A cyclist and his bicycle have a combined mass of 88 kg and a combined
weight of 862.4 N. The cyclist accelerates at 1.2 m/s2. After 2 seconds he
reaches a speed of 2.4 m/s. What is his momentum at this point?
A. 36.7 kg m/s
B. 359.3 kg:m/s
C. 105.6 kg-m/s
D. 211.2 kg:m/s

Answers

Answer 1

The cyclist accelerates at 1.2 m / s² after 2 seconds he reaches a speed of 2.4 m / s, then the momentum at this point would be 211.2 kg-m/s, therefore the correct answer is option D.

What is momentum?

It can be defined as the product of the mass and the speed of the particle, it represents the combined effect of mass and the speed of any particle, and the momentum of any particle is expressed in Kg m/s unit.

As given in the problem a cyclist and his bicycle has a combined mass of 88 kg and a combined weight of 862.4 N. The cyclist accelerates at 1.2 m/s2. After 2 seconds he reaches a speed of 2.4 m/s.

The momentum of the cyclist = 88 × 2.4

                                                 = 211.0 kgm/s

Thus, the momentum of the cyclist would be  211.0 kgm/s.

To learn more about momentum from here, refer to the link given below;

brainly.com/question/17662202

#SPJ2


Related Questions

A car with a mass of 1500kg is traveling at a speed of 30m/s. What force must be applied to stop the car in 3 seconds?

Answers

Answer:

The answer is 15,000 N

Explanation:

To find the force given the mass , velocity and time can be found by using the formula

[tex]f = \frac{m \times v}{t} \\ [/tex]

where

m is the mass

v is the velocity

t is the time

From the question

m = 1500 kg

v = 30 m/s

t = 3 s

We have

[tex]f = \frac{1500 \times 30}{3} = \frac{45000}{3} \\ [/tex]

We have the final answer as

15,000 N

Hope this helps you

The Jamaican Bobsled Team is sliding down a hill in a toboggan at a rate of 5 m/s when he reaches an even steeper slope. If he accelerates at 2 m/s2 for the 5 m slope, how fast is he traveling when he reaches the bottom of the 5 m slope?

Answers

Answer:

6.7 m/s

Explanation:

Given:

Δx = 5 m

v₀ = 5 m/s

a = 2 m/s²

Find: v

v² = v₀² + 2aΔx

v² = (5 m/s)² + 2 (2 m/s²) (5 m)

v = 6.7 m/s

A block of mass m1 = 18.5 kg slides along a horizontal surface (with friction, μk = 0.22) a distance d = 2.3 m before striking a second block of mass m2 = 7.25 kg. The first block has an initial velocity of v = 8.25 m/s.

Assuming that block one stops after it collides with block two, what is block two's velocity after impact in m/s?

How far does block two travel, d2 in meters, before coming to rest after the collision?

Answers

Answer:

19.5 m/s

87.8 m

Explanation:

The acceleration of block one is:

∑F = ma

-m₁gμ = m₁a

a = -gμ

a = -(9.8 m/s²) (0.22)

a = -2.16 m/s²

The velocity of block one just before the collision is:

v² = v₀² + 2aΔx

v² = (8.25 m/s)² + 2 (-2.16 m/s²) (2.3 m)

v = 7.63 m/s

Momentum is conserved, so the velocity of block two just after the collision is:

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

m₁u₁ = m₂v₂

(18.5 kg) (7.63 m/s) = (7.25 kg) v

v = 19.5 m/s

The acceleration of block two is also -2.16 m/s², so the distance is:

v² = v₀² + 2aΔx

(0 m/s)² = (19.5 m/s)² + 2 (-2.16 m/s²) Δx

Δx = 87.8 m

The velocity of block 2 and the distance traveled by it prior to being at rest post-collision are 19.5 m/s and 87.8 m. Check the calculations below:

Friction

Given that,

[tex]m_{1}[/tex] = 18.5 kg

d = 2.3m

To find,

Acceleration of block 1:

∑[tex]F = ma[/tex]

⇒ -m₁gμ = m₁a

⇒ a = -gμ

⇒ a [tex]= -(9.8 m/s^2) (0.22)[/tex]

∵ a [tex]= -2.16 m/s^2[/tex]

Now,

To determine the velocity of block one prior to the collision:

We know,

The initial velocity of block 1 = 8.25 m/s

⇒ [tex]v^2 = v_{o}^2 + 2[/tex]aΔx

⇒ [tex]v^2 = (8.25 m/s)^2 + 2 (-2.16 m/s^2) (2.3 m)[/tex]

∵ [tex]v = 7.63 m/s[/tex]

We also know,

[tex]m_{2}[/tex] = 7.25 kg

Now,

The velocity of block 2 post collision:

⇒ [tex]m_{1} u_{1} + m_{1} u_{1} = m_{1} v_{1} + m_{2} v_{2}[/tex]post-collision

Through this,

⇒ [tex](18.5 kg) (7.63 m/s) = (7.25 kg) v[/tex]

∵[tex]v = 19.5 m/s[/tex]

The distance can be found through:

⇒ [tex]v^2 = v_{o} ^{2} + 2[/tex][tex]a[/tex]Δ[tex]x[/tex]

⇒ [tex](0 m/s)^2 = (19.5 m/s)^2 + 2 (-2.16 m/s^2)[/tex]Δ[tex]x[/tex]

∵ Δ[tex]x = 87.8 m[/tex]

Thus, 19.5 m/s and 87.8 m are the correct answers.

Learn more about "Friction" here:

brainly.com/question/13357196

If the power supply is to be made safe by increasing its internal resistance, what should the internal resistance be for the maximum current in the above situation to be Imax

Answers

The complete question is;

A person with body resistance between his hands of 10 kΩ accidentally grasps the terminals of a 16-kV power supply. What is the power dissipated in his body?

A) If the internal resistance of the power supply is 1600 Ω , what is the current through the person's body?

B) What is the power dissipated in his body?

C) If the power supply is to be made safe by increasing its internal resistance, what should the internal resistance be for the maximum current in the above situation to be I_max = 1.00mA or less?

Answer:

A) I = 1.379 A

B) P = 19016.41 W

C) r = 15990000 Ω

Explanation:

A) We are given;

Internal resistance of the power supply; r = 1600 Ω

Body resistance between hands; R = 10kΩ = 10000 Ω

Power supply voltage; E =16 kV = 16000 V

Formula for the current through the person's body with internal resistance is given by;

I = E/(R + r)

Thus;

I = 16000/(10000 + 1600)

I = 1.379 A

B) Formula for power dissipated is;

P = I²R

P = 1.379² × 10000

P = 19016.41 W

C) Now, we are told that the maximum current should be I_max = 1.00mA or less. So, I_max = 0.001 A

Thus, from I = E/(R + r) and making r the subject, we have;

r = (E/I) - R

r = (16000/0.001) - 10000

r = 15990000 Ω

The particles of a more dense substance are closer together
than the particles of a less dense substance.

TRUE
FALSE

Answers

True i think like ya cut g

The particles of a more dense substance are closer together than the particles of a less dense substance. Thus, the given statement is true.

What is density of particles?

Density of the particles is the substance's mass per unit of volume. The symbol which is most often used for the density is ρ (rho), although the Latin letter D can also be used to denote density.

Density is the mass of a unit volume of a material substance or particle. The formula for density is d = M/V (mass per unit volume), where d is density, M is the mass of particle, and V is the volume. Density is commonly expressed in the units of grams per cubic centimeters.

The S.I. unit of density is made up of the mass of the particle which is kg and that of volume is meter cube. Hence, the S.I. unit of density is kg/m³.

Learn more about Density here:

https://brainly.com/question/29775886

#SPJ6

Take the regular compass and hold it so the case is vertical. Now use it to investigate the direction of the coil’s magnetic field at locations other than the central axis. What happens as you move away from the center axis toward the coil? What happens above the coil? Outside the coil? Below the coil?

Answers

Answer:

Please find the answer in the explanation

Explanation:

Take the regular compass and hold it so the case is vertical. Now use it to investigate the direction of the coil’s magnetic field at locations other than the central axis.

What happens as you move away from the center axis toward the coil? The direction of the magnetic compass needle will move in an opposite direction since the direction of the induced voltage is reversed.

What happens above the coil?

the needle on the magnetic compass will be deflected. Since compasses work by pointing along magnetic field lines

Outside the coil? The magnetic compass needle will experience no deflection. Since there is no induced voltage or current.

Below the coil?

The needle will move in an opposite direction.

Which object will require the greatest amount of force to change its motion?
A. A 148 kg object moving 131 m/s
B. A 153 kg object moving 127 m/s
C. A 160 kg object moving 126 m/s
O D. A 162 kg object moving 124 m/s

Answers

Answer: D 160kg object moving 126 m/s

Explanation:

An object having a mass of 162 kg and moving with a velocity of 124 m/sec will require the greatest amount of force to change its motion. The correct option is D.

What is force?

Force is defined as the push or pull applied to the body. Sometimes it is used to change the shape, size, and direction of the body.

If the object has to stop, the final velocity must be zero. If the time is constant, the amount of force only depends on the mass and the velocity at which the body is moving.

The amount of force on the object depends on the momentum of the body.

The momentum of the body is;

P = mv

Object D will require the greatest amount of force to change its motion. Because the momentum of the body for option D is the greatest.

Hence, the correct option is D.

Learn more about the Force, here;

https://brainly.com/question/26115859

#SPJ2

Light is described as having a dual wave-particle nature. Which piece of evidence provides support for the model of light as a particle?

. Young’s double slit experiment showed that light waves show interference.
. Light reflects when it hits a surface.
. Light refracts when it moves from one medium to another.
. Light does not need a medium to travel.

Answers

Answer:

light reflects when it hits the surface

Explanation:

Youngs double slit is a evidence for wave nature,

The properties refraction are attributed as properties of waves. The phenomena of interference and diffraction also fall in this category.

So,

     the answer must be B

Answer: Light does not need a medium to travel.

Explanation: I took the test and got it right :]

2. Which blood cells help in clotting of the blood​

Answers

Answer:

Platelets

Explanation:

Platelets are tiny blood cells that help your body form clots to stop bleeding. If one of your blood vessels gets damaged, it sends out signals to the platelets. The platelets then rush to the site of damage and form a clot to stop the bleeding.

Answer:

[tex]\boxed {\tt Platelets}[/tex]

Explanation:

There are three main types of blood cells:

Red blood cells: transports oxygen to cells and carbon dioxide to lungsWhite blood cells: protects the body against disease Platelets: help clot blood and stop bleeding

We are looking for which blood cell helps clot the blood. From the list above, we can see the best answer is platelets.

Write a haiku
poem
explaining
why graphing
is useful.
If you are
able, share
your poem
with others.

Answers

Answer:

Explanation:

graphing is helpful

helps visualize the line

of your equation

A child and sled with a combined mass of 53.9 kg slide down a frictionless slope. If the sled starts from rest and has a speed of 5.71 m/s at the bottom, what is the height of the hill

Answers

Answer:

1.66m

Explanation:

Using the conservation law

PE = KE

mgh = 1/2mv²

gh = V²/2

g is the acceleration due to gravity = 9.81m/s²

h is the height of the hill

V is the velocity = 5.71m/s

Substitute

9.81h = 5.71²/2

Cross multiply

2×9.81h = 5.71²

19.62h = 32.6041

h = 32.6041/19.62

h = 1.66m

Hence the height of the hill is 1.66m

The speed of a car is decreasing from 35 m/s to 15 m/s in 4s

Answers

If you are looking for the acceleration
a = -20/4 = -5 m/s^2

A car starts from rest and accelerates uniformly over a time of 18 seconds for a distance of 390 m. Determine the acceleration of the car.

Answers

Answer:

[tex]a=2.4\ m/s^2[/tex]

Explanation:

Given that,

The initial speed of a car, u = 0

Time, t = 18 s

Distance, d = 390 m

We need to find the acceleration of the car. Let it is a. Using the second equation of motion to find it.

[tex]d=ut+\dfrac{1}{2}at^2[/tex]

or

[tex]d=\dfrac{1}{2}at^2\\\\a=\dfrac{2d}{t^2}\\\\a=\dfrac{2\times 390}{(18)^2}\\\\a=2.4\ m/s^2[/tex]

So, the acceleration of the car is [tex]2.4\ m/s^2[/tex].

A vector of components (−23, −22) is multiplied by the scalar value of −6. What is the magnitude and direction of the resultant vector?

Answers

Answer:

(1,)

Explanation:

Answer:

magnitude: 21.6; direction: 33.7°

Explanation:

An increase in temperature the kinetic energy and average speed of the gas particles. As a result, the pressure on the walls of the container . Answer Bank What temperature must a gas, initially at 10 ∘C, be brought to for the pressure to triple?

Answers

Answer:

a

The pressure will increase

b

[tex]T_2 =  576^oC[/tex]

Explanation:

From the ideal gas law we have that

     [tex]PV  =  nRT[/tex]

We see that the temperature varies directly with the pressure so if there is an increase in temperature that pressure will increase

   The initial  temperature is [tex]T_i  =  10^oC = 10 + 273 =  283 \  K [/tex]

The objective of this solution is to obtain the temperature of the gas where the pressure is tripled

Now from the above equation given that nR and V  are constant  we have that

    [tex]\frac{P}{T}  =  constant[/tex]

=>  [tex]\frac{P_1}{T_1}  =\frac{P_2}{T_2}[/tex]

Let assume the initial  pressure is [tex]P_1 =  1 Pa[/tex]

So tripling it will result  to the pressure being [tex]P_2 =  3 Pa[/tex]

So

     [tex]\frac{1}{283}  =\frac{3}{T_2}[/tex]  

=>   [tex]T_2  =  3 *  283[/tex]

=>    [tex]T_2  =  3 *  283[/tex]

=>    [tex]T_2  = 849 \ K [/tex]

Converting back to [tex]^oC[/tex]

   [tex]T_2  =  849 -  273[/tex]

=>  [tex]T_2 =  576^oC[/tex]

A particle is moved along the x-axis by a force that measures 10/(1+x)^2 pounds at a point x feet from the origin. Find the work (in ft-lb) done in moving the particle from the origin to a distance of 9 feet.

Answers

Answer:

9 ft*lb

Explanation:

super simple but you just have to understand that the integral is going with the curve

work = integral a to b of f(x)dx = integral 0 to 9 of 10/(1+x)^2dx = 9ft*lb

At which point on the image to the right would the ball have the greatest velocity if it moved from A to G.

please help me out.

A


B


C


D


E


F


G

Answers

Answer:

Total energy = Kinetic Energy + Potential Energy = Constant

Since the potential energy is lowest at point D the kinetic energy will be greatest at point D and the velocity will be the greatest.

A car is traveling south at 8.77 m/s. It then begins a uniform acceleration until it reaches a velocity of 47.8 m/s over a period of 3.84s. What is the car's acceleration?

Please help !

Answers

Answer:

The acceleration of the car is 10.16m/s²

Explanation:

Given parameters:

  Initial velocity = 8.77m/s

   Final velocity = 47.8m/s

   Time duration  = 3.84s

Unknown:

Acceleration of the car = ?

Solution:

To find the acceleration, we must bear in mind that this physical quantity is the change in velocity with time;

     Acceleration  = [tex]\frac{V - U}{T}[/tex]

V is the final velocity

U is the initial velocity

T is the time taken

  Input the parameters and solve for acceleration;

      Acceleration  = [tex]\frac{47.8 - 8.77}{3.84}[/tex]   = 10.16m/s²

The acceleration of the car is 10.16m/s²

How much would a 15.0 kg object weigh on that planet? Round the answer to the nearest whole number.

Answers

Answer:

168

Explanation:

Answer: a 15 kg object would weigh the most on Neptune

168 N

A car traveling at 27 m/s slams on its brakes to come to a stop. It decelerates at a rate of 8 m/s2 . What is the stopping distance of the car?

Answers

v² - u² = 2 ax

where u = initial velocity (27 m/s), v = final velocity (0), a = acceleration (-8 m/s², taken to be negative because we take direction of movement to be positive), and ∆x = stopping distance.

So

0² - (27 m/s)² = 2 (-8 m/s²) ∆x

x = (27 m/s)² / (16 m/s²)

x ≈ 45.6 m

The stopping distance of car achieved during the braking is of 45.56 m.

Given data:

The initial speed of car is, u = 27 m/s.

The final speed of car is, v = 0 m/s. (Because car comes to stop finally)

The magnitude of deacceleration is, [tex]a = 8\;\rm m/s^{2}[/tex].

In order to find the stopping distance of the car, we need to use the third kinematic equation of motion. Third kinematic equation of motion is the relation between the initial speed, final speed, acceleration and distance covered.

Therefore,

[tex]v^{2}=u^{2}+2(-a)s[/tex]

Here, s is the stopping distance.

Solving as,

[tex]0^{2}=27^{2}+2(-8)s\\\\s = 45.56 \;\rm m[/tex]

Thus, we can conclude that the stopping distance of car achieved during the braking is of 45.56 m.

Learn more about the kinematic equation of motion here:

https://brainly.com/question/11298125

Converting compound units
You would like to know whether silicon will float in mercury and you know that can determine this based on their densities. Unfortunately, you have the density of mercury in units of kilogram/meter3 and the density of silicon in other units: 2.33 gram/centimeter3. You decide to convert the density of silicon into units of kilogram/meter3 to perform the comparison. By which combination of conversion factors will you multiply 2.33 gram/centimeter3 to perform the unit conversion?

Answers

Answer:

Explanation:

Given the density of silicon as 2.33g/cm³

We are to convert this to kg/cm³

We will be using the following conversion factors

1000g = 1kg

2.33g = x

Cross multiply

1000x = 2.33

x = 2.33/1000

x = 0.00233kg

Also we need to convert 1cm³ to 1m³

1cm = 0.01m

1cm³ = 0.01×0.01×0.01

1cm³ = 0.000001m³

Substituting into the density value of silicon

2.33g/cm³ = 0.00233kg/0.000001m³

= 2330kg/m³

A 10-ohm resistor has a constant current. If 1200 C of charge flow through it in 4 minutes what
is the value of the current?
A. 3.0 A
B 5.0 A
C. 11 A
D. 15 A
E. 20A

Answers

Answer:

B 5.0 A .

Explanation:

Hello.

In this case, since we know the charge (1200 C), time (4 min =240 s) and resistance (10Ω) which is actually not needed here, we compute the current as follows:

[tex]I=\frac{Q}{t}[/tex]

Then, for the given data, we obtain:

[tex]I=\frac{1200C}{4min}*\frac{1min}{60s}\\\\I=5A[/tex]

Therefore, answer is B 5.0 A .

Best regards!

What type of force holds atoms together in a crystal?

Answers

Answer:

Covalent Bond

Explanation:

i took the test , mark me brainliest.

Answer: Electrical

Explanation: Atoms are tied together by electrical bonding forces.

A mountain climber, in the process of crossing between two cliffs by a rope, pauses to rest. She weighs 555 N. As the drawing shows, she is closer to the left cliff than to the right cliff, with the result that the tensions in the left and right sides of the rope are not the same. Find the tension in the rope to the left of the mountain climber.

Answers

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The tension in the rope on the left of the mountain climber is [tex] T_a = 1106 \ N [/tex]

Explanation:

From the question we are told that

The weight of the mountain climber is m = 555 N

Generally from the diagram , the total amount of force acting on the rope along the vertical axis at equilibrium is mathematically represented as  

       [tex]T_a*  cos 65 -555 + T_b * cos(85) =  0[/tex]

Here  [tex]T_a, T_b[/tex] are the tension of the rope on the left and on the right hand side

 So

    [tex]0.423T_a   + 0.0871T_b  =  555[/tex]

=>   [tex] 0.0871T_b  =  555 - 0.423T_a[/tex]

=>   [tex] T_b  =  \frac{555 - 0.423T_a}{0.0871}[/tex]

Generally from the diagram , the total amount of force acting on the rope along the horizontal  axis at equilibrium is mathematically represented as

      [tex]T_a*  sin 65 - T_b * sin(85) =  0[/tex]

=>     [tex] 0.9063T_a - 0.9962T_b =  0[/tex]

=>     [tex] 0.9063T_a =   0.9962T_b [/tex]

=>     [tex] 0.9063T_a =   0.9962[\frac{555 - 0.423T_a}{0.0871}] [/tex]

=>     [tex] 0.9063T_a =   [\frac{552.891 - 0.421T_a}{0.0871}] [/tex]

=>    [tex] 0.0789T_a =   [552.891 - 0.421T_a[/tex]

=>    [tex] 0.4999T_a =   552.891 [/tex]

=>      [tex] T_a = 1106 \ N [/tex]

If a rock is skipped into a lake at 24 m/s2, with that what force was the rock thrown if it was 1.75kg?

Answers

Answer: f= M×A

1.75kg×24= 42N

Explanation:

Because to find force you do Mass times acceleration so I did 1.75 kg times 24 would equal 42 Newtons!

What is the solution?

Answers

Answer:

1) x = 30 - 8 t

2) x = -10

3) x = -10 + 5 t

4) x = -10 - 4 t

Explanation:

Motion 1:  constant negative velocity calculated via the points (0, 30) and (5, -10) rendering the equation of motion  x = 30 - 8 t

Motion 2: constant position over time, so the object is not moving, and the equation of motion is x = -10

Motion 3: constant positive velocity estimated via the points (0, -10) and (2, 0), and the equation of motion is:  x = -10 + 5 t

Motion 4: constant negative velocity estimated via the points (0, -10) and (5, -30), and the equation of motion is:  x = -10 - 4 t

The starting position of motion 1 is 30 meters

the starting position for the other 3 motions is - 10 meters. And none of them is accelerated (acceleration = zero for all).

I WILL MARK YOU AS BRAINLIEST IF RIGHT
What is the magnitude of the net force acting on this object? And what direction?

Answers

Answer:

The magnitude of the net force acting on an object is equal to the mass. and the direction is in 20N

Explanation:

21. A toy car starts from rest and begins to
accelerate at 11.0 m/s2. What is the toy car's
final velocity after 6.0 seconds?

Answers

Answer:

v = 66 m/s

Explanation:

Given that,

The initial velocity of a car, u = 0

Acceleration of the car, a = 11 m/s²

We need to find the final velocity of the toy after 6 seconds.

Let v is the final velocity. It can be calculated using first equation of motion. It is given by :

v = u +at

v = 0 + 11 m/s² × 6 s

v = 66 m/s

So, the final velocity of the car is 66 m/s.

PLEASE HELP EASY MULTIPLE CHOICE!!!!!!!!!!!

Answers

Answer:

options C is correct

Explanation:

asking questions is super in this education life

Answer:

option c should be the answer

color code of electrical resistors​

Answers

Answer:

Tolerance: [tex]\pm 10\%[/tex]

Explanation:

Resistor Color Codes

Resistor Color Coding uses colored bands to quickly identify the resistive value or resistors and its percentage of tolerance.

Since the question does not provide a specific color table, we'll use the table attached below.

The colors of the resistor shown in the question are:

First band: orange

Second band: blue

Third band: brown

Fourth band: silver

The colors relate to the following numbers respectively:

3, 6, 10Ω, [tex]\pm 1\%[/tex]

The first two colors form the number 36

The third color is the multiplier: 36*10Ω = 360Ω

And the fourth color is the tolerance or the possible variation of the resistance [tex]\pm 1\%[/tex]

Resistance: 360Ω

Tolerance: [tex]\pm 10\%[/tex]

Other Questions
earths_____ absorbs solar radiation and re-radiates it to earths surface 4. Why did the Americans cross back over the bridge at Concord? What is Hypertext Transfer Protocol? what number is 1/10 of 8000000 Please helpIf local citizens are unhappy with a locally elected official, they can conduct a recall election and "fire"or remove that person from office.O TrueFalseExample of voter apathy are voting in elections, volunteering for campaigns and working the electionpolls.O TrueFalse plz help me and plz show work True or False. Energy can move in waves. How many slaves were traded during the slave trade Which of the following words best describes President Jacksons feelings toward American Indians? A. materialistic B. sympathetic C. paternalistic D. apathetic Please select the best answer from the choices provided A B C D which of the tables represent a function?PLEASE BE QUIIICCCKKK Read the excerpt from Walt Whitmans Song of Myself. Not all protists use flagella or cilia to move. Give an example of another way protists move and identify the type of protist that uses that mode of movement. If 60 chickens ran away from a from a pack of 600 bulls how many numbers I got david and Jack share $120 in the ratio 3:5.how much did david get ? #2 please it will mean so much if you help What is the value of the 4 in the number 546210?Give your answer in words Help Please I have a few minutes left :/ Using the rules of multiplying and dividing integers, identify when an answer will be negative. (Select all that apply)positive negativenegative positivepositive x negativenegative x negativenegative x positivenegative negativepositive positivepositive x positive equivalent fraction using the lcd 7/10 and 5/6 NEED ANSWE LIKE NOW PLZZZ HELP WILL MARK BRAINLIEST Which reason best explains why carbon is able to form macromolecules?Carbon is a very large element.Carbon can bond with many elements.Carbon is found in all living things.Carbon is found in energy-storing molecules. Which type of wave vibrates from side to side and up and down?A. P waves B. S wavesC. Surface wavesD. Focus waves