A current carrying wire is oriented along the y axis It passes through a region 0.45 m long in which there is a magnetic field of 6.1 T in the z direction The wire experiences a force of 15.1 N in the x direction.1. What is the magnitude of the conventional current inthe wire?I = A2. What is the direction of the conventional current in thewire?-y+y

Answers

Answer 1

Answer:

The magnitude of the current in the wire is 5.5A, and the direction of the current is in the positive y direction.

Explanation:

- To find the direction of the conventional current in the wire you use the following formula:

[tex]\vec{F}=i\vec{l}\ X\ \vec{B}[/tex]       (1)

i: current in the wire = ?

F: magnitude of the magnetic force on the wire = 15.1N

B: magnitude of the magnetic field = 6.1T

l: length of the wire that is affected by the magnetic field = 0.45m

The direction of the magnetic force is in the x direction (+^i) and the direction of the magnetic field is in the +z direction (+^k).

The direction of the current must be in the +y direction (+^j). In fact, you have:

^j X ^k = ^i

The current and the magnetic field are perpendicular between them, then, you solve for i in the equation (1):

[tex]F=ilBsin90\°\\\\i=\frac{F}{lB}=\frac{15.1N}{(0.45m)(6.1T)}=5.5A[/tex]

The magnitude of the current in the wire is 5.5A, and the direction of the current is in the positive y direction.


Related Questions

Which statement describes one feature of a mineral's definite chemical composition?
It always occurs in pure form.
It always contains certain elements.
It cannot form from living or once-living materials.
It cannot contain atoms from more than one element.
N

Answers

Answer:

It always contains certain elements

Explanation:

Minerals can be defined as natural inorganic substances which possess an orderly internal structural arrangement as well as a particular, well known chemical composition, crystal structures and physical properties. Minerals include; quartz, dolomite, basalt, etc. Minerals may occur in isolation or in rock formations.

Minerals contain specific, well known chemical elements in certain ratios that can only vary within narrow limits. This is what we mean by a mineral's definite chemical composition. The structure of these minerals are all well known as well as their atom to atom connectivity.

The statement describes one feature of a mineral's definite chemical composition - It always contains certain elements.

A mineral is a naturally occurring chemical compound, usually of a crystalline form.

A mineral has one specific chemical composition.chemical composition that varies within a specific limited range and the atoms that make up the mineral must occur in specific ratiosthe proportions of the different elements and groups of elements in the mineral.

Thus, The statement describes one feature of a mineral's definite chemical composition - It always contains certain elements.

Learn more:

https://brainly.com/question/690965

A slender rod of length L has a varying mass-per-unit-length from the left end (x=0) according to dm/dx=Cx where C has units kg/m2. Find the total mass in terms of C and L, and then calculate the moment of inertia of the rod for an axis at the left end note: you need the total mass in order to get the answer in terms of ML^2

Answers

Answer:

ML²/6

Explanation:

Pls see attached file

The total mass is M = CL²/2, and the moment of inertia is I = ML²/2,

Moment of inertia:

The length of the rod is L. It has a non-uniform distribution of mass given by:

dm/dx = Cx

where C has units kg/m²

dm = Cxdx

the total mass M of the rod can be calculated by integrating the above relation over the length:

[tex]M =\int\limits^L_0 {} \, dm\\\\M=\int\limits^L_0 {Cx} \, dx\\\\M=C[x^2/2]^L_0\\\\M=C[L^2/2]\\\\[/tex]

Thus,

C = 2M/L²

Now, the moment of inertia of the small element dx of the rod is given by:

dI = dm.x²

dI = Cx.x²dx

[tex]dI = \frac{2M}{L^2}x^3dx\\\\I= \frac{2M}{L^2}\int\limits^L_0 {x^3} \, dx \\\\I= \frac{2M}{L^2}[\frac{L^4}{4}][/tex]

I = ML²/2

Learn more about moment of inertia:

https://brainly.com/question/6953943?referrer=searchResults

The average density of the body of a fish is 1080kg/m^3 . To keep from sinking, the fish increases its volume by inflating an internal air bladder, known as a swim bladder, with air.
By what percent must the fish increase its volume to be neutrally buoyant in fresh water? Use 1.28kg/m^3 for the density of air at 20 degrees Celsius. (change in V/V)

Answers

Answer:

Increase of volume (F)  = 8.01%

Explanation:

Given:

Density of fish = 1,080 kg/m³

Density of water = 1,000 kg/m³

density of air = 1.28 kg/m³

Find:

Increase of volume (F)

Computation:

1,080 kg/m³  + [F × 1.28 kg/m³ ] = (1+F) × 1,000 kg/m³  

1,080 + 1.28 F =1,000 F + 1,000

80 = 998.72 F

F = 0.0801 (Approx)

F = 8.01%  (Approx)

6a. A special lamp can produce UV radiation. Which two statements
describe the electromagnetic waves emitted by a UV lamp? *
They have a higher frequency than X-rays.
They have the same wave speed as visible light
They have a longer wavelength than microwaves.
They have a lower frequency than gamma rays.
They have a greater wave speed than radio waves.

Answers

Answer:

The correct options are:

B) They have the same wave speed as visible light

D) They have a lower frequency than gamma rays.

Explanation:

B) Ultraviolet rays, commonly known as UV rays, are a type of electromagnetic ways. As electromagnetic waves, in the layman's term, are all kinds of life that can be identified, all electromagnetic waves (UV rays, visible light, infrared, radio etc) all travel with the same velocity, that is the speed of light, given as v = 3 × 10⁸ m/s

D) The frequency of all electromagnetic rays can be found by electromagnetic spectrum (picture attached below).

We can clearly see in the picture that the frequencies of UV rays lie at about 10¹⁵ - 10¹⁶ Hz which is lower than the frequency of Gamma ray, which lie at about 10²⁰ Hz.

A 1.20 kg water balloon will break if it experiences more than 530 N of force. Your 'friend' whips the water balloon toward you at 13.0 m/s. The maximum force you apply in catching the water balloon is twice the average force. How long must the interaction time of your catch be to make sure the water balloon doesn't soak you

Answers

Answer:

t = 0.029s

Explanation:

In order to calculate the interaction time at the moment of catching the ball, you take into account that the force exerted on an object is also given by the change, on time, of its linear momentum:

[tex]F=\frac{\Delta p}{\Delta t}=m\frac{\Delta v}{\Delta t}[/tex]       (1)

m: mass of the water balloon = 1.20kg

Δv: change in the speed of the balloon = v2 - v1

v2: final speed = 0m/s (the balloon stops in my hands)

v1: initial speed = 13.0m/s

Δt: interaction time = ?

The water balloon brakes if the force is more than 530N. You solve the equation (1) for Δt and replace the values of the other parameters:

[tex]|F|=|530N|= |m\frac{v_2-v_1}{\Delta t}|\\\\|530N|=| (1.20kg)\frac{0m/s-13.0m/s}{\Delta t}|\\\\\Delta t=0.029s[/tex]

The interaction time to avoid that the water balloon breaks is 0.029s

An electron has an initial velocity of (17.1 + 12.7) km/s, and a constant acceleration of (1.60 × 1012 m/s2) in the positive x direction in a region in which uniform electric and magnetic fields are present. If = (529 µT) find the electric field .

Answers

Answer:

Explanation:

Since B is perpendicular, it does no work on the electron but instead deflects it in a circular path.

q = 1.6 x 10-19 C

v = (17.1j + 12.7k) km/s = square root(17.1² + 12.7²) = 2.13 x 10⁴ m/s

the force acting on electron is

F= qvBsinΦ

F= (1.6 x 10⁻¹⁹C)(2.13.x 10⁴ m/s)(526 x 10⁻⁶ T)(sin90º)

F = 1.793x 10⁻¹⁸ N

The net force acting on electron is

F = e ( E+ ( vXB)

= ( - 1.6 × 10⁻¹⁹) ( E + ( 17.1 × 10³j + 12.7 × 10³ k)X( 529 × 10⁻⁶ ) (i)

= ( -1.6 × 10⁻¹⁹ ) ( E- 6.7k + 9.0j)

a= F/m

1.60 × 10¹² i =  ( -1.6 × 10⁻¹⁹ ) ( E- 6.9 k + 7.56 j)/9.11 × 10⁻³¹

9.11 i = - ( E- 6.7 k + 9.0 j)

E = -9.11i + 6.7k - 9.0j

A 2kg block is sitting on a hinged ramp such that you can increase the angle of the incline. The coefficient of static friction between the block and the ramp is 0.67 and the coefficient of kinetic friction is 0.25.
a. What angle do you have to tilt the ramp to get the block to slide?
b. What acceleration does the block experience at this angle when kinetic friction takes over?

Answers

Answer:

θ = 33.8

a = 3.42 m/s²

Explanation:

given data

mass m = 2 kg  

coefficient of static friction μs = 0.67

coefficient of kinetic friction μk = 0.25

solution

when block start slide

N = mg cosθ    .............1

fs = mg sinθ   ...............2

now we divide equation 2 by equation 1 we get

[tex]\frsc{fs}{N} = \frac{sin \theta }{cos \theta }[/tex]

[tex]\frac{\mu s N }{N}[/tex]  = tanθ

put here value we get

tan θ = 0.67

θ = 33.8

and

when block will slide  then we apply newton 2nd law

mg sinθ - fk = ma    ...............3

here fk = μk N = μk mg cosθ

so from equation 3 we get

mg sinθ -  μk mg cosθ = ma

so a will be

a = (sinθ - μk cosθ)g

put here value and we get

a = (sin33.8 - 0.25 cos33.8) 9.8

a = 3.42 m/s²

In which direction does a bag at rest move when a force of 20 newtons is applied from the right?
ОА.
in the direction of the applied force
OB.
in the direction opposite of the direction of the applied force
OC. perpendicular to the direction of the applied force
OD
in a circular motion

Answers

Answer:

in the direction of the applied force

Explanation:

at the temperature at which we live, earth's core is solid or liquid?

Answers

Explanation:

The Earth has a solid inner core

When a hydrometer (see Fig. 2) having a stem diameter of 0.30 in. is placed in water, the stem protrudes 3.15 in. above the water surface. If the water is replaced with a liquid having a specific gravity of 1.10, how much of the stem would protrude above the liquid surface

Answers

Answer:

5.79 in

Explanation:

We are given that

Diameter,d=0.30 in

Radius,r=[tex]\frac{d}{2}=\frac{0.30}{2}=0.15 in[/tex]

Weight of hydrometer,W=0.042 lb

Specific gravity(SG)=1.10

Height of stem from the water surface=3.15 in

Density of water=[tex]62.4lb/ft^3[/tex]

In water

Volume  of water displaced [tex]V=\frac{mass}{density}=\frac{0.042}{62.4}=6.73\times 10^{-4} ft^3[/tex]

Volume of another liquid displaced=[tex]V'=\frac{V}{SG}=\frac{6.73\times 10^{-4}}{1.19}=5.66\times 10^{-4}ft^3[/tex]

Change in volume=V-V'

[tex]V-V'=\pi r^2 l[/tex]

Substitute the values

[tex]6.73\times 10^{-4}-5.66\times 10^{-4}=3.14\times (\frac{0.15}{12})^2l[/tex]

By using

1 ft=12 in

[tex]\pi=3.14[/tex]

[tex]l=\frac{6.73\times 10^{-4}-5.66\times 10^{-4}}{3.14\times (\frac{0.15}{12})^2}[/tex]

l=2.64 in

Total height=h+l=3.15+2.64= 5.79 in

Hence, the height of the stem protrude above the liquid surface=5.79 in

Given small samples of three liquids, you are asked to determine their refractive indexes. However, you do not have enough of each liquid to measure the angle of refraction for light retracting from air into the liquid. Instead, for each liquid, you take a rectangular block of glass (n= 1.52) and Place a drop of the liquid on the top surface f the block. you shine a laser beam with wavelength 638 nm in vacuum at one Side of the block and measure the largest angle of incidence for which there is total internal reflection at the interface between the glass and the liquid. Your results are given in the table.

Liquid A B C
θ 52.0 44.3 36.3

Required:
a. What is the refractive index of liquid A at this wavelength?
b. What is the refractive index of liquid B at this wavelength?
c. What is the refractive index of liquid C at this wavelength?

Answers

Answer:

A — 1.198B — 1.062C — 0.900

Explanation:

The index of refraction of the liquid can be computed from ...

  [tex]n_i\sin{(\theta_t)}=n_t[/tex]

where ni is the index of refraction of the glass block (1.52) and θt is the angle at which there is total internal refraction. nt is the index of refraction of the liquid.

For the given incidence angles, the computed indices of refraction are ...

  A: n = 1.52sin(52.0°) = 1.198

  B: n = 1.52sin(44.3°) = 1.062

  C: n = 1.52sin(36.3°) = 0.900

Value of g in CGS system

Answers

Answer:

in CGS system G is denoted as gram

In cgs, G can be written as G ≈ 6.674×10−8 cm3⋅g−1⋅s−2.

In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with:_________.
1. yellow light.
2. red light.
3. blue light.
4. green light.
5. The separation is the same for all wavelengths.

Answers

Answer:

Red light

Explanation:

This because All interference or diffraction patterns depend upon the wavelength of the light (or whatever wave) involved. Red light has the longest wavelength (about 700 nm)

Find the terminal velocity (in m/s) of a spherical bacterium (diameter 1.81 µm) falling in water. You will first need to note that the drag force is equal to the weight at terminal velocity. Take the density of the bacterium to be 1.10 ✕ 103 kg/m3. (Assume the viscosity of water is 1.002 ✕ 10−3 kg/(m · s).)

Answers

Answer:

The terminal velocity of a spherical bacterium falling in the water is 1.96x10⁻⁶ m/s.

Explanation:

The terminal velocity of the bacterium can be calculated using the following equation:

[tex] F = 6\pi*\eta*rv [/tex]    (1)

Where:

F: is drag force equal to the weight

η: is the viscosity = 1.002x10⁻³ kg/(m*s)

r: is the radium of the bacterium = d/2 = 1.81 μm/2 = 0.905 μm

v: is the terminal velocity

Since that F = mg and by solving equation (1) for v we have:

[tex] v = \frac{mg}{6\pi*\eta*r} [/tex]  

We can find the mass as follows:

[tex] \rho = \frac{m}{V} \rightarrow m = \rho*V [/tex]

Where:

ρ: is the density of the bacterium = 1.10x10³ kg/m³

V: is the volume of the spherical bacterium

[tex] m = \rho*V = \rho*\frac{4}{3}\pi*r^{3} = 1.10 \cdot 10^{3} kg/m^{3}*\frac{4}{3}\pi*(0.905 \cdot 10^{-6} m)^{3} = 3.42 \cdot 10^{-15} kg [/tex]

Now, the terminal velocity of the bacterium is:

[tex] v = \frac{mg}{6\pi*\eta*r} = \frac{3.42 \cdot 10^{-15} kg*9.81 m/s^{2}}{6\pi*1.002 \cdot 10^{-3} kg/(m*s)*0.905 \cdot 10^{-6} m} = 1.96 \cdot 10^{-6} m/s [/tex]

Therefore, the terminal velocity of a spherical bacterium falling in the water is 1.96x10⁻⁶ m/s.

I hope it helps you!

key points that can be found in the realist philosophical position​

Answers

Answer:

Key points that can be found in the realist philosophical position​ are as follows:

The view that we observe or identify is real, truly out there.The objects which are identified are independent of someone's perceptions, linguistic practices,  conceptual scheme, and beliefs.Quantum mechanics is an example of philosophical realism that claims world is mind-independent.

A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of
8 m/s to the east. What is the recoil velocity of the launcher?

Answers

Answer:

1.6 m/s west

Explanation:

The recoil velocity of the launcher is 1.6 m/s west.

What is conservation of momentum principle?

When two bodies of different masses move together each other and have head on collision, they travel to same or different direction after collision.

A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of 8 m/s to the east.

Final momentum will be zero, so

m₁u₁ +m₂u₂ =0

Substitute the values for m₁ = 5kg, m₂ =1kg and u₂ =8 m/s, then the recoil velocity will be

5 x v +1x8 = 0

v = - 1.6 m/s

Thus, the recoil velocity of the launcher is  1.6 m/s (West)

Learn more about conservation of momentum principle

https://brainly.com/question/14033058

#SPJ2

5) What is the weight of a body in earth. if its weight is 5Newton
in moon?​

Answers

Answer:

8.167

Explanation:

A proton moves at a speed 1.4 × 10^7 m/s perpendicular to a magnetic field. The field causes the proton to travel in a circular path of radius 0.85 m. What is the field strength?

Answers

Answer:

0.17T

Explanation:

When a charged particle moves into a magnetic field perpendicularly, it experiences a magnetic force [tex]F_{M}[/tex] which is perpendicular to the magnetic field and direction of the velocity. This motion is circular and hence there is a balance between the centripetal force [tex]F_{C}[/tex] and the magnetic force. i.e

[tex]F_{C}[/tex] = [tex]F_{M}[/tex]     --------------(i)

But;

[tex]F_{C}[/tex] = [tex]\frac{mv^2}{r}[/tex]   [m = mass of the particle, r = radius of the path, v = velocity of the charge]

[tex]F_{M}[/tex] = qvB [q = charge on the particle, B = magnetic field strength, v = velocity of the charge ]

Substitute these into equation (i) as follows;

[tex]\frac{mv^2}{r}[/tex] = qvB

Make B subject of the formula;

B = [tex]\frac{mV}{qr}[/tex]            ---------------(ii)

Known constants

m = 1.67 x 10⁻²⁷kg

q = 1.6 x 10⁻¹⁹C

From the question;

v = 1.4 x 10⁷m/s

r = 0.85m

Substitute these values into equation(ii) as follows;

B = [tex]\frac{1.67 * 10 ^{-27} * 1.4 * 10^{7}}{1.6 * 10^{-19} * 0.85}[/tex]

B = 0.17T

Therefore, the magnetic field strength is 0.17T

Use Kepler's third law to determine how many days it takes a spacecraft to travel in an elliptical orbit from a point 6 590 km from the Earth's center to the Moon, 385 000 km from the Earth's center.

Answers

Answer:

1.363×10^15 seconds

Explanation:

The spaceship travels an elliptical orbit from a point of 6590km from the earth center to the moon and 38500km from the earth center.

To calculate the time taken from Kepler's third Law :

T^2 = ( 4π^2/GMe ) r^3

Where Me is the mass of the earth

r is the average distance travel

G is the universal gravitational constant. = 6.67×10-11 m3 kg-1 s-2

π = 3.14

Me = mass of earth = 5.972×10^24kg

r =( r minimum + r maximum)/2 ......1

rmin = 6590km

rmax = 385000km

From equation 1

r = (6590+385000)/2

r = 391590/2

r = 195795km

From T^2 = ( 4π^2/GMe ) r^3

T^2 = (4 × 3.14^2/ 6.67×10-11 × 5.972×10^24) × 195795^3

= ( 4×9.8596/ 3.983×10^14 ) × 7.5059×10^15

= 39.4384/ 3.983×10^14 ) × 7.5059×10^15

= (9.901×10^14) × 7.5059×10^15

T^2 = 7.4321× 10^30

T =√7.4321× 10^30

T = 2.726×10^15 seconds

The time for one way trip from Earth to the moon is :

∆T = T/2

= 2.726×10^15 /2

= 1.363×10^15 secs

A circular coil of wire of 200 turns and diameter 2.0 cm carries a current of 4.0 A. It is placed in a magnetic field of 0.70 T with the plane of the coil making an angle of 30° with the magnetic field. What is the magnetic torque on the coil?

Answers

Answer:

0.087976 Nm

Explanation:

The magnetic torque (τ) on a current-carrying loop in a magnetic field is given by;

τ = NIAB sinθ     --------- (i)

Where;

N = number of turns of the loop

I = current in the loop

A = area of each of the turns

B = magnetic field

θ = angle the loop makes with the magnetic field

From the question;

N = 200

I = 4.0A

B = 0.70T

θ = 30°

A = π d² / 4        [d = diameter of the coil = 2.0cm = 0.02m]

A = π x 0.02² / 4 = 0.0003142m²         [taking π = 3.142]

Substitute these values into equation (i) as follows;

τ = 200 x 4.0 x 0.0003142 x 0.70 sin30°

τ = 200 x 4.0 x 0.0003142 x 0.70 x 0.5

τ = 200 x 4.0 x 0.0003142 x 0.70      

τ = 0.087976 Nm

Therefore, the torque on the coil is 0.087976 Nm

1. A ski-plane with a total mass of 1200 kg lands towards the west on a frozen lake at 30.0
m/s. The coefficient of kinetic friction between the skis and the ice is 0.200. How far does
the plane slide before coming to a stop?

Answers

Answer:

d = 229.5 m

Explanation:

It is given that,

Total mass of a ski-plane is 1200 kg

It lands towards the west on a frozen lake at 30.0  m/s.

The coefficient of kinetic friction between the skis and the ice is 0.200.

We need to find the distance covered by the plane before coming to rest. In this case,

[tex]\mu mg=ma\\\\a=\mu g\\\\a=0.2\times 9.8\\\\a=1.96\ m/s^2[/tex]

It is decelerating, a = -1.96 m/s²

Now using the third equation of motion to find the distance covered by the plane such that :

[tex]v^2-u^2=2ad\\\\d=\dfrac{-u^2}{2a}\\\\d=\dfrac{-(30)^2}{2\times -1.96}\\\\d=229.59\ m[/tex]

So, the plane slide a distance of 229.5 m.  

A spherical shell rolls without sliding along the floor. The ratio of its rotational kinetic energy (about an axis through its center of mass) to its translational kinetic energy is:

Answers

Answer:

The ratio  is  [tex]\frac{RE}{TE} = \frac{2}{3}[/tex]

Explanation:

Generally  the Moment of inertia of a spherical object (shell) is mathematically represented as

              [tex]I = \frac{2}{3} * m r^2[/tex]

Where m is  the mass of the spherical object

       and   r is the radius  

Now the the rotational kinetic energy can be mathematically represented as

       [tex]RE = \frac{1}{2}* I * w^2[/tex]

Where  [tex]w[/tex] is the angular velocity which is mathematically represented as

             [tex]w = \frac{v}{r}[/tex]

=>           [tex]w^2 = [\frac{v}{r}] ^2[/tex]

So

             [tex]RE = \frac{1}{2}* [\frac{2}{3} *mr^2] * [\frac{v}{r} ]^2[/tex]

            [tex]RE = \frac{1}{3} * mv^2[/tex]

Generally the transnational  kinetic energy of this motion is  mathematically represented as

                [tex]TE = \frac{1}{2} mv^2[/tex]

So  

      [tex]\frac{RE}{TE} = \frac{\frac{1}{3} * mv^2}{\frac{1}{2} * m*v^2}[/tex]

       [tex]\frac{RE}{TE} = \frac{2}{3}[/tex]

A car moving at a speed of 25 m/s enters a curve that traces a circular quarter turn of radius 129 m. The driver gently applies the brakes, slowing the car with a constant tangential acceleration of magnitude 1.2 m/s2.a) Just before emerging from the turn, what is the magnitudeof the car's acceleration?
b) At that same moment, what is the angle q between the velocity vector and theacceleration vector?
I am having trouble because this problem seems to have bothradial and tangential accleration. I tried finding the velocityusing V^2/R, but then that didnt take into account thedeceleration. Any help would be great.

Answers

Answer:

8.7 m/s^2

82.15°

Explanation:

Given:-

- The initial speed of the car, vi = 25 m/s

- The radius of track, r = 129 m

- Car makes a circular " quarter turn "

- The constant tangential acceleration, at = 1.2 m/s^2

Solution:-

- We will solve the problem using rotational kinematics. Determine the initial angular velocity of car ( wi ) as follows:

                          [tex]w_i = \frac{v_i}{r} \\\\w_i = \frac{25}{129}\\\\w_i = 0.19379 \frac{rad}{s}[/tex]

- Now use the constant tangential acceleration ( at ) and determine the constant angular acceleration ( α ) for the rotational motion as follows:

                           at = r*α

                           α = ( 1.2 / 129 )

                           α = 0.00930 rad/s^2

- We know that the angular displacement from the initial entry to the exit of the turn is quarter of a turn. The angular displacement would be ( θ = π/2 ).

- Now we will use the third rotational kinematic equation of motion to determine the angular velocity at the exit of the turn (wf) as follows:

                            [tex]w_f^2 = w_i^2 + 2\alpha*theta\\\\w_f = \sqrt{0.19379^2 + 0.00930\pi } \\\\w_f = 0.25840 \frac{rad}{s}[/tex]

- We will use the evaluated final velocity ( wf ) and determine the corresponding velocity ( vf ) as follows:

                            [tex]v_f = r*w_f\\\\v_f = 129*0.2584\\\\v_f = 33.33380 \frac{x}{y}[/tex]

- Now use the formulation to determine the centripetal acceleration ( ac ) at this point as follows:

                            [tex]a_c = \frac{v_f^2}{r} \\\\a_c = \frac{33.3338^2}{129} \\\\a_c = 8.6135 \frac{m}{s^2}[/tex]

- To determine the magnitude of acceleration we will use find the resultant of the constant tangential acceleration ( at ) and the calculated centripetal acceleration at the exit of turn ( ac ) as follows:

                             [tex]|a| = \sqrt{a^2_t + a_c^2} \\\\|a| = \sqrt{1.2^2 + 8.6135^2} \\\\|a| = 8.7 \frac{m}{s^2}[/tex]

- To determine the angle between the velocity vector and the acceleration vector. We need to recall that the velocity vector only has one component and always tangential to the curved path. Hence, the velocity vector is parallel to the tangential acceleration vector ( at ). We can use the tangential acceleration ( at ) component of acceleration ( a ) and the centripetal acceleration ( ac ) component of the acceleration and apply trigonometric ratio as follows:

                          [tex]q = arctan \frac{a_c}{a_t} = arctan \frac{8.7}{1.2} \\\\q = 82.15 ^.[/tex] 

Answer: The angle ( q ) between acceleration vector ( a ) and the velocity vector ( v ) at the exit of the turn is 82.15° .

An ideal gas in a cubical box having sides of length L exerts a pressure p on the walls of the box. If all of this gas is put into a box having sides of length 0.5L without changing its temperature, the pressure it exerts on the walls of the larger box will be...

p.

2p.

4p.

8p.

12p.

Answers

Answer:

2P

Explanation:

See attached file

How do I find an apparent weight in N for a metal connected to a string submerged in water if a scale shows the mass 29.52 g when it is submerged ? Also how do I measure its density

Answers

The Tension of the string is going to be less when submerged in water by a value called the buoyancy force, so below in the attached file is explanation on how to calculate the apparent weight and density of the submerged object

At what minimum speed must a roller coaster be traveling when upside down at the top of a 7.4 m radius loop-the-loop circle so the passengers will not fall out?

Answers

Answer:

v = 8.5 m/s

Explanation:

In order for the passengers not to fall out of the loop circle, the centripetal force must be equal to the weight of the passenger. Therefore,

Weight = Centripetal Force

but,

Weight = mg

Centripetal Force = mv²/r

Therefore,

mg = mv²/r

g = v²/r

v² = gr

v = √gr

where,

v = minimum speed required = ?

g = 9.8 m/s²

r = radius = 7.4 m

Therefore,

v = √(9.8 m/s²)(7.4 m)

v = 8.5 m/s

Minimum speed for a roller coaster while travelling upside down  so that the person will not fall out = 8.5 m/s

For a roller coaster be traveling when upside down the Force balance equation can be written for a person of mass m.

In the given condition the weight of the person must be balanced by the centrifugal force.

and for the person not to fall out centrifugal force must be greater than or equal to the weight of the person

According to the Newton's Second Law of motion we can write force balance

[tex]\rm mv^2/r -mg =0 \\\\mg = mv^2 /r (Same\; mass) \\\\\\g = v^2/r\\\\v = \sqrt {gr}......(1)[/tex]

Given Radius of loop = r = 7.4 m

Putting the value  of r = 7.4 m  in equation (1) we get

[tex]\sqrt{9.8\times 7.4 } = \sqrt{72.594} = 8.5\; m/s[/tex]

For more information please refer to the link below

https://brainly.com/question/13259103

The electric field must be zero inside a conductor in electrostatic equilibrium, but not inside an insulator. It turns out that we can still apply Gauss's law to a Gaussian surface that is entirely within an insulator by replacing the right-hand side of Gauss's law, Qin/eo, with Qin/e, where ε is the permittivity of the material. (Technically, Eo is called the vacuum permittivity.) Suppose that a 70 nC point charge is surrounded by a thin, 32-cm-diameter spherical rubber shell and that the electric field strength inside the rubber shell is 2500 N/C.
What is the permittivity of rubber?

Answers

Answer:

The permittivity of rubber is  [tex]\epsilon = 8.703 *10^{-11}[/tex]

Explanation:

From the question we are told that

     The  magnitude of the point charge is  [tex]q_1 = 70 \ nC = 70 *10^{-9} \ C[/tex]

      The diameter of the rubber shell is  [tex]d = 32 \ cm = 0.32 \ m[/tex]

       The Electric field inside the rubber shell is  [tex]E = 2500 \ N/ C[/tex]

The radius of the rubber is  mathematically evaluated as

              [tex]r = \frac{d}{2} = \frac{0.32}{2} = 0.16 \ m[/tex]

Generally the electric field for a point  is in an insulator(rubber) is mathematically represented as

         [tex]E = \frac{Q}{ \epsilon } * \frac{1}{4 * \pi r^2}[/tex]

Where [tex]\epsilon[/tex] is the permittivity of rubber

    =>     [tex]E * \epsilon * 4 * \pi * r^2 = Q[/tex]

   =>      [tex]\epsilon = \frac{Q}{E * 4 * \pi * r^2}[/tex]

substituting values

            [tex]\epsilon = \frac{70 *10^{-9}}{2500 * 4 * 3.142 * (0.16)^2}[/tex]

            [tex]\epsilon = 8.703 *10^{-11}[/tex]

(a) According to Hooke's Law, the force required to hold any spring stretched x meters beyond its natural length is f(x)=kx. Suppose a spring has a natural length of 20 cm. If a 25-N force is required to keep it stretched to a length of 30 cm, how much work is required to stretch it from 20 cm to 25 cm?
(b) Find the area of the region enclosed by one loop of the curve r=2sin(5θ).

Answers

Answer:

a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve [tex]r(\theta) = 2\cdot \sin 5\theta[/tex] is [tex]4\pi[/tex].

Explanation:

a) The work, measured in joules, is a physical variable represented by the following integral:

[tex]W = \int\limits^{x_{f}}_{x_{o}} {F(x)} \, dx[/tex]

Where

[tex]x_{o}[/tex], [tex]x_{f}[/tex] - Initial and final position, respectively, measured in meters.

[tex]F(x)[/tex] - Force as a function of position, measured in newtons.

Given that [tex]F = k\cdot x[/tex] and the fact that [tex]F = 25\,N[/tex] when [tex]x = 0.3\,m - 0.2\,m[/tex], the spring constant ([tex]k[/tex]), measured in newtons per meter, is:

[tex]k = \frac{F}{x}[/tex]

[tex]k = \frac{25\,N}{0.3\,m-0.2\,m}[/tex]

[tex]k = 250\,\frac{N}{m}[/tex]

Now, the work function is obtained:

[tex]W = \left(250\,\frac{N}{m} \right)\int\limits^{0.05\,m}_{0\,m} {x} \, dx[/tex]

[tex]W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}][/tex]

[tex]W = 0.313\,J[/tex]

The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.

b) Let be [tex]r(\theta) = 2\cdot \sin 5\theta[/tex]. The area of the region enclosed by one loop of the curve is given by the following integral:

[tex]A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta[/tex]

[tex]A = 4\int\limits^{2\pi}_{0} {\sin^{2}5\theta} \, d\theta[/tex]

By using trigonometrical identities, the integral is further simplified:

[tex]A = 4\int\limits^{2\pi}_{0} {\frac{1-\cos 10\theta}{2} } \, d\theta[/tex]

[tex]A = 2 \int\limits^{2\pi}_{0} {(1-\cos 10\theta)} \, d\theta[/tex]

[tex]A = 2\int\limits^{2\pi}_{0}\, d\theta - 2\int\limits^{2\pi}_{0} {\cos10\theta} \, d\theta[/tex]

[tex]A = 2\cdot (2\pi - 0) - \frac{1}{5}\cdot (\sin 20\pi-\sin 0)[/tex]

[tex]A = 4\pi[/tex]

The area of the region enclosed by one loop of the curve [tex]r(\theta) = 2\cdot \sin 5\theta[/tex] is [tex]4\pi[/tex].

A total electric charge of 2.00 nC is distributed uniformly over the surface of a metal sphere with a radius of 26.0 cm . The potential is zero at a point at infinity.
a) Find the value of the potential at 45.0 cm from the center of the sphere.
b) Find the value of the potential at 26.0 cm from the center of the sphere.
c) Find the value of the potential at 16.0 cm from the center of the sphere.

Answers

Answer:

a) 40 V

b) 69.23 V

c) 69.23 V

Explanation:

See attachment for solution

⦁ A 68 kg crate is dragged across a floor by pulling on a rope attached to the crate and inclined 15° above the horizontal. (a) If the coefficient of static friction is 0.5, what minimum force magnitude is required from the rope to start the crate moving? (b) If µk= 0.35, what is the magnitude of the initial acceleration of the crate?

Answers

Answer:

303.29N and 1.44m/s^2

Explanation:

Make sure to label each vector with none, mg, fk, a, FN or T

Given

Mass m = 68.0 kg

Angle θ = 15.0°

g = 9.8m/s^2

Coefficient of static friction μs = 0.50

Coefficient of kinetic friction μk =0.35

Solution

Vertically

N = mg - Fsinθ

Horizontally

Fs = F cos θ

μsN = Fcos θ

μs( mg- Fsinθ) = Fcos θ

μsmg - μsFsinθ = Fcos θ

μsmg = Fcos θ + μsFsinθ

F = μsmg/ cos θ + μs sinθ

F = 0.5×68×9.8/cos 15×0.5×sin15

F = 332.2/0.9659+0.5×0.2588

F =332.2/1.0953

F = 303.29N

Fnet = F - Fk

ma = F - μkN

a = F - μk( mg - Fsinθ)

a = 303.29 - 0.35(68.0 * 9.8- 303.29*sin15)/68.0

303.29-0.35( 666.4 - 303.29*0.2588)/68.0

303.29-0.35(666.4-78.491)/68.0

303.29-0.35(587.90)/68.0

(303.29-205.45)/68.0

97.83/68.0

a = 1.438m/s^2

a = 1.44m/s^2

Other Questions
They needair, light andwarmth. Which of the following represents a rotation of triangle XYZ, which has vertices (-4,7), Y(6,2), and Z (3,-8) about the origin by 90 degrees? HELP PLS options: A: X (-7,-4) Y(6,-2) Z(-8,3) B: X(7,-4) Y(-2,6) Z (3,-8) C: X (-7,-4) Y(-2,6) Z (8,3) D: X(7,-4) Y (-2,6) Z (-3,8) If weight is an explanatory variable and cost is the corresponding response variable which of these would be represented by the y-axis on a scatterplot A. Weight B. Neither weight nor cost C. Both weight and cost D. Cost What do Tarbell and Rockefeller agree on in these two readings?Standard Oil received rebates from railroadcompanies.Standard Oil did not receive rebates from railroad companies. Rebates made little difference to the profits ofStandard Oil. the area of a rectangular sandbox can be expressed as 72xy + 18x the width of the sandbox is 9x what is the perimeter of the sandbox Which of the following is the correct scientific notation for 0.00566 meters? A.566 x 10-5 m B..566 x 10-3 m C.5.66 x 10-3 m D.5.66 x 103 m Florida state saving bond can be converted to $1000 at maturity date of five year from purchase if the state bond are to be competitive with the USA saving bonds which pay 1% interest compounded annually at what price will the state bonds sell 6. Trail Bike Rentals charges a $16 fixed fee plus $8 per hour for renting a bike. Matt paid $72to rent a bike. How many hours did Matt use the bike? Write an equation to represent thisscenario and solve for the variable. (2 marks) arcs and circles formula? can someone help me find the answer? what's the process called when water accumulates in pools of water such as ponds, lakes and oceans. What is the main purpose of the seven commandments in animal farm. The two __1__ of energy for life on this planet are ultimately the photons from the __2__ and the __3__ from the __4__. Fill in the blanks find the values of a and b such that x^2+2x+2=(x-a)^2+b Simplify (*x* +2x? - 5x)+(-3x + x +1)+(3+* + 2x).A. 3x + 2x* - 3x2 3x +1B 4x*- 3x + x2 + 4x +2C. 4x4 - 3x + 3x + 4x +2D. 4x*- 3x + 3x? - 3x + 1 3.How does the sense of belonging help to develop a good society? Write youropinion in four points. Which statements about the circle are correct? Check all that apply Arc PQ is congruent to arc SR. The measure of arc QR is 150 The circumference of circle C is cm. Arc PS measures about 13.1 cm. QS measures about 15.7 cm. HELP MEEEEE PLEASEEEEE SOMEONE!! what happens in chapter 25 for freak the mighty? The graph below shows a line of best fit for data collected on the number of toys sold at a toy store since the opening of the store. Based on the line of best fit, how many toys were sold 13 days after the store opened? A.) 195 B.) 260 C.) 325 D.) 130 Answer this question