about the iterated integral

https://brainly.com/question/31067740

#SPJ11

if you had 56 pieces of data and wanted to make a histogram, how many bins are recommended?

Answers

If you had 56 pieces of data and wanted to make a histogram, the recommended number of bins is 5 because of the number of data points.

When we make a histogram, we divide the range of values into a series of intervals known as bins. Each bin corresponds to a certain frequency of occurrence. In order to construct a histogram with reasonable accuracy, the number of bins should be selected with care. If the number of bins is too large, the histogram may become too cluttered and difficult to read, but if the number of bins is too small, the histogram may not show the data's full range of variation.An empirical rule to determine the appropriate number of bins is the Freedman-Diaconis rule, which uses the interquartile range (IQR) to establish the bin width. The number of bins is given by the formula shown below:N_bins = (Max-Min)/Bin_Widthwhere Max is the largest value in the data set, Min is the smallest value in the data set, and Bin_Width is the width of each bin. The Bin_Width is determined by the IQR as follows:IQR = Q3 - Q1Bin_Width = 2 × IQR × n^(−1/3)where Q1 and Q3 are the first and third quartiles, respectively, and n is the number of data points. Hence, if you had 56 pieces of data and wanted to make a histogram, the recommended number of bins is 5 because of the number of data points.To calculate the number of bins using the Freedman-Diaconis rule, we need to calculate the interquartile range (IQR) and then find the bin width using the formula above. Then we can use the formula N_bins = (Max-Min)/Bin_Width to find the recommended number of bins.

To know more on frequency visit:

https://brainly.com/question/254161

#SPJ11

When making a histogram, the recommended number of bins can be determined by the following formula: Square root of the number of data pieces rounded up to the nearest whole number.

If you had 56 pieces of data and wanted to make a histogram, the recommended number of bins is 8.However, some sources suggest that it is also acceptable to use a minimum of 5 and a maximum of 20 bins, depending on the data set.

The purpose of a histogram is to group data into equal intervals and display the frequency of each interval, making it easier to visualize the distribution of the data. The number of bins used will affect the shape of the histogram and can impact the interpretation of the data.

To know more about histogram, visit

https://brainly.com/question/16819077

#SPJ11




Find the solution to the system of equation O (4, -3,2) O (4,3,2) O (-4,-3, -2) O (4, -3, -2) x₁ - 3x₂=-2 3x₁ + x₂-2x3=5. 2x₁ + 2x₂+x=4

Answers

Two equations with two variables: 10x₂ - 2x₃ = 14 and 8x₂ + x₃ = 10

Solving this system of equations, we can find the values of x₂ and x₃. Once we have these values, we can substitute them back into the equation x₁ = 3x₂ - 2 to find the value of x₁.

The given system of equations is:

x₁ - 3x₂ = -2

3x₁ + x₂ - 2x₃ = 5

2x₁ + 2x₂ + x₃ = 4

We can solve the system of equations using the method of elimination. By performing row operations, we can manipulate the equations to eliminate variables and solve for the remaining variables.

Starting with the first equation, we can rewrite it as x₁ = 3x₂ - 2. Substituting this expression for x₁ in the second equation, we get:

3(3x₂ - 2) + x₂ - 2x₃ = 5

Simplifying, we have 10x₂ - 2x₃ = 14.

Similarly, substituting x₁ = 3x₂ - 2 in the third equation, we get:

2(3x₂ - 2) + 2x₂ + x₃ = 4

Simplifying, we have 8x₂ + x₃ = 10.

We now have a system of two equations with two variables:

10x₂ - 2x₃ = 14

8x₂ + x₃ = 10

to learn more about equations click here:

brainly.com/question/30760245

#SPJ11

1. Identify the level of measurement (nominal, ordinal, or interval) for the following variables:

A. Cars described as compact, midsize, and full-size.

B. Colors of M&M candies.

C. Weights of M&M candies.

D. Types of markers (washable, permanent, etc.)

E. Time it takes to sing the National Anthem.

F. Total annual income for statistics students.

G. Body temperatures of bears in the north pole.

H. Teachers being rated as superior, above average, average, below average, or poor.

Answers

A. Cars described as compact, midsize, and full-size. - Ordinal (size implies an order)

How to classify the variables

B. Colors of M&M candies. - Nominal (colors do not imply an order or interval)

C. Weights of M&M candies. - Interval (weights imply a quantifiable difference and order)

D. Types of markers (washable, permanent, etc.) - Nominal (types do not imply an order or interval)

E. Time it takes to sing the National Anthem. - Interval (time implies a quantifiable difference and order)

F. Total annual income for statistics students. - Interval (income implies a quantifiable difference and order)

G. Body temperatures of bears in the north pole. - Interval (temperature implies a quantifiable difference and order)

H. Teachers being rated as superior, above average, average, below average, or poor. - Ordinal (the ratings imply an order)

Read more on nominal variablkes here: https://brainly.com/question/14569061

#SPJ4



Question 3 [25 marks]
Consider again the linear system Ax = b used in Question 1. For each of the methods men- tioned below perform three iterations using 4 decimal place arithmetic with rounding and the initial approximation x(0) = (0.5, 0, 0, 2).
1.
(3.1) By examining the diagonal dominance of the coefficient matrix, A, determine whether the convergence of iterative methods to solve the system be guaranteed.
(3.2) Solve the system using each of the following methods:
(a) the Jacobi method.
(b) the Gauss-Seidel method
(c) the Successive Over-Relaxation technique with w = 0.4.
(3)
(6)
(6)
(6)
(3.3) Compute the residual for the approximate solutions obtained using each method above and compare results.
(4)

Answers

By performing these calculations and comparing the residuals, we can evaluate the effectiveness and accuracy of each iterative method in solving the given linear system.

(3.1) To determine whether the convergence of iterative methods can be guaranteed, we need to examine the diagonal dominance of the coefficient matrix, A. If the absolute value of the diagonal element in each row is greater than the sum of the absolute values of the other elements in that row, then the matrix is diagonally dominant, and convergence can be guaranteed.

(3.2) Now let's solve the system using the Jacobi method, Gauss-Seidel method, and the Successive Over-Relaxation (SOR) technique with w = 0.4.

(a) Jacobi method:

We start with the initial approximation x(0) = (0.5, 0, 0, 2) and update each component of x iteratively. After three iterations, we obtain x(3) using the formula:

x(i)(k+1) = (b(i) - ∑(A(i,j) * x(j)(k))) / A(i,i)

(b) Gauss-Seidel method:

Similar to the Jacobi method, we update the components of x iteratively, but we use the most updated values in each iteration. After three iterations, we obtain x(3) using the formula:

x(i)(k+1) = (b(i) - ∑(A(i,j) * x(j)(k+1))) / A(i,i)

(c) Successive Over-Relaxation (SOR) technique with w = 0.4:

In this technique, we incorporate relaxation by introducing a weighting factor, w. After three iterations, we obtain x(3) using the formula:

x(i)(k+1) = (1 - w) * x(i)(k) + (w / A(i,i)) * (b(i) - ∑(A(i,j) * x(j)(k+1)))

(3.3) To compute the residual for the approximate solutions obtained using each method, we can calculate the difference between Ax and b. The residual represents the error or the extent to which the system is not satisfied. By comparing the residuals, we can assess the accuracy of each method in approximating the solution to the linear system.

For more such questions on Effectiveness:

https://brainly.com/question/15418098

#SPJ8

The number of weeds in your garden grows exponential at a rate of 15% a day. if there were initially 4 weeds in the garden, approximately how many weeds will there be after two weeks? (Explanation needed)

Answers

After two weeks, there will be approximately 28 weeds in the garden.

How to determine how many weeds will there be after two weeks

Given that the weeds grow exponentially at a rate of 15% per day, we can express the growth factor as 1 + (15% / 100%) = 1 + 0.15 = 1.15. This means that the number of weeds will increase by 15% every day.

To calculate the number of weeds after two weeks, we need to apply the growth factor for 14 days starting from the initial value of 4 weeds:

Day 1: 4 x 1.15 = 4.6 (rounded to the nearest whole number)

Day 2: 4.6 x 1.15 = 5.29 (rounded to the nearest whole number)

Day 3: 5.29 x 1.15 = 6.08 (rounded to the nearest whole number)

...

Day 14: (calculate based on the previous day's value)

Continuing this pattern, we can calculate the number of weeds after each day, multiplying the previous day's value by 1.15.

Day 14: 4 x (1.15)^14 ≈ 27.8 (rounded to the nearest whole number)

Therefore, after two weeks, there will be approximately 28 weeds in the garden.

Learn more about exponential at https://brainly.com/question/2456547

#SPJ1

Consider the function with two variables given below. Which of the following statements about this function is not true?
f(x, y) = 3x²y + y²³-3x²-3y² +2
• The function has a total of 4 critical points.
• The function has a relative maximum at (0, 0).
• The function has a relative minimum at (0, 2).
• The Hessian of the function at (1, 1) is negative semidefinite.
• Every eigenvalue of the Hessian of the function at (0, 2) is positive.

Answers

The statement that is not true is: "The function has a relative minimum at (0, 2)."

To determine whether this statement is true or not, we need to analyze the critical points and the Hessian matrix of the function.

The critical points of a function occur where the partial derivatives with respect to each variable are equal to zero. In this case, we have f(x, y) = 3x²y + y²³ - 3x² - 3y² + 2. Taking the partial derivatives, we get:

∂f/∂x = 6xy - 6x = 0

∂f/∂y = 3x² + 3y²² - 6y = 0

Solving these equations simultaneously, we find the critical points to be (0, 0) and (0, 2). So, the statement that "the function has a total of 4 critical points" is true.

To determine the nature of these critical points, we need to analyze the Hessian matrix, which is the matrix of second-order partial derivatives. The Hessian matrix is given by:

H = | ∂²f/∂x² ∂²f/∂x∂y |

| ∂²f/∂y∂x ∂²f/∂y² |

Calculating the second-order partial derivatives, we have:

∂²f/∂x² = 6y - 6

∂²f/∂x∂y = 6x

∂²f/∂y∂x = 6x

∂²f/∂y² = 6y² - 12y

Evaluating the Hessian matrix at (1, 1) and (0, 2), we get:

H(1, 1) = | 0 6 |

| 6 -6 |

H(0, 2) = | 12 0 |

| 0 0 |

For the statement "The Hessian of the function at (1, 1) is negative semidefinite," we can observe that the eigenvalues of the Hessian matrix at (1, 1) are -6 and 0, which means the Hessian is neither positive definite nor negative semidefinite. Therefore, this statement is true.

Finally, for the statement "Every eigenvalue of the Hessian of the function at (0, 2) is positive," we can see that the eigenvalues of the Hessian matrix at (0, 2) are 12 and 0. Since one of the eigenvalues is not positive, this statement is false.

In summary, the statement that is not true is "The function has a relative minimum at (0, 2)."

To know more about matrix click here

brainly.com/question/30389982

#SPJ11

3 points Lave Computer Scientists and Electrical Engineers are debating who can design the better robots. We can test this scientifically by letting some CS- and EE-student designed robots compete to solve a task (faster times are better), Imagine that we get the following data: Student Degree Time (mm:ss) 1 CS 12:09 2 EE 12:17 3 CS 10:54 4 EE 11:53 5 EE 11:41 6 CS 12:25 7 EE 10:08 Based on these finish times, run a Mann-Whitney U test for the null hypothesis that there is no difference between the median finish times for the two cohorts and fill in the following values using the statistical tables for the p-value. You must fill in the fields exactly as follows: U1 and U2 must be integers representing the two U-values for the test with U1 SU2. In the p box, you must enter exactly three digits representing the first three places after the decimal point from the correct value in the table, eg if you get p-0.05 then enter 050 (to make 0.050). • U1: 02: .p: 0.

Answers

The Mann-Whitney U test results in U1 = 2 and U2 = 22 with a p-value of 0.063.

Is there a significant difference between the median finish times?

The Mann-Whitney U test is a nonparametric test used to determine if there is a significant difference between the medians of two independent groups. In this case, we have two groups: CS (Computer Science) and EE (Electrical Engineering) students who designed robots to solve a task.

The finish times in minutes and seconds are as follows: CS - 12:09, 10:54, 12:25, and EE - 12:17, 11:53, 11:41, 10:08. To perform the Mann-Whitney U test, we assign ranks to the finish times, considering both groups together. We then sum the ranks for each group (U1 for CS, U2 for EE). In this case, U1 is 2, and U2 is 22. The p-value, obtained from statistical tables, indicates the probability of observing a difference as extreme as the one observed under the null hypothesis of no difference.

In this case, the p-value is 0.063. Since the p-value is greater than the conventional significance level of 0.05, we fail to reject the null hypothesis. Therefore, based on these finish times, there is no significant difference between the median finish times for CS and EE students.

Learn more about Mann-Whitney U test

brainly.com/question/28069693

#SPJ11

A bag contains 3 blue, 5 red, and 7 yellow marbles. A marble is chosen at random. Determine the theoretical probability expressed as a decimal rounded to the nearest hundredth. p(red)

Answers

The theoretical probability of selecting a red marble from the bag is approximately 0.33.

To find the theoretical probability of selecting a red marble from the bag, we need to divide the number of favorable outcomes (number of red marbles) by the total number of possible outcomes (total number of marbles).

The bag contains a total of 3 blue + 5 red + 7 yellow = 15 marbles.

The number of red marbles is 5.

Therefore, the theoretical probability of selecting a red marble is:

p(red) = 5/15

Simplifying this fraction, we get:

p(red) = 1/3 ≈ 0.33 (rounded to the nearest hundredth)

So, the theoretical probability of selecting a red marble from the bag is approximately 0.33.

for such more question on probability

https://brainly.com/question/13604758

#SPJ8

Other Questions
Question 2: Kartina, an account clerk in Farez Architecture Sdn. Bhd. prepares a trial balance as at 31 March 2022. The trial balance however is not balance due to some mistakes. Debit (RM) Credit (RM Suppose the two random variables X and Y have a bivariate normal distributions with ux = 12, ox = 2.5, my = 1.5, oy = 0.1, and p = 0.8. Calculate a) P(Y < 1.6X = 11). b) P(X > 14 Y = 1.4) A Web music store offers two versions of a popular song. The size of the standard version is 2.4 megabytes (MB). The size of the high-quality version is 4.2 MB.Yesterday, there were 1380 downloads of the song, for a total download size of 4716 MB. How many downloads of the standard version were there? Which of the following statements is (are) incorrect? I. Yield curves are plotted with yields on the y (vertical) axis and risk premiums on the x (horizontal) axis. II. The price of a bond is equal to the present value of the bond's future cash flows. III. When the market rate of interest is higher than a bond's coupon rate, the bond will sell at a discount. IV. If you feel interest rates are going to drop significantly, you could potentially realize large capital gains by purchasing long-term zero coupon bonds prior to the rates decreasing. write code to assign x and y coordinates to currcoord, and store currcoord in criticalpoints. What is the value of? Z c sigma /nif Ozlem likes jogging 3 days of a week. She prefers to jog 3 miles. For her 95 times, the mean wasx 24 minutes and the standard deviation was S2.30 minutes. Let be the mean jogging time for the entire distribution of Ozlems 3 miles running times over the past several years. How can we find a 0.99 confidence interval for ?.. What does it mean spatial awareness in early childhood education? Read the excerpt from Franklin D. Roosevelt's First Inaugural Address.But in the event that the Congress shall fail to take one of these two courses, and in the event that the national emergency is still critical, I shall not evade the clear course of duty that will then confront me. I shall ask the Congress for the one remaining instrument to meet the crisisbroad Executive power to wage a war against the emergency, as great as the power that would be given to me if we were in fact invaded by a foreign foe.The passage has pathos as a rhetorical appeal. What insight was Franklin D. Roosevelt hoping to convey to his audience by using this appeal? That the situation facing the economy is just as dire as if an enemy invaded the country. That the only way to handle the economic crisis is to depend on Congress. That the situation will resolve itself if left up to Congress. That the people should not allow the Executive branch to solve the economic problems but Congress. Given the following information, what is the route corresponding to the shortest distance between node 1 and node 6? And What is the shortest distance between node 1 and node 6? Question 4 2 pts In late fall 2019, a consumer researcher asked a sample of 324 randomly selected Americans how much they planned to spend on the holidays. A local newspaper reported the average spending would be $1000. A 95% confidence interval for the planned spending was found to be ($775.50, $874.50). Was the newspaper's claim supported by the confidence interval? Explain why or why not. Edit View Insert Format Tools Table 12pt Paragraph B I U Ave Tev Durban Moving and Storage wants to have enough money available 7 years from now to purchase a new tractor-trailer. If the estimated cost will be $290,000. how much should the company set aside each year if the funds earn 6% per year? The company should set aside $ _________each year. Complete the following statements in the blanks provided. (1 Point each). i. Write the first five terms of the sequence { an}, if a = 6, an+1 = an/n ii. Find the value of b for which the geometric series converges 20 36 1+ e +e0 +e0 +... = 2 b= Define variable cost and direct cost, provide two examples for each, and explain the relation between variable cost and direct cost? * Determine the current amount of money tha must be invested at 12% nominal interest, compounded monthly, to provide an annuity of $10,000 (per year) fo 16 years, starting 12 years from now. The interest rate remains constant over this entire period of time We observe the following frequencies f = {130, 133, 49, 7, 1} for the values X = {0, 1, 2, 3, 4}, where X is a binomial random variable X ~ Bin(4, p), for unknown p. The following R code calculate the estimate associated with the method of moment estimator. Complete the following code: the first blank consists of an expression and the second one of a number. Do not use any space. x=0:4 freq=c(130, 133,49,7,1) empirical.mean=sum >/sum(freq) phat=empirical.mean/ In the setting of Question 6, define expected frequencies (E) for each of the classes '0', '1', '2', '3' and '4' by using the fact that X ~ Binom (4, p) and using p you estimated in Question 6. Compute the standardised residuals (SR) given by O-E SR for each of the classes '0', '1', '2', '3' and '4', where O represents the observed frequencies. Usually SR < 2 is an indication of good fit. What is the mean of the standardised residuals? Write a number with three decimal places. In the long run: O at least one input is variable and one input is fixed. O all inputs are variable. O all inputs are fixed. inputs are neither variable nor fixed. Changes in government spending and taxes represent movementsalong the aggregate demand curve True or False? Solve the System of Equations4x-y+3z=122x+9z=-5x+4y+6z=-32 Consider the following table showing aggregate consumption expenditures and disposable income. All values are expressed in billions of constant dollars. a. Compute desired saving at each level of disposable income. (Round your responses to the nearest whole number.) 50- Disposable Income (Y) Desired Consumption (C) NUL Savings 100 200 300 400 5 0 600 700 800 100 180 Savings (5) -50/ 260 100 200 300 400 500 600 340 420 500 580 Click the graph, choose a tool in the palette and follow the instructio your grap $ Use the line drawing tool to draw and label the savings function on the diam at right. Make sure that the line extends from disposable incomes of Ohio Carefully follow the structions above and only draw the requedo What is the slope of the savings function? The slope of the savings function is (Round your response to two deal places) b. The marginal propensity to save, which equals plus the marginal propensity to consume, which equals . must equal the integet value at Round your responses to two decimal places) c. Write the equation for this savings function (Round your responses to lo decimal places 9 ($1 S 100 200 300 400 500 600 700 800 ES S. + Cink theran hot and in the 02:29:05 Saved Identify each of the following production features as applying more to job order operations, to process operations, or to both job order and process operations. 1. Measures cost per unit of product or service. 2. Uses job cost sheets. 3. Transfers costs between multiple Work in Process Inventory accounts. 4. Transfers costs from a Work in Process Inventory account to a Finished Goods Inventory account. 5. Cost object is a process. 6. Uses mass production of standardized products n 14-17 Saved Help Identify each of the following production features as applying more to job order operations, to process operations, or to both job order and process operations. 1. Measures cost per unit of product or service. 2. Uses job cost sheets. 3. Transfers costs between multiple Work in Process Inventory accounts 4. Transfers costs from a Work in Process Inventory account to a Finished Goods inventory account 5. Cost object is a process 6. Uses mass production of standardized products. 28:41 Save & Exit Submit