Answer:
a) The distance each child ran is approximately 0.232 m
b) The angular acceleration is 0.21[tex]\overline 6[/tex] rad/s²
Explanation:
The given parameters of the merry-go-round are;
The mass of the merry-go-round, m = 240-kg
The diameter of the merry-go-round, d = 4.00 m
The number of children pushing tangentially on the merry-go round = Four children
The spinning rate of the merry-go-round, n = 2.14 rev/minute
a) Given that the force exerted by each child = 26 N, we have;
The total force applied by the four children, F = 26 N × 4 = 104 N
The tangential acceleration, [tex]a_t[/tex] = F/m = 104 N/240-kg = 0.4[tex]\overline 3[/tex] m/s²
The angular acceleration, α = [tex]a_t[/tex]/r
Where, the radius of the merry-go-round, r = d/2
∴ r = 4.00 m/2 = 2.00 m
α = 0.4[tex]\overline 3[/tex] m/s²/(2.00 m) = 0.21[tex]\overline 6[/tex] rad/s²
We have;
ω² = ω₀² + 2·α·Δθ
The merry-go-round starts from rest, therefore; ω₀ = 0 rad/s
ω² = 2·α·Δθ
Δθ = ω²/(2·α)
n = 2.14 rev/minute
∴ ω = 2·π×2.14/60 rad/s ≈ 0.22410 rad/s
∴ Δθ = (0.22410 rad/s)²/(2 × 0.21[tex]\overline 6[/tex] rad/s²) ≈ 0.11589 rad
Therefore, the angle each child ran, θ = 0.11589 rad
The distance each child ran = r·θ
∴ The distance each child ran = 2.00 m × 0.11589 rad ≈ 0.232 m
b) From part 'a' above, the tangential acceleration, [tex]a_t[/tex] = 0.4[tex]\overline 3[/tex] m/s²
Angular acceleration, α = [tex]a_t[/tex]/r
∴ α = 0.4[tex]\overline 3[/tex] m/s²/(2.00 m) = 0.21[tex]\overline 6[/tex] rad/s²
The angular acceleration = 0.21[tex]\overline 6[/tex] rad/s²
A 60 kg skateboarder accelerates themselves at 1.5m/s2. How much force was required to do this?
Answer:
90 N
Explanation:
m = 60 kg
a = 1.5 m/s^2
F = m × a = 1.5 × 60 = 90 N
What is the net force acting on a 52 kg object that has a velocity of 8.0 m/s and is moving in a circle of radius 1.6 m? a. 4000N b. 20880N c. 2500N d. 3500N
Given values are:
Mass, m = 52 kgVelocity, v = 8.0 m/sRadius, r = 1.6 mAs we know the formula,
→ [tex]\Sigma f = ma[/tex]
or,
→ [tex]\Sigma f = \frac{mv^2}{r}[/tex]
By putting the values, we get
[tex]= \frac{52\times 8^2}{1.6}[/tex]
[tex]= \frac{52\times 64}{1.6}[/tex]
[tex]= 2080 \ N[/tex]
Thus the response above is appropriate.
Learn more about force here:
https://brainly.com/question/14109330