Answer:
A) at the rod's geometrical center
Explanation:
Let us assume that the rod is replaced by water. And now this water volume is in translational and in rotational equilibrium.
Therefore, a net upward force must have been exerted by the surrounding liquid which acts at the center of mass of the water volume.
This force determines through the geometric center of the column of the cylindrical water
Moreover, the force is also independent of submerged body into it
Hence, the first option is correct
Description (with words) of water just above melting temperature. What intermolecular forces do you expect to find in water in liquid state
Answer:
intermolecular dipole-dipole hydrogen bonds
Explanation:
Water is a polar molecule. Recall that the central atom in water is oxygen. The molecule is bent, hence it has an overall dipole moment directed towards the oxygen atom. Since it has a permanent dipole moment, we expect that it will show dipole-dipole interactions in the liquid state.
Similarly, water contains hydrogen and oxygen. Recall that hydrogen bonds are formed when hydrogen is covalently bonded to highly electronegative elements. Hence, water in the liquid state exhibits strong hydrogen bonding. The unique type of dipole-dipole interaction in liquid water is actually hydrogen bonding, hence the answer.
What volume of 6.00 M hydrochloric acid is needed to prepare 500 mL of 0.100 M solution?
Answer:
8.33mL or .0083L
Explanation:
Use m1 * V1 = m2 * V2
6.00M(x) = 0.100M(500mL)
solve for x
x= (.1 * 500) / 6
x=8.333 mL
Write the empirical formula
Answer:
[tex]1) NH_{4}IO_{3}\\2) Pb(IO_{3})_{4} \\3) NH_{4}(C_{2}H_{3}O_{2})\\4) Pb(C_{2}H_{3}O_{2})_{4}[/tex]
Explanation:
[tex]1) NH_{4}^{+}IO_{3}^{-} ---> NH_{4}IO_{3}\\2) Pb^{4+}(IO_{3}^{-})_{4} --->Pb(IO_{3})_{4} \\3) NH_{4}^{+}(C_{2}H_{3}O_{2})^{-} ---> NH_{4}(C_{2}H_{3}O_{2})\\4) Pb^{4+}(C_{2}H_{3}O_{2})^{-} _{4} --->Pb(C_{2}H_{3}O_{2})_{4}[/tex]
What is the mass of 3.45 moles
NO2?
(N = 14.01 g/mol, O = 16.00 g/mol)
Answer:
158.7 g
Its the right answer
Calculate the pH for the following 1.0M weak acid solutions:a. HCOOH Ka = 1.8 x 10-4 [
Answer: pH=2.38
Explanation:
To calculate the pH, let's first write out the equation. Then, we will make an ICE chart. The I in ICE is initial quantity. In this case, it is the initial concentration. The C in ICE is change in each quantity. The E is equilibrium.
HCOOH ⇄ H⁺ + HCOO⁻
I 1.0M 0 0
C -x +x +x
E 1.0-x x x
For the steps below, refer to the ICE chart above.
1. Since we were given the initial of HCOOH, we can fill this into the chart.
2. Since we were not given the initial for H⁺ and HCOO⁻, we will put 0 in their place.
3. For the change, we need to add concentration to the products to make the reaction reach equilibrium. We would add on the products and subtract from the reactants to equalize the reaction. Since we don't know how much the change in, we can use variable x.
4. We were given the Kₐ of the solution. We know [tex]K_{a} =\frac{product}{reactant}=\frac{[H^+][HCOO^-]}{[HCOOH]}[/tex].
5. The problem states that the Kₐ=1.8×10⁻⁴. All we have to so is to plug it in and to solve for x.
[tex]1.8*10^-^4 =\frac{x^2}{0.1-x}[/tex]
6. Once we plug this into the quadratic equation, we get x=0.00415.
7. The equilibrium concentration of [H⁺]=0.00415. pH is -log(H⁺).
-log(0.00415)=2.38
Our pH for the weak acid solution is 2.38.
Each unknown mixture contains 5 metal constituents. Select the 5 metal ions that you have identified as being present in your mixture. Please double check your selections before you hit the submit button. a. Ca b. Co c. Cr d. Fe e. K f. Mn g. Zn
Explanation:
A metal ion is a type of atom compound that has an electric charge.
Such atoms willingly lose electrons in order to build positive ions called cations. The selected Ions are :
[tex]1. Mn^2^+\\\ 2. Ca^2^+\\\ 3. Co^2^+\\\ 4. Fe^2^-\\\ 5. K^+[/tex]
(-)-Cholesterol has a specific rotation of -32o. A mixture of ( )- and (-)-cholesterol was analyzed by polarimetry, and the observed rotation was 14o. What is the percent composition of the ( ) isomer in this mixture
Answer:
(+)-cholesterol = 71.88%
(-)-cholesterol = 28.12%
Explanation:
Asuming 1 gram of sample is dissolved in 1mL of water and the sample cell was 1dm long.
Enantiomeric excess is defined as the amount of pure enantiomer in a sample. The formula is:
ee = [α]mixture / [α]pure enantiomer.
Replacing:
ee = 14° / 32°×100 = 43.75%
As the sample is 14°, There is an excess of (+)-cholesterol and 56.25% is a 1:1 mixture of enantiomers.
That means percent composition of enantiomers is:
(+)-cholesterol = 43.75% + 56.25%/2 = 71.88%(-)-cholesterol = 56.25%/2 = 28.12% At what geographical location would the boiling point of water be lowest?
A. Boston, Massachusetts
B. The coast of the Atlantic Ocean
C. The Dead Sea
D. The top of Mount Everest
Answer:
I think it would be the Dead Sea
Explanation:
Because the dead sea is already usually in the warmer temperatures, the boiling point of the water would be lower than the rest.
Which element's neutral atoms will have the electron configuration
1s22s22p3s23p'?
a. boron
b. carbon
c. silicon
d. aluminum
Answer:
Alumunium
Explanation:
Alumunium = [Ne] 3s² 3p¹
Ne = [He]2s²2p⁶
He = 1s
Alumunium = 1s 2s²2p⁶3s² 3p¹
Answer:
D
Explanation:
How many oxygen molecules are needed to make 10 carbon dioxide molecules according to the following balanced chemical equation? 2 CO + O2 → 2 CO2
five oxygen molecules
step by step explanation.
according to the equation,one molecule of oxygen is enough to react with two carbon molecules thus 10 carbon molecules need 5oxygen molecules
Which element has the largest atomic radius
Answer:
Francium
Explanation:
The atomic radius increases from top to bottom in a group, and decreases from left to right across a period.
so francium (Fr) is the largest atom or has highest radii.
Hope this helps & please mark as brainiest!
Answer:
Francium has the largest atomic radius.
The general trend for atomic radii is increasing from top to bottom and decreasing from left to right so the one with the largest atomic radius will be in the bottom left of the periodic table.
need this asap , help please
Answer:
Path A-B-D involves a catalyst and is slower than A-C-D
Explanation:
The diagram above illustrates both the catalyzed path and the uncatalyzed path of a chemical reaction.
The catalysed path is the path expressed with broken lines and the uncatalyzed path is the path expressed with thick small line as shown in the diagram above.
The catalyzed path has a higher activation energy than the uncatalyzed path.
Therefore, the catalyzed path will be slower that the uncatalyzed path because, the catalyzed path will require a higher energy to overcome the activation energy in order for the reaction to proceed to product.
On the other hand, the uncatalyzed path has a lower activation energy and a lesser amount of energy is needed to overcome it in order for the reaction to proceed to product.
A student wants to prepare a salt starting with H2SO4. Select all of the compound types that can react with H2SO4 to form a salt.
1. salt
2. acid
3. acid salt
4. basic oxide
5. base
6. metal
7. acidic oxide
Answer:
4 and 6 would work for this
Identify which of the following are carbohydrates.
Check oh that apply
Answer:
3d and 4th
Explanation:
Carbohydrates general formula (CH2O)n.
Not 1st one because it has NH2-group.
2nd - C3H6O4, also it is acid.
3d - C3H6O3
4th - C6H12O6
Among the given compounds only compound present in 3rd option is a carbohydrate.
What are carbohydrates?Carbohydrates are the organic molecules which are made up of oxygen atom, carbon atom and hydrogen atom and general molecular formula of carbohydrates is CₙH₂ₙOₙ, where n is the number of atoms.
In the carbohydrate molecule, alcoholic group and aldehyde groups may present.
First given compound is not a carbohydrates as in that NH₃ group is present.Second given compound is also not a carbohydrate as in that carboxylic (-COOH) group is present.Third compound is a carbohydrate as in that compound same number of carbon and oxygen atoms are present and number of hydrogen atom is double to C & O atom.Fourth compound is also not a carbohydrate, as in that molecule number of carbon and oxygen atom is same but number of hydrogen is not double with respect to C & O.Hence compound C is carbohydrate.
To know more about carbohydrates, visit the below link:
https://brainly.com/question/26200989
Kinetic energy and gravitational potential energy are both forms of which type
of energy?
A. Internal energy
B. Mechanical energy
C. Potential energy
D. Thermal energy
Answer:
C. Potential energy
Explanation:
Kinetic energy and gravitational potential energy are both forms of potential energy. Potential energy is stored energy, when an object is not in motion it has stored energy. When an object is an motion it has kinetic energy. An object posses gravitational potential energy when it is above or below the zero height.
What is the specific heat of a 85.01 g piece of an unknown metal that exhibits a 45.2°C temperature change upon absorbing 1870 J of heat?
Answer:
[tex]0.48~\frac{J}{g~^{\circ}C}[/tex]
Explanation:
In this question, we have to remember the relationship between Q (heat) and the specific heat (Cp) the change in temperature (ΔT), and the mass (m).
[tex]Q=m*Cp*ΔT[/tex]
The next step is to identify what values we have:
[tex]Q~=~1870~J[/tex]
[tex]m~=~85.01~g[/tex]
[tex]ΔT~=~45.2~^{\circ}C[/tex]
[tex]Cp~=~X[/tex]
Now, we can plug the values and solve for "Cp":
[tex]1870~J=~85.01~g~*Cp*45.2~^{\circ}C[/tex]
[tex]Cp=\frac{1870~J}{85.01~g~*45.2~^{\circ}C}[/tex]
[tex]Cp=0.48~\frac{J}{g~^{\circ}C}[/tex]
The unknow metal it has a specific value of [tex]0.48~\frac{J}{g~^{\circ}C}[/tex]
I hope it helps!
g Suppose you are titrating an acid of unknown concentration with a standardized base. At the beginning of the titration, you read the base titrant volume as 1.94 mL. After running the titration and reaching the endpoint, you read the base titrant volume as 23.82 mL. What volume of base was required for the titration
Answer:
21.88mL is the volume of base required for the titration.
Explanation:
For an acid-base titration trying to find the concentration of an acid, you must add a known quantity of the acid and titrate it with an standarized base.
If you know the moles of base you add to the acid solution, these moles are equal to moles of acid.
In the buret of the titration, initial volume is 1.94mL and final volume is 23.82mL. The volume you are adding is the difference between initial and final volume, that is:
23.82mL - 1.94mL
21.88mL is the volume of base required for the titration.A pentavalent cation atom has 20 and 15 neutrons as protons. Find the electron quantity and mass number respectively. (40 pts.) a) 20 and 15 b) 15 and 20 c) 15 and 35 d) 35 and 15 e) 10 and 20
Answer:
C.
Explanation:
Since the mass number is the number of protons and neutrons added together, the answer is 35. Since the questions are respectively electron quantity and mass number, the only answer choice with 35 as the second choice is C, so that is the correct answer.
Pb(OH)Cl, one of the lead compounds used in ancient Egyptian cosmetics, was prepared from PbO according to the following recipe: PbO(s) NaCl(aq) H2O(l) --> Pb(OH)Cl(s) NaOH(aq) How many grams of PbO and how many grams of NaCl would be required to produce 10.0 g of Pb(OH)Cl
Answer:
8.59 g
2.25 g
Explanation:
According to the given situation the calculation of grams of PbO and grams of NaCL is shown below:-
Moles of Pb(OH)CL is
[tex]= \frac{Mass}{Molar\ mass}[/tex]
[tex]= \frac{10.0 g}{259.65g / mol}[/tex]
= 0.0385 mol
Mass of PbO needed is
[tex]= 0.385mol Pb(OH) Cl\times \frac{1 mol PbO}{1molpb (OH) cl} \times \frac{223.2g PbO}{1mol PbO}[/tex]
After solving the above equation we will get
= 8.59 g
Mass of NaCL needed is
[tex]= \frac{1mol\ NaCl}{1molPb\ (OH)Cl} \times \frac{58.45NaCl}{1mol NaCl}[/tex]
After solving the above equation we will get
= 2.25 g
Therefore we have applied the above formula.
Explain with examples following characteristics of chemical reactions: a. Change of colour b. Evolution of gas c. Change of smell d. Change of state
Answer:
Explanation:
a. change of colour:
A chemical reaction rearranges the constituent atoms of the reactants to create different substances as products. The products have different molecular structures than the reactants. Different atoms and molecules radiate different colours of light. Hence, there usually is a change in colour during a chemical reaction.
Eg: copper reactions with the elements
b. Evolution of gas:
A gas evolution reaction is a chemical reaction in which one of the end products is a gas such as oxygen or carbon dioxide.
Eg: ammonium hydroxide breaks down to water and ammonia gas.
c. Change of smell :
Production of an Odor Some chemical changes produce new smells. ... The formation of gas bubbles is another indicator that a chemical change may have occured.
Eg: The chemical change that occurs when an egg is rotting produces the smell of sulfur.
d. Change of state:
A chemical reaction is a process in which one or more substances, also called reactants, are converted to one or more different substances, known as products.
Eg: candle wax (solid) melts initially to produce molten wax (liquid)
plz mark as brainliest!!!!
Why Graphite is Diamagnetic?
Answer: Through years of studying and research ;
Graphite has shown that in weak and quantizing magnetic fields it is material is a highly anisotropie diamagnetic substance whose non-oscillating part of the magnetic suscepti- bility weakly depends on magnetic field.
Explanation:
Diamagnetism is a (very) weak form of magnetism which is caused (induced) by a change in the orbital motion of electrons mostly due to an applied magnetic field.
When hydrocarbons are burned in a limited amount of air, both CO and CO2 form. When 0.430 g of a particular hydrocarbon was burned in air, 0.446 g of CO, 0.700 g of CO2, and 0.430 g of H2O were formed.
Required:
a. What is the empirical formula of the compound?
b. How many grams of O2 were used in the reaction?
c. How many grams would have been required for complete combustion?
Answer:
(a) The empirical formula of the compound is
m(CxHy) + m(O2) = m(CO) + m(CO2) + m(H2O).
(b) The grams of O2 that were used in the reaction is 1.146 g
(c) The amount of O2 that would have been required for complete combustion is 1.401 g.
Explanation:
a. m(CxHy) + m(O2) = m(CO) + m(CO2) + m(H2O)
(b) Using law of conservation of mass from above
m(O2) = m(CO) + m(CO2) + m(H2O) - m(CxHy)
m(O2) = 0.446 + 0.700 + 0.430 - 0.430
m(O2) = 1.146 g
The grams of O2 that were used in the reaction is 1.146 g
(c) for complete combustion, we need to oxidized CO to CO2
Then, 2CO +O2 = 2CO2
m(add)(O2) = M(O2)*¢(O2)/2 = M(O2) * {(m(CO))/(2M(CO))}
m(add)(O2) = 32 * {(0.446)/(2*28)} = 0.255 g
Note; Molar mass of O2 = 32, CO = 28
m(total)(O2) = m(O2) + m(add)(O2)
m(total)(O2) = 1.146 + 0.255 = 1.401 g
The amount of that grams would have been required for complete combustion is 1.401 g.
Note (add) and (total) were used subscript to "m"
Question 11: How does the energy of a photon emitted when the electron moves from the 3rd orbital to the 2nd orbital compare to the energy of a photon absorbed when the electron moves from the 2nd orbital to the 3rd orbital?
Answer:
Explanation:
The energy of a photon emitted when the electron moves from the 3rd orbital to the 2nd orbital is exactly same as the energy of a photon absorbed when the electron moves from the 2nd orbital to the 3rd orbital
what is the molarity of a solution that contains 49.8 grams of nai and is dissolved in enough water to make 1.50 liters
Answer: The molarity of solution is 0.221 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
[tex]Molarity=\frac{n}{V_s}[/tex]
where,
n = moles of solute
[tex]V_s[/tex] = volume of solution in L
moles of [tex]NaI[/tex] = [tex]\frac{\text {given mass}}{\text {Molar mass}}=\frac{49.8g}{149.89g/mol}=0.332mol[/tex]
Now put all the given values in the formula of molality, we get
[tex]Molarity=\frac{0.332mol}{1.50L}[/tex]
[tex]Molarity=0.221mol/L[/tex]
Therefore, the molarity of solution is 0.221 M
which factor is most responsible for the fact that water is a liquid rather than a gas at room temperature
The answer is Hydrogyn bonding. It keeps the water molocules bonded together and in a liquid state, without it it'd be in a gashious state.
Answer:Hydrogen bonds keep them together in room temperature, hope this helps!
Explanation:
<!> Brainliest is appreciated! <!>
What is the half-life for the first order decay of 14C according to the reaction, 146C — 147N +e- ?
The rate constant for the decay is 1.21 x10-4 year-1
Answer:
5727 years or 5730 (rounded to match 3 sig figs) whichever one your teacher prefers
Explanation:
First Order decay has a half life formula of Half Life = Ln (2) / k = 0.693/K
Half-life = 0.693/k = 0.693/1.21 x10-4 = 5727 years or 5730 (rounded to match 3 sig figs)
This should be correct because if you google the half-life of 14 C it is ~ 5700 years
Can a catalyst change an exothermic reaction into an endothermic reaction or vice versa? Please explain your answer.
Answer:
A catalyst cannot change an exothermic reaction into an endothermic reaction or vice versa.
Explanation:
Catalyst is basically a substance that enables a chemical reaction to occur at a faster rate as compared to the reaction without catalysis. It lowers the activation energy and temperature for a chemical reaction and a catalyst itself does not goes through any permanent chemical change. This means it does not get used in the process.
Exothermic and endothermic are the chemical reaction. Exothermic reactions absorb energy. This energy is absorbed in the form of heat. When the energy is released in the form of heat then this reaction is called endothermic. So one absorbs the heat and the other releases it.
As we know that the catalyst does not undergo change at the end of the reaction so the energy or heat whether is absorbed or emitted or you can say whether the reaction is exothermic or endothermic, the total energy stays unchanged during the reaction. So with and without a catalyst, if both have same reactants and products and the difference in enthalpy between products and reactants will be the same.
A silver cube with an edge length of 2.42 cm and a gold cube with an edge length of 2.75 cm are both heated to 85.4 ∘C and placed in 112.0 mL of water at 20.5 ∘C . What is the final temperature of the water when thermal equilibrium is reached?
Answer:
Explanation:
Volume of silver cube = 2.42³ = 14.17 cm³
mass of silver cube = volume x density
= 14.17 x 10.49 = 148.64 gm
Volume of gold cube = 2.75³ = 20.8 cm³
mass of gold cube = 20.8 x 19.3 = 401.44 gm
specific heat of silver and gold are .24 and .129 J /g°C
mass of 112 mL water = 112 g
Heat absorbed = heat lost = mass x specific heat x temperature fall or rise
Heat lost by metals
= 148.64 x .24 x ( 85.4 -T) + 401.44 x .129 x ( 85.4 - T )
= (35.67 + 51.78 ) x ( 85.4 - T )
87.45 x ( 85.4 - T )
= 7468.23 - 87.45 T
Heat gained by water
= 112 x 1 x ( T - 20.5 )
= 112 T - 2296
Heat lost = heat gained
7468.23 - 87.45 T = 112 T - 2296
199.45 T = 9764.23
T = 48.95° C
How many moles of carbon atoms are there in 0.500 mol of C2H6?
The number of moles of carbon atoms in 0.500 mol of ethane (C₂H₆) is equal to one mole.
What is a mole?A mole can be defined as a scientific unit that is utilized to calculate the quantities such as atoms, molecules, ions, or other particular particles. The mass of one mole of a given chemical element is atomic mass and that of 1 mole of a chemical compound is molar mass.
The number of entities found in one mole is equal to 6.023 × 10 ²³ which is known as Avogadro’s constant.
Given, the number of moles of C₂H₆ = 0.500 mole
One molecule of ethane has carbons = 2
One mole of ethane has moles of carbons = 2 moles
0.500 mol of ethane has moles of carbon atoms = 0.500×2 = 1 mol
Therefore, one mole of carbon atoms is present in 0.500 mol of ethane C₂H₆.
Learn more about the mole, here:
brainly.com/question/26416088
#SPJ5
when dissolved in water, an acid or a base breaks down into a. a proton and an electron b. two negative ions c. a positive and a negative ion d. a positive ion and a proton
Answer:
C. A positive and a negative ion
Explanation:
Acids and bases are made up of charged particles known as ions. The ions present in acids are oppositely charged and are held together by strong electrostatic forces. When acids or bases are dissolved in water, the electrostatic forces holding their individual molecules together are weakened and these ions are free to move apart in a process known as dissociation. Dissociation occurs because of the attraction between the positive and negative ions in the acid and bases and the negative and positive polarity of water.
For example, when an acid like hydrochloric acid is dissolved in water it dissociates into positive and negative ions as follows:
HCl(aq) -----> H+ + Cl-
When a base like sodium hydroxide is dissolved in water, it dissociates into positive and negative ions as follows:
NaOH(aq) ----> Na+ + OH-
Answer:
yeah C is correct
Explanation: