Answer:
0.8413
Step-by-step explanation:
p = 0.10
σ = √(pq/n) = 0.01
z = (x − μ) / σ
z = (0.11 − 0.10) / 0.01
z = 1
P(Z < 1) = 0.8413
The probability that the proportion of books checked out in a sample of 899 books would be less than 11% is approximately 0.5425.
We have,
We can use the normal approximation to the binomial distribution to find the probability that the proportion of books checked out in a sample of 899 books would be less than 11%.
First, we need to calculate the mean and standard deviation of the binomial distribution:
Mean:
np = 899 × 0.1 = 89.9
Standard deviation:
√(np(1-p)) = √(899 × 0.1 × 0.9) = 9.427
Next, we need to standardize the sample proportion of 11% using the formula:
z = (x - μ) / σ
where x is the sample proportion, μ is the mean of the distribution, and σ is the standard deviation of the distribution.
Substituting the values we have, we get:
z = (0.11 - 0.1) / 0.9427 = 0.1059
Using a standard normal distribution table or calculator, we can find that the probability of getting a z-score less than 0.1059 is 0.5425.
Therefore,
The probability that the proportion of books checked out in a sample of 899 books would be less than 11% is approximately 0.5425.
Rounded to four decimal places, the answer is 0.5425.
Learn more about probability here:
https://brainly.com/question/11234923
#SPJ2
Caleb puppy weighs 2250 grams if the puppy weight 600 grams at the last visit to the vets office what is the percent increase in the puppy's weight rounded to the nearest whole number
Answer: 375%
Step-by-step explanation:
375%. Simply do 2250/600 to get 3.75, or 375%.
Hope it helps <3
The top speed you will ever need
to go in a parking lot is
O A. 20 mph
OB. 10 mph
OC. 1 mph
D. 15 mph
Answer:
10 mph
Step-by-step explanation:
The top speed you will ever need to go in a parking lot is 10 mph.
15 mph is the fastest you should ever drive in a parking lot. The right answer is D.
What is National Motorists Association?The National Motorists Association was established in 1982 and is a divisive nonprofit advocacy group representing drivers in North America.
The Association promotes engineering standards that have been demonstrated to be effective, justly drafted and applied traffic legislation, and full due process for drivers.
Given to give information about the top speed you will ever need
to go into a parking lot is,
A group of drivers came together to form the National Motorists Association, Inc., a non-profit organization, to defend drivers' rights in the legal system, on the highways, and inside our cars.
Usually, there are marked speed limits in parking lots. Obey speed limits when you see them to avoid tickets and to keep everyone safe.
The National Motorists Association advises driving no faster than 15 miles per hour at all times when there are no written speed limits.
Therefore, the correct option is D.
For more details regarding Motorists;
brainly.com/question/13122960
#SPJ2
45 points! Yay An investment may earn interest using a simple interest rate or a compound interest rate. This expression can be used to find the value of an investment that is earning simple interest: P(1+rt) This expression can be used to find the value of an investment that is earning compound interest: P(1+r)t Use the drop-down menus to complete the statements about simple and compound interest. For an investment earning(simple interest,compound interest) , the interest is applied each year to the principal and to any interest that already accrued. For an investment earning(simple interest, compojnd interest) , the interest is applied each year only to the principal. Please help I'm literally the dumbest person i know •,-,•
Answer:
1. Compound Interest
2. Simple Interest
Step-by-step explanation:
Simple Interest multiplies the interest rate on the principal rate by the number of days.
Compound Interest multiplies the interest rate on the principal rate and existing rate by periods.
Answer:
:)
Step-by-step explanation:
El costo de pintar un muro se calcula con un tercio del doble del área por el triple del numero de trabajadores. Si se planea pintar un muro de 1200m² y se contrataran a 3 trabajadores. ¿Cuanto se pagara?
Answer:
Se pagará $7200.
Step-by-step explanation:
La ecuación del costo puede descomponerse en dos factores que luego se multiplican:
1) Siendo A el area del del muro, la parte del costo que depende del área se calcula como un tercio (1/3) del doble (2) del área A. Este factor se puede escribir como:
[tex]C_1=(1/3)\cdot 2 \cdot A=(2/3)\cdot A[/tex]
2) Siendo T el número de trabajadores, el siguiente factor es el triple del numero de trabajadores T. Esto es:
[tex]C_2=3T[/tex]
Multiplicando ambos factores, tenemos la ecuacion del costo en función de A y T:
[tex]C=C_1\cdot C_2=(2/3)A\cdot 3T=2 AT[/tex]
Si se planea pintar un muro de 1200m² y se contrataran a 3 trabajadores, el costo será:
[tex]C=2AT=2(1200)(3)=7200[/tex]
Brainliest to whoever gets this correct! Does this graph show a function? Explain how you know.A.No; there are y-values that have more than one x-value.B.No; the graph fails the vertical line test.C.Yes; the graph passes the vertical line test.D.Yes; there are no y-values that have more than one x-value.
Answer:
B. No; the graph fails the vertical line test.
Step-by-step explanation:
If you hold a pencil up to the graph, the parabola would technically touch the pencil at more than one point. That means it failed the test, and therefore it is not a function.
hope this helped :)
Please answer this correctly
Answer:
1/2
Step-by-step explanation:
The numbers that are 6 or even on the cards are 2, 4, and 6.
3 cards out of a total of 6 cards.
3/6 = 1/2
Answer:
1/2 chance
Step-by-step explanation:
There are 3 numbers that fit the rule, 2, 4, and 6. 3/6 chance of picking one or 1/2, simplified.
PLEASE HELP!!! A LOT OF POINTS AND BRAINLIEST TO CORRECT ANSWERS!!!
1. Find the area of the region enclosed by the graph of [tex]$x^2 + y^2 = 2x - 6y + 6$[/tex].
2. The line [tex]x=4[/tex] is an axis of symmetry of the graph of [tex]$y = ax^2 + bx + c.$[/tex] Find [tex]$\frac{b}{a}$.[/tex].
3. The graph of [tex]$y = ax^2 + bx + c$[/tex] is shown below. Find [tex]$a \cdot b \cdot c$[/tex]. (The distance between the grid lines is one unit, picture of graph attached.)
4. Geometrically speaking, a parabola is defined as the set of points that are the same distance from a given point and a given line. The point is called the focus of the parabola and the line is called the directrix of the parabola. Suppose [tex]$\mathcal{P}$[/tex] is a parabola with focus [tex]$(4,3)$[/tex] and directrix [tex]$y=1$[/tex]. The point [tex]$(8,6)$[/tex] is on [tex]$\mathcal{P}$[/tex] because [tex]$(8,6)$[/tex] is 5 units away from both the focus and the directrix. If we write the equation whose graph is [tex]$\mathcal{P}$[/tex] in the form [tex]$y=ax^2 + bx + c$[/tex], then what is [tex]$a+b+c$[/tex]?
5. (This is a Writing Problem - please please please explain and answer the question thoroughly!) A quadratic of the form [tex]$-2x^2 + bx + c$[/tex] has roots of [tex]$x = 3 + \sqrt{5}$[/tex] and [tex]$x = 3 - \sqrt{5}.$[/tex] The graph of [tex]$y = -2x^2 + bx + c$[/tex] is a parabola. Find the vertex of this parabola.
If you do manage to answer every single one of these correctly, THANK YOU SO MUCH and please know you are very much appreciated! :)
Answer:
1. [tex]Area=16\,\pi=50.265[/tex]
2.- [tex]\frac{b}{a} =-8[/tex]
3. [tex]y=\frac{1}{2} x^2+3x+\frac{5}{2}[/tex]
4. [tex]a+b+c=\frac{17}{4}[/tex]
5. the vertex is located at: (3, 10)
Step-by-step explanation:
1. If we rewrite the formula of the conic given by completing squares, we can find what conic we are dealing with:
[tex](x^2-2x)+(y^2+6y)=6\\\,\,\,\,\,\,+1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+9\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+10\\(x-1)^2+(y+3)^2=16\\(x-1)^2+(y+3)^2=4^2[/tex]
which corresponds to a circle of radius 4, and we know what the formula is for a circle of radius R, then:
[tex]Area=\pi\,R^2=\pi\,4^2=16\,\pi=50.265[/tex]
2.
If x=4 is the axis of symmetry of the parabola
[tex]y=ax^2+bx+c[/tex]
then recall the formula to obtain the position of the x-value of the vertex:
[tex]x_{vertex}=-\frac{b}{2a} \\4=-\frac{b}{2a}\\4\,(-2)=\frac{b}{a} \\\frac{b}{a} =-8[/tex]
3.
From the graph attached, we see that the vertex of the parabola is at the point: (-3, -2) on the plane, so we can write the general formula for a parabola in vertex form:
[tex]y-y_{vertex}=a\,(x-x_{vertex})^2\\y-(-2)=a\,(x-(-3))^2\\y+2=a(x+3)^2[/tex]
and now find the value of the parameter "a" by requesting the parabola to go through another obvious point, let's say the zero given by (-1, 0) at the crossing of the x-axis:
[tex]y+2=a\,(x+3)^2\\0+2=a(-1+3)^2\\2=a\,2^2\\a=\frac{1}{2}[/tex]
So the equation of the parabola becomes:
[tex]y+2=\frac{1}{2} (x+3)^2\\y+2=\frac{1}{2} (x^2+6x+9)\\y+2=\frac{1}{2} x^2+3x+\frac{9}{2} \\y=\frac{1}{2} x^2+3x+\frac{9}{2} -2\\y=\frac{1}{2} x^2+3x+\frac{5}{2}[/tex]
4.
From the location of the focus of the parabola as (4, 3) and the directrix as y=1, we conclude that we have a parabola with dominant vertical axis of symmetry, displaced from the origin of coordinates, and responding to the following type of formula:
[tex](x-h)^2=4\,p\,(y-k)[/tex]
with focus at: [tex](h,k+p)[/tex]
directrix given by the horizontal line [tex]y=k-p[/tex]
and symmetry axis given by the vertical line [tex]x=h[/tex]
Since we are given that the focus is at (4, 3), we know that [tex]h=4[/tex], and that [tex]k+p=3[/tex]
Now given that the directrix is: y = 1, then:
[tex]y=k-p\\1=k-p[/tex]
Now combining both equations with these unknowns:
[tex]k+p=3\\k=3-p[/tex]
[tex]1=k-p\\k=1+p[/tex]
then :
[tex]1+p=3-p\\2p=3-1\\2p=2\\p=1[/tex]
and we now can solve for k:
[tex]k=1+p=1+1=2[/tex]
Then we have the three parameters needed to write the equation for this parabola:
[tex](x-h)^2=4\,p\,(y-k)\\(x-4)^2=4\,(1)\,(y-2)\\x^2-8x+16=4y-8\\4y=x^2-8x+16+8\\4y=x^2-8x+24\\y=\frac{1}{4} x^2-2x+6[/tex]
therefore: [tex]a=\frac{1}{4} , \,\,\,b=-2,\,\,and\,\,\,c=6[/tex]
Then [tex]a+b+c=\frac{17}{4}[/tex]
5.
The vertex of a parabola can easily found because they give you the roots of the quadratic function, which are located equidistant from the symmetry axis. So we know that is one root is at [tex]x=3+\sqrt{5}[/tex]and the other root is at [tex]x=3-\sqrt{5}[/tex]
then the x position of the vertex must be located at x = 3 (equidistant from and in the middle of both solutions. Then we can use the formula for the x of the vertex to find b:
[tex]x_{vertex}=-\frac{b}{2a}\\3=-\frac{b}{2\,(-2)}\\ b=12[/tex]
Now, all we need is to find c, which we can do by using the rest of the quadratic formula for the solutions [tex]x=3+\sqrt{5}[/tex] and [tex]x=3-\sqrt{5}[/tex] :
[tex]x=-\frac{b}{2a} +/-\frac{\sqrt{b^2-4\,a\,c} }{2\,a}[/tex]
Therefore the amount [tex]\frac{\sqrt{b^2-4\,a\,c} }{2\,a}[/tex], should give us [tex]\sqrt{5}[/tex]
which means that:
[tex]\sqrt{5}=\frac{\sqrt{b^2-4\,a\,c} }{2\,a} \\5=\frac{b^2-4ac}{4 a^2} \\5\,(4\,(-2)^2)=(12)^2-4\,(-2)\,c\\80=144+8\,c\\8\,c=80-144\\8\,c=-64\\c=-8[/tex]
Ten the quadratic expression is:
[tex]y=-2x^2+12\,x-8[/tex]
and the y value for the vertex is:
[tex]y=-2(3)^2+12\,(3)-8=-18+36-8=10[/tex]
so the vertex is located at: (3, 10)
Which shapes have the same volume as the given rectangular prism?
The value of 82 is between which two integers?
Hey there!
Let's look at the squares of all of our answer options. We will compare them to eighty two to see which it belongs in.
A. 36 and 49.
B. 49 and 64.
C. 64 and 81.
D. 81 and 100
As you can see, 82 is in between 81 and 100, so the answer is D. 9 and 10.
Also, the square root of 82 is about 9.05, and this fits our answer.
Have a wonderful day!
The value of √82 is between 9 and 10 integers.
What is Number system?A number system is defined as a system of writing to express numbers.
We need to find the value of √82 is between which two integers.
The value of √82 is 9.05
Square root of eighty two is nine point zero five
9.05 is in between 9 and 10
Nine point zero five is between nine and ten.
Hence, the value of √82 is between 9 and 10 integers.
To learn more on Number system click:
https://brainly.com/question/22046046
#SPJ5
the expression7(b+3) is equivalent to which expression? A.7b+3, B.7+b+c, C.7b+10, D.7b+21
Answer:
7b+21
Step-by-step explanation:
7(b+3)
Distribute
7*b + 7*3
7b+21
If f(x)=8x and g(x)=2x+1, what is (f×g)(x)
Answer:
(f * g)(x) has a final product of 16x² + 8x.
Step-by-step explanation:
When you see (f * g)(x), this means that we are going to be multiply f(x) and g(x) together.
f(x)=8x
g(x)=2x+1
Now, we multiply these terms together.
(8x)(2x + 1)
Use the foil method to multiply.
16x² + 8x
So, the product of these terms is 16x² + 8x.
The largest fish ever caught in Lake A weighed 650 pounds. This is 208.2 pounds less than seven times the weight of the largest fish ever caught in Lake B. Find the weight of the largest fish caught in Lake B nts
Answer:
122.6 pounds
Step-by-step explanation:
Let's call the weight of the largest fish from lake A 'x', and the weight of the largest fish from lake B 'y'.
If x is 208.2 pounds less than seven times y, we have that:
[tex]x = 7y - 208.2[/tex]
We know that x is equal 650 pounds, so we can find y:
[tex]650 = 7y - 208.2[/tex]
[tex]7y = 650 + 208.2[/tex]
[tex]7y = 858.2[/tex]
[tex]y = 122.6\ pounds[/tex]
So the weight of the largest fish caught in Lake B is 122.6 pounds
Lee watches TV for 2 hours per day. During that time, the TV consumes 150 watts per hour. Electricity costs (12 cents)/(1 kilowatt-hour). How much does Lee's TV cost to operate for a month of 30 days?
Answer:
$1.08
Step-by-step explanation:
30 days × (2 hrs/day) × (150 W) × (1 kW / 1000 W) × (0.12 $/kWh) = $1.08
Gregoire sold 24 cars to his friend for $71.76. What was the price per car?
a. $47.76
b. $2.99
c. $17.22
d. $3.25
Answer:
2.99
Step-by-step explanation:
Take the total cost and divide by the number of cards
71.76/24 = 2.99
The cost per car is 2.99
Answer:
b. $2.99.
Step-by-step explanation:
To get the price per car, you get the total price divided by the total number of cars.
That would be 71.26 / 24 = 2.969166667, which is most close to b. $2.99. Those are some cheap cars!
Hope this helps!
What is 62 in expanded form?
A. 2 x 2 x 2 x 2 x 2 x 2
B. 6 x 6
C. 12
D. 36
Answer:
I think so you meant to write 62 as 6^2
If this is the question , then the answer is 6 x 6
HOPE THIS HELPS AND PLS MARK AS BRAINLIEST
THNXX :)
Answer:
B. 6 × 6
Step-by-step explanation:
6²
The square of a number means that the number is multiplied by itself.
6 × 6 (expanded form)
Write two point-slope equations for the line passing through the points (6, 5) and (3, 1). Show your work.
Answer:
y=-4/3x-3
Step-by-step explanation:
You look for the slope using the the slope formula (m=y2-y1/x2-x1)
You will end up with (m=1-5/3-6)
Simplify to end up with (-4/3) as your slope.
Then, pick a coordinate point. Your choices are (6,5) and (3,1). You will us it to plug into the equation.
I am picking (3,1) The y-value here is 1 and the x-value is 3.
Your equation to find b, or the y-intercept is going to be (1=-4/3(3)+b)
You will have to simplify.
1=-4/3(3)+b
You will multiply -4/3 and -3 and end up with 4 so it looks like...
1=4+b
You subtract 4 on both sides and then end up with....
-3=b
So, the final answer is: y=-4/3x-3
Consider the following. x = 6 sin y , 0 ≤ y ≤ π, x = 0; about y = 4
(a) Set up an integral for the volume V of the solid obtained by rotating the region bounded by the given curve about the specified axis.
(b) Use your calculator to evaluate the integral correct to four decimal places.
Answer:
12pi(8-pi), or
183.158 to third decimal place
Step-by-step explanation:
The geometry is indicated in the attached figure.
A. by integration
We will find the volume of the solid by the method of shells, i.e. we will integrate strips parallel to the axis of rotation to form many thin shells, then integrate to get the sum of all these shells.
For each shell, of thickness dy, we integrate strips of length located at y
L(x) = y(x)
and area
L(x)dy
Each strip is at a distance of (4-y) from
for which the volume of each shell equals
dV = 2*pi*(4-y)*L(x)dy = 2*pi*(4-y)*y(x) dy
The total volume of the solid can be obtained by integrating y from 0 to pi
integral( dV ) from 0 to pi
= integral (2*pi*(4-y)*y(x) dy) for y from 0 to pi
= 12*pi(-sin(y)+y*cos(y)-4*cos(y)) for y from 0 to pi
=12(8-pi)*pi
= 183.158
B. Using Pappus theorem
Pappus theorem simplifies the calculation of volume of revolution by multiplying the area of the rotating region by 2pi times the distance between the centroid and the rotation axis.
Here the area of the figure is A=2*6=12, (2 is the area under the sine curve from 0 to pi), or
A = integral (6sin(x))dx, x from 0 to pi
= 6 cos(x), x from 0 to pi
= 6(1- (-1))
= 12
Distance from centroid to axis of rotation = (4-pi/2)
Volume = 2*pi*A*(4-pi/2) = 2*pi*12*(4-pi/2)
= 12pi(8-pi)
=183.158 as before
Find the lateral area of the square pyramid shown to the nearest whole number.
25 yd
A
43 yd
Answer:
4,300
Step-by-step explanation:
Lateral area of a squared Pyramid is given as ½ × Perimeter of base (P) × slant height of pyramid
Thus, we are given,
Side base length (s) = 43 yd
height (h) = 25 yd
Let's find the perimeter
Permimeter = 4(s) = 4(43) = 172 yd
Calculate the slant height using Pythagorean theorem.
Thus, l² = s²+h²
l² = 43²+25² = 1,849+625
l² = 2,474
l = √2,474
l ≈ 50 yd
=>Lateral area = ½ × 172 × 50
= 172 × 25
= 4,300 yd
How do you calculate the y-intercept of a line written in Standard Form?
Answer:
y-int = C/B
Step-by-step explanation:
Ax + By = C
y-int = C/B
Answer:
I hope this helps.
Step-by-step explanation:
Which statement best interprets the factor (r+7) in this context?
Answer:
the height of the cylinder is 7 units greater than the radius
Step-by-step explanation:
When you match the forms of the equations ...
[tex]V=\pi r^2(r+7)\\V=\pi r^2h[/tex]
you see that the factor (r+7) corresponds to the height (h) of the cylinder. That is ...
the height of the cylinder is 7 units greater than the radius.
Select all the correct equations.
Which equations have no real solution but have two complex solutions? PLZ 20 POINTS
Answer:
You did not post the options, but i will try to answer this in a general way.
Because we have two solutions, i know that we are talking about quadratic equations, of the form of:
0 = a*x^2 + b*x + c.
There are two easy ways to see if the solutions of this equation are real or not.
1) look at the graph, if the graph touches the x-axis, then we have real solutions (if the graph does not touch the x-axis, we have complex solutions).
2) look at the determinant.
The determinant of a quadratic equation is:
D = b^2 - 4*a*c.
if D > 0, we have two real solutions.
if D = 0, we have one real solution (or two real solutions that are equal)
if D < 0, we have two complex solutions.
Answer:
This was for 5 points. not 20 my dude. Also the first answer is correct.
Step-by-step explanation:
which inequality represents the statement? the number of new cars(C) a ship carries cant exceed 975.
A. c<975
B. c>975
C. c<(—under<)975
D. c>(—under>)975
"can't exceed 975" means this is the largest value possible for C. So we could have C = 975 or smaller. We write this as [tex]C \le 975[/tex] which is read as "C is less than or equal to 975".
Answer: Choice C. [tex]C \le 975[/tex]Answer:
5
Step-by-step explanation:
In a random sample of cars driven at low altitudes, of them exceeded a standard of grams of particulate pollution per gallon of fuel consumed. In an independent random sample of cars driven at high altitudes, of them exceeded the standard. Can you conclude that the proportion of high-altitude vehicles exceeding the standard is less than the proportion of low-altitude vehicles exceeding the standard
Complete question is;
In a random sample of 370 cars driven at low altitudes, 43 of them exceeded a standard of 10 grams of particulate pollution per gallon of fuel consumed. In an independent random sample of 80 cars driven at high altitudes, 23 of them exceeded the standard. Can you conclude that the proportion of high-altitude vehicles exceeding the standard is greater than the proportion of low-altitude vehicles exceeding the standard at an level of significance? Group of answer choices
Answer:
Yes we can conclude that there is enough evidence to support the claim that the proportion of high-altitude vehicles exceeding the standard is greater than the proportion of low-altitude vehicles exceeding the standard (P-value = 0.00005).
Step-by-step explanation:
This is a hypothesis test for the difference between the proportions.
The claim is that the proportion of high-altitude vehicles exceeding the standard is greater than the proportion of low-altitude vehicles exceeding the standard.
Then, the null and alternative hypothesis are:
H0 ; π1 - π2 = 0
H1 ; π1 - π2 < 0
The significance level would be established in 0.01.
The random sample 1 (low altitudes), of size n1 = 370 has a proportion of;
p1 = x1/n1
p1 = 43/370
p1 = 0.116
The random sample 2 (high altitudes), of size n2 = 80 has a proportion of;
p2 = x2/n2
p2 = 23/80
p2 = 0.288
The difference between proportions is pd = (p1-p2);
pd = p1 - p2 = 0.116 - 0.288
pd = -0.171
The pooled proportion, we need to calculate the standard error, is:
p = (x1 + x2)/(n1 + n2)
p = (43 + 23)/(370 + 80)
p = 66/450
p = 0.147
The estimated standard error of the difference between means is computed using the formula:
S_(p1-p2) = √[((p(1 - p)/n1) + ((p(1 - p)/n2)]
1 - p = 1 - 0.147 = 0.853
Thus;
S_(p1-p2) = √[((0.147 × 0.853)/370) + ((0.147 × 0.853)/80)]
S_(p1-p2) = 0.044
Now, we can use the formula for z-statistics as;
z = (pd - (π1 - π2))/S_(p1-p2)
z = (-0.171 - 0)/0.044
z = -3.89
Using z-distribution table, we have the p-value = 0.00005
Since the P-value of (0.00005) is smaller than the significance level (0.01), then the effect is significant.
We conclude that The null hypothesis is rejected.
Thus, there is enough evidence to support the claim that the proportion of high-altitude vehicles exceeding the standard is greater than the proportion of low-altitude vehicles exceeding the standard.
I NEED HELP PLEASE, THANKS! :)
please see the attached picture for full solution..
Hope it helps..
Good luck on your assignment...
What is the m ZACB?
10°
50°
90°
180°
Answer:
50 deg
Step-by-step explanation:
In an right triangle, the acute angles are complementary. That means their measures have a sum of 90 deg.
m<C + m<B = 90
7x - 20 + 4x = 90
11x = 110
x = 10
m<ACB= 7x - 20
m<ACB = 7(10) - 20
m<ACB = 70 - 20
m<ACB = 50
Answer: m<ACB = 50 deg
The population of Adamsville grew from 6000 to 13000 in 7 years. Assuming uninhibited exponential growth, what is the expected population in an additional 3 years?
Answer:
18107.32
Step-by-step explanation:
Set up the exponential function in the form:
[tex]P = P_0(R)^t[/tex]
so P is the new population, [tex]P_0[/tex] is the original population, R is the rate of increase in population, and t is the time in years.
You have to use the information given to find the rate that the population is increasing and then use that rate to find the new population after more time passes.
[tex]13000 = 6000(R)^7\\\\\\frac{13000}{6000} = R^7\\\\\sqrt[7]{\frac{13000}{6000} } = R\\\\\\ R = 1.116786872[/tex]
Now that you found the rate, you can use the function to find the population after another 3 years.
[tex]P = 13000(1.116786872)^3\\P = 18107.32317\\[/tex]
So the population is 18107, rounded to the nearest whole number.
Find the slope of the line shown on the graph to the right.
Select the correct choice below and fill in any answer boxes within your choice.
#
A. The slope of the line is
(Simplify your answer. Type an integer or a fraction.)
B. The slope is undefined
Answer:
0 (zero)
Step-by-step explanation:
A horizontal line has zero slope.
Compare the distributions using either the means and standard deviations or the five-number summaries. Justify your choice. Set A Set B The distributions are symmetric, so use the means and standard deviations. The mean for Set A is about 44.6 with standard deviation of about 6.2. The mean for Set B is about 42.8 with standard deviation of about 1.86. While the average low temperatures for the cities are approximately equal, the greater standard deviation for Set B means that Set A’s low temperatures have a greater variability than Set B temperatures. The distributions are symmetric, so use the means and standard deviations. The mean for Set B is about 41.56 with standard deviation of about 6.07. The mean for Set A is about 43.8 with standard deviation of about 14.8. While the average low temperatures for the cities are approximately equal, the greater standard deviation for Set A means that Set A’s low temperatures have a greater variability than Set B temperatures. The distributions are symmetric, so use the means and standard deviations. The mean for Set A is about 44.6 with standard deviation of about 6.4. The mean for Set B is about 41.5 with standard deviation of about 6.7. While the average low temperatures for the cities are approximately equal, the greater standard deviation for Set B means that Set B’s low temperatures have a greater variability than Set A temperatures. The distributions are symmetric, so use the means and standard deviations. The mean for Set A is about 44.6 with standard deviation of about 6.2. The mean for Set B is about 43.8 with standard deviation of about 14.8. While the average low temperatures for the cities are approximately equal, the greater standard deviation for Set B means that Set B’s low temperatures have a greater variability than Set A temperatures.
Answer:
Explained below.
Step-by-step explanation:
The question is:
Compare the distributions using either the means and standard deviations or the five-number summaries. Justify your choice.
Set A: {36, 51, 37, 42, 54, 39, 53, 42, 46, 38, 50, 47}
Set B: {22, 57, 46, 24, 31, 41, 64, 50, 28, 59, 65, 38}
The five-number summary is:
MinimumFirst Quartile Median Third Quartile MaximumThe five-number summary for set A is:
Variable Minimum Q₁ Median Q₃ Maximum
Set A 36.00 38.25 44.00 50.75 54.00
The five-number summary for set B is:
Variable Minimum Q₁ Median Q₃ Maximum
Set B 22.00 28.75 48.00 58.50 65.00
Compute the mean for both the data as follows:
[tex]Mean_{A}=\frac{1}{12}\times [36+51+37+...+47]=44.58\approx 44.6\\\\Mean_{B}=\frac{1}{12}\times [22+57+46+...+38]=44.58\approx 44.6[/tex]
Both the distribution has the same mean.Compare mean and median for the two data:
[tex]Mean_{A}>Median_{A}\\\\Mean_{B}>Median_{B}[/tex]
This implies that set A is positively skewed whereas set B is negatively skewed.Compute the standard deviation for both the set as follows:
[tex]SD_{A}=\sqrt{\frac{1}{12-1}\times [(36-44.6)^{2}+...+(47-44.6)^{2}]}=6.44\approx 6.4\\\\SD_{B}=\sqrt{\frac{1}{12-1}\times [(22-44.6)^{2}+...+(38-44.6)^{2}]}=15.56\approx 15.6[/tex]
The set B has a greater standard deviation that set A. Implying set B has a greater variability that set B.Which feature of a database displays data in a certain sequence, such as alphabetical order? Chart Filter Search Sort
Answer:
data bar
Step-by-step explanation:
Answer:
chart
Step-by-step explanation:
Determine the intercepts of the line. -5x+9y=-18−5x+9y=−18minus, 5, x, plus, 9, y, equals, minus, 18 xxx-intercept: \Big((left parenthesis ,,comma \Big))right parenthesis yyy-intercept: \Big((left parenthesis ,,comma \Big))
Answer:
(3.6, 0), (0, -2)
Step-by-step explanation:
To find the y-intercept, set x=0:
-5·0 +9y = -18
y = -18/9 = -2
To find the x-intercept, set y=0:
-5x +9·0 = -18
x = -18/-5 = 3.6
The intercepts are ...
x-intercept: 3.6
y-intercept: -2