A continuity correction is made to a discrete whole number x in the binomial distribution by representing the discrete whole number x by which of the following intervals? Choose the correct answer below. A. – 2x to 2x B. X-0.5 to x +0.5 C. x-2 to x + 2 D. - 0.5x to 0.5x

Answers

Answer 1

The correct answer is B. X-0.5 to x +0.5.

A continuity correction is applied to a discrete whole number x in the binomial distribution by using the interval X-0.5 to x +0.5. This is done to approximate the discrete distribution with a continuous distribution and to account for the discrepancy between the discrete and continuous probabilities.

In the binomial distribution, the random variable represents the number of successes in a fixed number of independent Bernoulli trials, and the probabilities are calculated based on discrete values. However, when using certain continuous distributions, such as the normal distribution, for approximations or calculations, it is necessary to apply a continuity correction.

The continuity correction adjusts the discrete values by considering the interval around each value. By using X-0.5 to x +0.5, we are essentially considering the range of values that are closest to the discrete whole number x. This interval provides a better approximation when working with continuous distributions and facilitates calculations or comparisons involving probabilities.

To learn more about binomial distribution : brainly.com/question/29163389

#SPJ11


Related Questions

evaluate the surface integral ∫∫s f(x,y,z) ds using a parametric description of the surface. f(x,y,z)=2x2 2y2, where s is the hemisphere x2 y2 z2=25, for z≥0

Answers

The integral using appropriate trigonometric identities and integration techniques. However, since the evaluation of this integral involves complex.

To evaluate the surface integral ∫∫s f(x,y,z) ds using a parametric description of the surface, we can express the surface S, which is the hemisphere x^2 + y^2 + z^2 = 25, for z ≥ 0, in terms of parametric equations. Let's use spherical coordinates to parameterize the surface.

In spherical coordinates, we have:

x = r sin(ϕ) cos(θ)

y = r sin(ϕ) sin(θ)

z = r cos(ϕ)

where r represents the radius (in this case, r = 5) and ϕ and θ are the spherical coordinates that define points on the surface S.

To cover the entire upper hemisphere, we can choose the parameter ranges as follows:

ϕ: 0 to π/2

θ: 0 to 2π

Now, we can calculate the surface integral ∫∫s f(x,y,z) ds using the parametric description of the surface.

f(x,y,z) = 2x^2 + 2y^2

First, let's calculate the surface area element ds in terms of ϕ and θ. The surface area element ds can be defined as the cross product of the partial derivatives of the position vector:

ds = |∂r/∂ϕ × ∂r/∂θ| dϕ dθ

where ∂r/∂ϕ and ∂r/∂θ are the partial derivatives of the position vector with respect to ϕ and θ, respectively.

∂r/∂ϕ = (sin(ϕ) cos(θ), sin(ϕ) sin(θ), cos(ϕ))

∂r/∂θ = (-r sin(ϕ) sin(θ), r sin(ϕ) cos(θ), 0)

Taking the cross product, we have:

∂r/∂ϕ × ∂r/∂θ = r^2 sin(ϕ) cos(ϕ) (-cos(θ), -sin(θ), sin(ϕ) cos(ϕ))

The magnitude of the cross product is:

|∂r/∂ϕ × ∂r/∂θ| = r^2 sin(ϕ) cos(ϕ)

Now, we can set up the surface integral:

∫∫s f(x,y,z) ds = ∫(ϕ: 0 to π/2) ∫(θ: 0 to 2π) (2(r sin(ϕ) cos(θ))^2 + 2(r sin(ϕ) sin(θ))^2) r^2 sin(ϕ) cos(ϕ) dϕ dθ

Simplifying this expression, we have:

∫∫s f(x,y,z) ds = 4 ∫(ϕ: 0 to π/2) ∫(θ: 0 to 2π) r^4 sin^3(ϕ) cos^2(ϕ) dϕ dθ

Since r is a constant (r = 5), we can factor it out of the integral:

∫∫s f(x,y,z) ds = 4 r^4 ∫(ϕ: 0 to π/2) ∫(θ: 0 to 2π) sin^3(ϕ) cos^2(ϕ) dϕ dθ

Now, we can evaluate the integral using appropriate trigonometric identities and integration techniques. However, since the evaluation of this integral involves complex.

Learn more about integral here

https://brainly.com/question/30094386

#SPJ11

Describe, step-by-step how to solve 5(x-3)^2-25=100

Answers

Answer:

Step-by-step explanation:

[tex]5.(x-3)^2 - 25 = 100\\5.(x-3)^2 = 125\\(x-3)^2 = 25\\x - 3 = 5 = > x = 8\\ or \\x - 3 = -5 = > x = -2[/tex]

Here is the step-by-step solution to the equation 5(x-3)^2-25=100:

Step 1: Add 25 to both sides of the equation to isolate the expression in parentheses. This gives you 5(x-3)^2 = 125.

Step 2: Divide both sides of the equation by 5 to isolate the expression in parentheses. This gives you (x-3)^2 = 25.

Step 3: Take the square root of both sides of the equation. Remember that when you take the square root of a number, you need to consider both the positive and negative square roots. This gives you x-3 = ±5.

Step 4: Add 3 to both sides of the equation to solve for x. This gives you x = 3 ± 5.

Step 5: Simplify the expression by adding and subtracting. This gives you two possible solutions: x = 8 or x = -2.

Therefore, the solutions to the equation 5(x-3)^2-25=100 are x = 8 and x = -2.

In your study, 280 out of 560 cola drinkers prefer Pepsi® over Coca-Cola®. Using these results, test the claim that more than 50% of cola drinkers prefer Pepsi® over Coca-Cola®. Use a = 0. 5. Interpret your decision in the context of the original claim. Does the decision support PepsiCo’s claim?

Answers

In the context of the original claim, the decision does not support PepsiCo's claim that more than 50% of cola drinkers prefer Pepsi over Coca-Cola.

To test the claim that more than 50% of cola drinkers prefer Pepsi over Coca-Cola, we can use a hypothesis test with the given data. Here are the steps to perform the hypothesis test:

Null Hypothesis (H₀): The proportion of cola drinkers who prefer Pepsi over Coca-Cola is equal to 50% (p = 0.5).

Alternative Hypothesis (H₁): The proportion of cola drinkers who prefer Pepsi over Coca-Cola is greater than 50% (p > 0.5).

The given significance level is α = 0.05.

In this case, we will use a one-sample proportion test. The test statistic used is the z-test.

z = ([tex]\hat{p}[/tex] - p₀) / √(p₀(1-p₀) / n)

[tex]\hat{p}[/tex] is the sample proportion,

p₀ is the hypothesized proportion,

n is the sample size.

Using the given information:

[tex]\hat{p}[/tex] = 280/560 = 0.5

p₀ = 0.5

n = 560

Calculating the test statistic:

z = (0.5 - 0.5) / √(0.5(1-0.5) / 560)

z = 0 / √(0.25 / 560)

z = 0 / √(0.00044642857)

z = 0

Since the z-score is 0, the p-value will be the probability of obtaining a value as extreme as 0 (or more extreme) under the null hypothesis. In this case, the p-value is 1, as the z-score of 0 corresponds to the mean of the standard normal distribution.

Since the p-value (1) is greater than the significance level (0.05), we fail to reject the null hypothesis. Therefore, we do not have enough evidence to support the claim that more than 50% of cola drinkers prefer Pepsi over Coca-Cola.

In the context of the original claim, the decision does not support PepsiCo's claim that more than 50% of cola drinkers prefer Pepsi over Coca-Cola. The evidence from the hypothesis test does not provide sufficient support to conclude that the proportion of cola drinkers who prefer Pepsi is greater than 50%.

Learn more about p-value here

https://brainly.com/question/30461126

#SPJ4

3. show that the following polynomials form a basis for 2 . x 2 1, x 2 − 1, 2x − 1

Answers

To show that the polynomials {x^2 + 1, x^2 - 1, 2x - 1} form a basis for 2nd degree polynomials, we need to demonstrate two things: linear independence and spanning the vector space.

Linear Independence:

To show linear independence, we set up the equation:

c1(x^2 + 1) + c2(x^2 - 1) + c3(2x - 1) = 0,

where c1, c2, and c3 are constants. In order for the polynomials to be linearly independent, the only solution to this equation should be c1 = c2 = c3 = 0.

Expanding the equation, we have:

(c1 + c2) x^2 + (c1 - c2 + 2c3) x + (c1 - c2 - c3) = 0.

For this equation to hold for all x, each coefficient of x^2, x, and the constant term must be zero. This gives us the system of equations:

c1 + c2 = 0,

c1 - c2 + 2c3 = 0,

c1 - c2 - c3 = 0.

Solving this system of equations, we find that c1 = 0, c2 = 0, and c3 = 0. Hence, the polynomials are linearly independent.

Spanning the Vector Space:

To show that the polynomials span the vector space of 2nd degree polynomials, we need to demonstrate that any 2nd degree polynomial can be expressed as a linear combination of the given polynomials.

Let's consider an arbitrary 2nd degree polynomial p(x) = ax^2 + bx + c. We can express p(x) as:

p(x) = (a/2)(x^2 + 1) + (b/2)(x^2 - 1) + ((a + b)/2)(2x - 1).

This shows that p(x) can be expressed as a linear combination of the given polynomials, proving that they span the vector space.

Therefore, the polynomials {x^2 + 1, x^2 - 1, 2x - 1} form a basis for the 2nd degree polynomials.

Find out more on equation at:

brainly.com/question/2972832

#SPJ11

Pls help I need help

Answers

Answer:

F

Step-by-step explanation:

Distribution Property

Answer:

[tex]\huge\boxed{\sf 38 \cdot 251m - 38 \cdot 45}[/tex]

Step-by-step explanation:

Given expression:

= 38(251m - 45)

Distribute 38 to 251m and 45

= 38 · 251m - 38 · 45

= 9538m - 1710

[tex]\rule[225]{225}{2}[/tex]

I’ll mark brainly help fast I need this today

Answers

The graph / scatter plot is attached accordingly.

The equation for the above relationship is f(n) = 2/3m + 7/3
Note that it will take 14.5 minutes to put together 12 sandwiches.

What is the equation for the above table?

By examining the data points, we can calculate the slope (m) and y-intercept (b) using two data points, such as (1, 3) and (7, 7).

Using the formula for slope

m = (y2 - y1) / (x2 - x1)

m = (7 - 3) / (7 - 1)

m = 4 / 6

m = 2/3

Using the formula for y-intercept

b = y - mx

b = 3 - (2/3) * 1

b = 3 - 2/3

b = 9/3 - 2/3

b = 7/3

Therefore, the equation for the relationship in the table is:

Number of Sandwiches = (2/3) * Minutes + 7/3

f(n) = 2/3m + 7/3

Where n = Number of sandwiches

m = Minutes

To predict the amount of time it will take to assemble 12 sandwiches, we have

2/3m + 7/3 = 12

Simplify the above to get

2m + 7 = 36
2m = 36 - 7

m = 29/2

m = 14.5 minutes.

So it will take 14.5 minutes to assemble 12 Sandwiches.

Learn more about scatter plot:
https://brainly.com/question/29231735
#SPJ1

Suppose a bank pays interest at the highly unrealistic) rate of r = 1, or 100% per annum. If interest is paid once a year, then for an initial deposit of 1000 dollars, you would have 2000 dollars at the end of the year. (a) If interest is paid half yearly, that is 0.5 or 50% interest paid twice a year, calculate the amount of money at the end of the year. (b) If interest is paid monthly, find an expression for the amount of money at the end of the year, then use a calculator to write it down to the nearest dollar. (c) From the last two parts it seems if interest paid more frequently then the amount of money at the end of the year will increase. We will find out what happens in the limiting case when interest is paid continuously. First we will need the following facts (note you do not need to show these statements). 1) If lim g(I) = L then lim g(n) = L. Note that for the first limit 1 ranges continuously in Rand for the second limit n ranges discretely, that is it takes values 1, 2, 3, 4,.... ii) limf og(I) = f(lim g())iff is continuous at lim g(1). Use these properties to calculate lim In (1 + (d) In this question you will be introduced to L'Hopital's Rule, further in the unit we will touch again on this interesting topic, and expand it further (note you do not need to show this statement). Suppose we have two functions f(1) and g(1) such that lim f() = lim g(1) = 0. Then we have f(1) - (0) f) g() -(0) I-0 gr) I-O lim, +0 I-O Taking limit as I we get f(I)-f(0) f(1) lim =lim + g() 40 g(1)-f I-0 This is known as L'Hopital's rule. Use L'Hopital's rule to calculate lim f(I) - f0 1-0 g(I) – f(0) I-0 f'(0) g'0) lim-0 In(1+1 (e) Use the previous part and the substitution 1 = to calculate lim r In (1+ 1(1+ ). Note that under this substitution, when I + we have y +0. (f) Use that fact that is continuous and 1+ (1++) en In(1++) to calculate lim 1 + (1+-) write down the amount of money at the end of the year if interest is paid continuously. 

Answers

(a) If interest is paid half-yearly, which is 50% paid twice a year, the amount of money at the end of the year can be calculated using the formula: P (1 + r/2)² = 1000 (1 + 0.5)² = $1,500 at the end of the year(b) If interest is paid monthly, then an expression for the amount of money at the end of the year can be obtained by applying the formula: A = P (1 + r/n)ⁿt. Where, P = 1000 dollars, r = 100% per annum = 1, n = 12 (as interest is compounded monthly), and t = 1. Thus, the formula will become: A = 1000 (1 + 1/12)¹² = 2,613.035 dollars,

which can be written down to the nearest dollar as $2,613.(c) The amount of money at the end of the year will increase if the interest is paid more frequently. This can be observed in part (a) and (b) where the half-yearly payment of interest gives a higher value than the yearly payment, and the monthly payment of interest gives an even higher value.(d) To calculate lim I_n (1 + 1/n), we can apply L'Hopital's rule as follows:lim I_n (1 + 1/n) = lim [ln (1 + 1/n)]/ (1/n) = lim [1/(1 + 1/n)] * (1/n²) = 1(e) Using the result from part (d) and substituting 1/x for n, we have lim I_n (1 + 1/n) = lim I_x (1 + 1/x) = ln 2(f) Using the formula In(1+x) = x - (x²/2) + (x³/3) - .... we get: lim I_n (1 + 1/n) = lim [(1/n) - (1/2n²) + O(1/n³)] = 0. This can be substituted in the formula 1 + (1/x)ⁿx = eⁿ as n tends to infinity and x = 1 to obtain the value e.(g) When the interest is paid continuously, the formula becomes A = Pert, where P = 1000 dollars, r = 100% per annum = 1, and t = 1. Thus, the formula will be: A = 1000e¹ = $2,718.28. Hence, the amount of money at the end of the year is $2,718.

To know more about money visir:

https://brainly.com/question/2696748

#SPJ11

Find the line integrals of F from (0,0,0) to (1,1,1) over the following paths.
a. The straight line path C1: r(t)=ti+tj+tk
b. The curved path C2: r(t): ti+t^2j+t^4k
(Both limits from 0 to 1)
F=3yi+2xj+4zk

Answers

Therefore, the line integral of F along the straight line path C1 is 9/2. Therefore, the line integral of F along the curved path C2 is 4/5.

a. To find the line integral of F along the straight line path C1: r(t) = ti + tj + tk from (0,0,0) to (1,1,1), we can parameterize the path and evaluate the integral:

r(t) = ti + tj + tk

dr/dt = i + j + k

The line integral is given by:

∫ F · dr = ∫ (3y)i + (2x)j + (4z)k · (dr/dt) dt

= ∫ (3t)(j) + (2t)(i) + (4t)(k) · (i + j + k) dt

= ∫ (2t + 3t + 4t) dt

= ∫ 9t dt

= (9/2)t^2

Evaluating the integral from t = 0 to t = 1:

∫ F · dr = (9/2)(1^2) - (9/2)(0^2) = 9/2

b. To find the line integral of F along the curved path C2: r(t) = ti + t^2j + t^4k from (0,0,0) to (1,1,1), we follow a similar process:

r(t) = ti + t^2j + t^4k

dr/dt = i + 2tj + 4t^3k

The line integral is given by:

∫ F · dr = ∫ (3y)i + (2x)j + (4z)k · (dr/dt) dt

= ∫ (3t^2)(j) + (2t)(i) + (4t^4)(k) · (i + 2tj + 4t^3k) dt

= ∫ (4t^4) dt

= (4/5)t^5

Evaluating the integral from t = 0 to t = 1:

∫ F · dr = (4/5)(1^5) - (4/5)(0^5) = 4/5

To know more about line integral,

https://brainly.com/question/31993499

#SPJ11

An insurance company knows that in the entire population of millions of apartment owners, the mean annual loss from damage is µ = $130 and the standard deviation of the loss is a = $300. The distribution of losses is strongly right-skewed, i.e., most policies have $0 loss, but a few have large losses. If the company sells 10, 000 policies, can it safely base its rates on the assumption that its average loss will be no greater than $135? Find the probability that the average loss is no greater than $135 to make your argument.

Answers

A random variable is a variable whose value is based on how a random process or event turns out. It symbolizes a numerical value that may take on various interpretations depending on the underlying probability distribution.

Let X be the random variable denoting the annual losses suffered by apartment owners. We have to find the probability that the average loss of the company will be no greater than $135 given that the mean annual loss of X is

μ = $130 and

The standard deviation is σ = $300.

The sample size is n = 10000.

The distribution of the loss is strongly right-skewed. We can assume that the sample follows a normal distribution since the sample size is very large. The sampling distribution of the sample mean follows a normal distribution with mean μ and standard deviation

σ/√n.μ = $130,

σ = $300, and

n = 10000

Thus, the standard deviation of the sampling distribution is

σ/√n = 300/√10000 = 3.

The sample mean follows a normal distribution with a mean of $130 and a standard deviation of 3.

P(Z ≤ (135 - 130) / 3)P(Z ≤ 5/3) = P(Z ≤ 1.67).

Using a standard normal distribution table, we can find that

P(Z ≤ 1.67) = 0.9525

Therefore, the probability that the average loss is no greater than $135 is 0.9525. Since the probability is very high, the company can safely base its rates on the assumption that its average loss will be no greater than $135.

To know more about Random Variable visit:

https://brainly.com/question/31108722

#SPJ11

supposed that we wanted to be 95% confident that the error in estimating the mean temperature is less than 2 degreees celcius. what sample size should be used?

Answers

Rounding up to the nearest whole number, we need a sample size of 25 to achieve a 95% confidence level with a maximum error of 2 degrees Celsius in estimating the mean temperature.

To calculate the sample size needed to achieve a 95% confidence level with a maximum error of 2 degrees Celsius, we can use the formula:
n = (z * σ / E) ^ 2
Where:
- n is the sample size
- z is the z-score associated with the confidence level (in this case, 1.96 for 95%)
- σ is the standard deviation of the temperature data (if unknown, we can use a conservative estimate of 5 degrees Celsius).
- E is the maximum error we want to allow (in this case, 2 degrees Celsius)
Plugging in the values, we get:
n = (1.96 * 5 / 2) ^ 2
n = 24.01
Rounding up to the nearest whole number, we need a sample size of 25 to achieve a 95% confidence level with a maximum error of 2 degrees Celsius in estimating the mean temperature.

To know more about Rounding up visit:

https://brainly.com/question/29238853

#SPJ11

Find the limit (8x + y)2 lim (x,y)+(0,0) 64x2 + y2 (Enter dne if the limit does not exist)

Answers

the answer is "dne". This is because the answer doesn't approach a single value, and hence the function is undefined.

The limit of a function is the value that the function approaches when the input variable of the function approaches a particular value. In this question, we are asked to find the limit of the function `

(8x + y)2 / (64x2 + y2)` as `(x,y)` approaches `(0,0)`.

To evaluate this limit, we need to consider the limit along different paths. If the limit is different along different paths, then the limit does not exist. Consider the limit along the x-axis, which means y = 0.`

[tex]lim (x,0)- > (0,0) (8x + y)2 / (64x2 + y2)[/tex]

=[tex]lim (x,0)- > (0,0) (8x)2 / (64x2)[/tex]

= 8/64

= 1/8

`Now consider the limit along the y-axis, which means x = 0.`

[tex]lim (0,y)- > (0,0) (8x + y)2 / (64x2 + y2)[/tex]

= [tex]lim (0,y)- > (0,0) y2 / y2[/tex]

= 1

Since the limit is different along different paths, the limit does not exist. Therefore, the answer is "dne". This is because the answer doesn't approach a single value, and hence the function is undefined.

To know more about limit visit;

brainly.com/question/12211820

#SPJ11

Use the alternating series estimation theorem to determine how many terms should be used to estimate the sum of the entire series with an error of less than 0.0001 ?(-1)n . 1 (n +15)4 or more terms should be used to estimate the sum of the entire series with an error of less than 0.0001.

Answers

6 or more terms should be used to estimate the sum of the entire series with an error of less than 0.0001.

To determine the number of terms needed to estimate the sum of the series within an error of less than 0.0001, we can apply the Alternating Series Estimation Theorem. The given series is (-1)^n * 1 / (n + 15)^4. Let's break down the steps to find the required number of terms:

The Alternating Series Estimation Theorem states that if a series is alternating, meaning its terms alternate in sign, and the absolute value of each term is decreasing, then the error made by approximating the sum of the series with a partial sum can be bounded by the absolute value of the first omitted term.

We want to estimate the sum of the series with an error of less than 0.0001. This means that we need to find the number of terms such that the absolute value of the first omitted term is less than 0.0001.

The given series is an alternating series as it alternates in sign with (-1)^n. To ensure the series satisfies the conditions of the Alternating Series Estimation Theorem, we need to verify that the absolute value of each term is decreasing.

Let's examine the absolute value of each term: |(-1)^n * 1 / (n + 15)^4|. Since the numerator is always 1 and the denominator is (n + 15)^4, we can see that the absolute value of each term is indeed decreasing as n increases.

Now, we need to find the number of terms such that the absolute value of the first omitted term is less than 0.0001. Let's denote this number of terms as N.

We can set up an inequality based on the first omitted term: |(-1)^(N+1) * 1 / (N + 15)^4| < 0.0001.

To simplify the inequality, we can remove the absolute value signs and solve for N:

(-1)^(N+1) * 1 / (N + 15)^4 < 0.0001.

Considering the (-1)^(N+1) term, we know that its value alternates between -1 and 1 as N increases. Therefore, we can ignore it for now and focus on the other part of the inequality:

1 / (N + 15)^4 < 0.0001.

To eliminate the fraction, we can take the reciprocal of both sides:

(N + 15)^4 > 10000.

Taking the fourth root of both sides, we have:

N + 15 > 10.

Solving for N, we get:

N > 10 - 15,

N > -5.

Since the number of terms must be a positive integer, we can round up to the nearest whole number:

N ≥ 6.

Therefore, 6 or more terms should be used to estimate the sum of the entire series with an error of less than 0.0001.

In summary, according to the Alternating Series Estimation Theorem, 6 or more terms should be used to estimate the sum of the series (-1)^n * 1 / (n + 15)^4 with an error of less than 0.0001.

Learn more about sum here

https://brainly.com/question/24205483

#SPJ11

Show all steps to write the equation of the hyperbola in standard conic form. Identify the center, vertices, points, and foci. 12x²9y² +72x +72y-144 = 0

Answers

The given equation is 12x² + 9y² + 72x + 72y – 144 = 0. To write the equation of the hyperbola in standard conic form, we can complete the square for both x and y terms.

Here, the center is (-3,-3), the distance between the center and the vertices along the transverse axis is[tex]√19 ≈ 4.36.[/tex]Therefore, the vertices are (-3 ± √19, -3). The distance between the center and the foci is [tex]c = √(a² + b²) = √20 ≈ 4.47.[/tex] Therefore, the foci are (-3 ± √20, -3). The points on the hyperbola are found by using the standard conic form equation:  [tex](x + 3)²/19 - (y + 3)²/b² = 1.[/tex]

For instance, we have (0, 2):  [tex](0 + 3)²/19 - (2 + 3)²/b² = 1 ⇒ b² = 19(25)/36 ⇒ b ≈ 3.41.[/tex]Thus, the equation of the hyperbola in standard conic form is [tex](x + 3)²/19 - (y + 3)²/3.41² = 1.\\[/tex] The center is (-3, -3), vertices are (-3 ± √19, -3), foci are (-3 ± √20, -3), and points are found by using the standard form equation.

To know more about hyperbola visit:

brainly.com/question/27799190

#SPJ11

Which value of r indicates a stronger correlation than 0.40?
a)-.30
b)-.80
c)+.38
d)0

Answers

The answer to this question is option b) -.80. The correlation coefficient (r) ranges from -1 to +1. The closer the value of r is to -1 or +1, the stronger the correlation between the two variables. A value of 0 indicates no correlation.

A correlation coefficient of 0.40 indicates a moderate positive correlation. Therefore, to find a stronger correlation than 0.40, we need to look for values of r closer to +1. Option b) -.80 is the only value listed that is closer to -1 than 0.40 is to +1, indicating a strong negative correlation.

t's important to note that correlation does not imply causation. A strong correlation between two variables does not necessarily mean that one causes the other. It is possible for two variables to be correlated due to a third variable that affects both. Additionally, correlation only measures linear relationships between variables and does not account for non-linear relationships.

To know more about correlation coefficient visit:
https://brainly.com/question/15577278

#SPJ11

A standard die is rolled 4 times, within 4 trials, for a player to win, they must roll one double. Winning prizes are determined by which double they roll. roll double 1, prize is $2 roll double 2, prize is $4 roll double 3, prize is $6 roll double 4, prize is $8 roll double 5, prize is $10 roll double 6, prize is $12

Answers

The value of the probability is 0.0193

To create a probability distribution chart for the given information, we need to calculate the probability of rolling each double within four trials. Let's calculate the probabilities and create the chart:

| Double | Probability | Prize |

|--------|-------------|---------|

| 1       | P(1)         | $2    |

| 2      | P(2)        | $4    |

| 3      | P(3)        | $6    |

| 4      | P(4)        | $8    |

| 5      | P(5)        | $10   |

| 6      | P(6)        | $12   |

To calculate the probabilities, we need to consider the number of ways we can roll a double and divide it by the total number of possible outcomes.

In four trials, the total number of possible outcomes is 6⁴ since each trial has six possible outcomes (rolling a 1, 2, 3, 4, 5, or 6).

The number of ways to roll each double is 6 because there is only one combination that gives us a specific double (e.g., for double 1, we need to roll two 1s).

Now, let's calculate the probabilities:

P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = (number of ways to roll double / total number of possible outcomes)

P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 6 / (6⁴)

Let's calculate the probabilities:

P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 6 / (6⁴) ≈ 0.0193

Now we can fill in the probability distribution chart:

| Double | Probability | Prize |

|--------|----------------|-------|

| 1       | 0.0193      | $2    |

| 2      | 0.0193      | $4    |

| 3      | 0.0193      | $6    |

| 4      | 0.0193      | $8    |

| 5      | 0.0193      | $10   |

| 6      | 0.0193      | $12   |

Learn more about probability here

https://brainly.com/question/30034780

#SPJ4

Given question is incomplete, the complete question is below

A standard die is rolled 4 times. within 4 trials, for a player to win, they must roll one double. Winning prizes are determined by which double they roll.

roll double 1, prize is $2

roll double 2, prize is $4

roll double 3, prize is $6

roll double 4, prize is $8

roll double 5, prize is $10

roll double 6, prize is $12

create a probability distribution chart for the given information

marks] b. Given the P3(x) as the interpolating polynomial for the data points (0,0), (0.5,y),(1,3) and (2,2). Determine y value if the coefficient of x3 in P3(x) is 6. [5 Marks)

Answers

The value of y.[tex]$$P_3(0.5)=6(0.5)^3+\frac{5-8y}{2}(0.5)^2+\frac{23-8y}{2}(0.5)=\frac{3}{4}y+\frac{17}{4}$$$$\Rightarrow \frac{3}{4}y+\frac{17}{4}=0.75b+1.5c+3$$$$\Rightarrow \frac{3}{4}y+\frac{17}{4}=0.75(\frac{5-8y}{2})+1.5(\frac{23-8y}{2})+3$$$$\Rightarrow y=-\frac{3}{4}$$[/tex]Hence, the value of y is -3/4.

Given that P3(x) is the interpolating polynomial for the data points (0,0), (0.5,y), (1,3) and (2,2).

We need to find the y value if the coefficient of [tex]x3 in P3(x)[/tex]is 6.Interpolation is the process of constructing a function from given discrete data points. We use the interpolation technique when we have a set of data points, and we want to establish a relationship between them.To solve the given problem, we need to find the value of the polynomial P3(x) for the given data points. The general expression for a polynomial of degree 3 can be written as:

[tex]$$P_3(x)=ax^3+bx^2+cx+d$$[/tex]

To find P3(x), we can use the method of Lagrange Interpolation, which is given by:

[tex]$$P_3(x)=\sum_{i=0}^3y_iL_i(x)$$[/tex]

where

[tex]$L_i(x)$[/tex]is the Lagrange polynomial. We have three data points, so we get three Lagrange polynomials[tex]:$$\begin{aligned} L_0(x)&=\frac{(x-0.5)(x-1)(x-2)}{(0-0.5)(0-1)(0-2)} \\ L_1(x)&=\frac{(x-0)(x-1)(x-2)}{(0.5-0)(0.5-1)(0.5-2)} \\ L_2(x)&=\frac{(x-0)(x-0.5)(x-2)}{(1-0)(1-0.5)(1-2)} \\ L_3(x)&=\frac{(x-0)(x-0.5)(x-1)}{(2-0)(2-0.5)(2-1)} \\ \end{aligned}$$[/tex]Now, we can substitute these values in the equation of $P_3(x)$:[tex]$$P_3(x)=y_0L_0(x)+y_1L_1(x)+y_2L_2(x)+y_3L_3(x)$$We know that the coefficient of x3 in P3(x[/tex]) is 6. Therefore, the equation of P3(x) becomes:[tex]$$P_3(x)=6x^3+bx^2+cx+d$$[/tex]

Now we substitute the given values in the equation of $P_3(x)$ to get the value of y. The given data points are (0, 0), (0.5, y), (1, 3), and (2, 2).When we substitute (0, 0) in $P_3(x)$, we get:[tex]$$P_3(0)=6(0)^3+b(0)^2+c(0)+d=0$$[/tex]Hence, d=0.When we substitute (0.5, y) in $P_3(x)$, we get:[tex]$$P_3(0.5)=6(0.5)^3+b(0.5)^2+c(0.5)=0.75b+1.5c+3=y$$$$\Rightarrow 0.75b+1.5c=-3+y$$[/tex]When we substitute (1, 3) in $P_3(x)$, we get:[tex]$$P_3(1)=6(1)^3+b(1)^2+c(1)=6+b+c=3$$$$\Rightarrow b+c=-3$$[/tex]When we substitute (2, 2) in $P_3(x)$, we get:[tex]$$P_3(2)=6(2)^3+b(2)^2+c(2)=48+4b+2c=2$$$$\[/tex]Rightarrow 4b+2c=-23$$We can solve the above three equations simultaneously to get the values of b and c.$$b+c=-3\ldots(1)[tex]$$$$0.75b+1.5c=-3+y\ldots(2)$$$$4b+2c=-23\ldots(3)$$[/tex]Multiplying equation (1) by 0.5, we get:$$0.5b+0.5c=-1.5\ldots(4)$$Subtracting equation (4) from equation (2), we get:$$0.25b+0.5c=y-1.5[tex]$$$$\Rightarrow 2b+4c=4y-12\ldots(5)$$[/tex]Substituting equation (1) in equation (5), we get:[tex]$$2b-6=4y-12\Rightarrow 2b=4y-6$$[/tex]Substituting this value in equation (3), we get:$$8y-24+2c=-23\Rightarrow c=\frac{23-8y}{2}$$Substituting this value of c in equation (1), we get:$$b+\frac{23-8y}{2}=-3[tex]$$$$\Rightarrow b=\frac{5-8y}{2}$$[/tex]Now, we substitute the values of b and c in $P_3(x)$:[tex]$$P_3(x)=6x^3+\frac{5-8y}{2}x^2+\frac{23-8y}{2}x$$[/tex]The coefficient of x3 in P3(x) is 6.

Hence,[tex]$$6=\frac{6}{2}\Rightarrow a=1$$$$\Rightarrow P_3(x)=6x^3+\frac{5-8y}{2}x^2+\frac{23-8y}{2}x$$[/tex]We can now substitute x=0.5 in $P_3(x)$ and get the value of y.[tex]$$P_3(0.5)=6(0.5)^3+\frac{5-8y}{2}(0.5)^2+\frac{23-8y}{2}(0.5)=\frac{3}{4}y+\frac{17}{4}$$$$\Rightarrow \frac{3}{4}y+\frac{17}{4}=0.75b+1.5c+3$$$$\Rightarrow \frac{3}{4}y+\frac{17}{4}=0.75(\frac{5-8y}{2})+1.5(\frac{23-8y}{2})+3$$$$\Rightarrow y=-\frac{3}{4}$$[/tex]Hence, the value of y is -3/4. Answer:  The value of y is -3/4.

To know more about polynomials visit:-

https://brainly.com/question/28813567

#SPJ11

Identify the following as either qualitative, quantitative discrete, or quantitative continuous: Number of students responding to a survey about their names a. Neither qualitative, quantitative discrete, or quantitative continuous
b. Quantitative continuous c. Qualitative d. Quantitative discrete

Answers

The given options are as follows: a. Neither qualitative, quantitative discrete, or quantitative continuous. b. Quantitative continuous c. Qualitative d. Quantitative discrete

Among the given options, option b. "Quantitative continuous" and option c. "Qualitative" are the correct identifications.

a. "Neither qualitative, quantitative discrete, or quantitative continuous" is not a valid identification as it does not specify the nature of the data.

b. "Quantitative continuous" refers to data that can take any numerical value within a range. For example, measuring the weight of objects on a scale is a quantitative continuous variable.

c. "Qualitative" refers to data that is descriptive or categorical, such as the color of a car or the type of fruit.

d. "Quantitative discrete" refers to data that can only take specific, distinct values. For example, counting the number of books on a shelf would be a quantitative discrete variable.

Therefore, the correct identifications are option b. "Quantitative continuous" and option c. "Qualitative."

Learn more about Quantitative discrete here: brainly.com/question/12831013

#SPJ11

Type 1 for stock A and 2 for stock B. 2 Question 8 1 pts Which stock is underpriced based on the single-index model? Type 1 for stock A and 2 for stock B. 1.

Answers

Stock A (1) is underpriced based on the single-index model.

To determine which stock is underpriced based on the single-index model, it is essential to compare the expected return and the required return for each stock. Unfortunately, without additional information such as the stock's beta, market return, risk-free rate, and the stock's actual return, it is impossible to accurately identify the underpriced stock.

A stock market, also known as an equity market or share market, is the collection of individuals who buy and sell stocks, also known as shares, which represent ownership stakes in corporations. These securities may be listed on a public stock exchange or only traded privately, such as shares of private corporations that are offered to investors through equity crowdfunding platforms. An investing strategy is typically present when making an investment.

More on stock: https://brainly.com/question/30927906

#SPJ11

use the new variable t=ex to evaluate the limit. enter the exact answer. limx→[infinity]4e3x−15e3x ex 1= enter your answer in accordance to the question statement

Answers

The numerator is 0 and the denominator approaches infinity, the overall limit is 0. Therefore, the exact answer to the given limit is 0.

To evaluate the limit lim(x→∞) 4e^(3x) - 15e^(3x) / e^x + 1, we can use the new variable t = e^x.

Substituting t = e^x, we can rewrite the expression as:

lim(t→∞) 4t^3 - 15t^3 / t + 1

Simplifying the numerator, we have:

4t^3 - 15t^3 = -11t^3

Now, the expression becomes:

lim(t→∞) -11t^3 / t + 1

To evaluate this limit, we can divide both the numerator and denominator by t^3, which allows us to eliminate the higher order terms:

lim(t→∞) -11 / (1/t^3) + (1/t^3)

As t approaches infinity, 1/t^3 approaches 0. Therefore, the expression becomes:

-11 / (0 + 0) = -11 / 0

We have encountered an indeterminate form of "-11 / 0". In this case, we need to further analyze the expression.

Notice that as x approaches infinity, t = e^x also approaches infinity. This means that the original limit is an "infinity divided by infinity" type. To resolve this, we can apply L'Hôpital's Rule.

Applying L'Hôpital's Rule, we take the derivative of the numerator and denominator with respect to t:

lim(t→∞) d/dt (-11) / d/dt (1/t^3 + 1/t^3)

The derivative of -11 is 0, and the derivative of (1/t^3 + 1/t^3) is -3/t^4 - 3/t^4.

The limit now becomes:

lim(t→∞) 0 / (-3/t^4 - 3/t^4)

Simplifying, we have:

lim(t→∞) 0 / (-6/t^4)

Learn more about denominator at: brainly.com/question/15007690

#SPJ11

What pattern would appear in a graph of the equation Y = 4X - 1 (or Y = -1 + 4X)?
A. A line that slopes gradually up to the right
B. A line that slopes gradually down to the right
C. A line that slopes steeply up to the right
D. A line that slopes steeply down to the right

Answers

The graph of the equation Y = 4X - 1 (or Y = -1 + 4X) represents (A) a line that slopes gradually up to the right.

Determine the form of a linear equation?

The equation Y = 4X - 1 (or Y = -1 + 4X) is in the form of a linear equation, where the coefficient of X is 4. This indicates that for every increase of 1 in the X-coordinate, the Y-coordinate will increase by 4. This results in a positive slope.

When graphed on a Cartesian plane, the line represented by this equation will slope gradually up to the right. The slope of 4 means that the line rises 4 units for every 1 unit it moves to the right. This creates a steady and consistent upward trend as X increases.

Therefore, (A) the pattern observed in the graph is a line that slopes gradually up to the right.

To know more about Cartesian plane, refer here:

https://brainly.com/question/27927590#

#SPJ4

Construct an example with two random variables X and Y marginally Gaussian but whose sum is not jointly Gaussian.

Answers

The sum of X and Y, Z = X + Y, is also a Gaussian random variable with zero mean and variance σx + σy. However, W and Z are not jointly Gaussian.

Let us consider X and Y to be two independent Gaussian random variables with zero means and variances σx and σy, respectively. Let

W = aX + bY,

where a and b are two constants such that a + b ≠ 0.The sum of the two random variables X and Y is Z = X + Y.It is easy to see that Z is also a Gaussian random variable with zero mean and variance σx + σy.

Therefore, the covariance of W and Z is given by

cov(W, Z) = cov(aX + bY, X + Y) = aσx + bσy

This covariance depends on the values of a and b, and it is not zero in general, which means that W and Z are not jointly Gaussian. Thus, we can construct an example of two random variables X and Y that are marginally Gaussian but whose sum is not jointly Gaussian as follows:Let X and Y be two independent Gaussian random variables with zero means and variances σx and σy, respectively. Let W = aX + bY, where a and b are two constants such that a + b ≠ 0.

To know more about Gaussian  visit:-

https://brainly.com/question/30400788

#SPJ11

Two samples, each with n = 6 subjects, produce a pooled variance of 20. Based on this information, the estimated standard error for the sample mean difference would be _____. Explain your response. a-20/6 b-20/12 c-the square root of (20/6 + 20/6) d-the square root of (20/5 + 20/5)

Answers

The estimated standard error for the sample mean difference is the square root of 6.6667. The closest option provided is: c- the square root of (20/6 + 20/6)

The estimated standard error for the sample mean difference can be calculated using the formula:

Standard Error = sqrt[(s1^2/n1) + (s2^2/n2)]

Where:

s1^2: Variance of the first sample

n1: Sample size of the first sample

s2^2: Variance of the second sample

n2: Sample size of the second sample

In this case, both samples have the same sample size (n = 6) and the same pooled variance of 20. Therefore, the formula simplifies to:

Standard Error = sqrt[(20/6) + (20/6)]

Simplifying further, we get:

Standard Error = sqrt[(40/6)]

To find the exact value, we can simplify the expression further:

Standard Error = sqrt[6.6667]

Therefore, the estimated standard error for the sample mean difference is the square root of 6.6667.

The closest option provided is:

c- the square root of (20/6 + 20/6)

So, the correct answer is (c).

Visit here to learn more about standard error brainly.com/question/13179711
#SPJ11

find f(x) and g(x) so that the function can be described as y = f(g(x)). y = 9/sqrt 5x+5

Answers

To find f(x) and g(x) for the given function y = 9/sqrt(5x+5), we need to express y in the form y = f(g(x)).
Let's start by defining g(x) as the expression inside the square root, i.e., g(x) = 5x+5.
Next, we need to find f(x) such that f(g(x)) = y. To do this, we can simplify the given expression for y:
y = 9/sqrt(5x+5)
y * sqrt(5x+5) = 9

Squaring both sides:
(y * sqrt(5x+5))^2 = 9^2
5xy + 45y^2 + 45y - 81 = 0
Now we can solve for y in terms of g(x) (i.e., y = f(g(x))) using the quadratic formula:
y = (-45 ± sqrt(2025 - 4*5*g(x)*(-81))) / (2*5)
y = (-45 ± sqrt(2025 + 1620g(x))) / 10

So our final answer is:
f(x) = (-45 ± sqrt(2025 + 1620x)) / 10
g(x) = 5x+5
(Note: there are two possible values of f(x) because of the ± sign in the quadratic formula, but either one will work to give the original function y = 9/sqrt(5x+5) as y = f(g(x)).)

To know more about square root visit :-

https://brainly.com/question/29286039

#SPJ11

the 4-kgkg slender bar is released from rest in the position shown. Take L = 1.8 m. Express your answer with the appropriate units. Alpha = 4.09 rad/s^2 Correct Significant

Answers

The 4-kg slender bar, with a length of 1.8 m, is released from rest in a given position. The angular acceleration, α, is given as 4.09 rad/s^2. The answer to be expressed will include the appropriate units and significant figures.

To determine the answer, we need to find the angular velocity (ω) of the bar. Since the bar is released from rest, its initial angular velocity is zero.

We can use the formula for angular acceleration:

α = ω^2 / 2L

Rearranging the formula, we have:

ω = √(2Lα)

Substituting the given values, we have:

ω = √(2 * 1.8 * 4.09) rad/s

Evaluating the expression, we find:

ω ≈ 3.05 rad/s

Therefore, the angular velocity of the bar is approximately 3.05 rad/s.

In summary, when the 4-kg slender bar, with a length of 1.8 m, is released from rest with an angular acceleration of 4.09 rad/s^2, the resulting angular velocity is approximately 3.05 rad/s.

To learn more about angular velocity : brainly.com/question/30237820

#SPJ11

Can y’all help? I need to send this in tomorrow, and no this is not a test Brainly

Answers

The equation of the parabola is y = x²-x-2.

The equation of a parabola facing upwards with the vertex at (h, k) can be written in the form:

y = a(x - h)² + k,

where (h, k) represents the vertex coordinates and 'a' determines the shape and direction of the parabola.

In this case, the vertex is (1/2, -9/4), so the equation of the parabola becomes:

y = a(x - 1/2)² - 9/4.

The coefficient 'a' determines the stretch or compression of the parabola. If 'a' is positive, the parabola opens upwards (as given in the question).

To find the value of 'a', you would need additional information, such as a point on the parabola or the value of the coefficient 'a' itself.

Hence the equation of the parabola is y = x²-x-2.

Learn more about parabola click;

https://brainly.com/question/29267743

#SPJ1

f(x, y, z)=y; w is the region bounded by the plan x y z=2, the cylinder x^2 z^2=1, and y =0

Answers

The integral of the function f(x, y, z) = y over the region W is zero.

To integrate the function f(x, y, z) = y over the region W bounded by the plane x + y + z = 2, the cylinder x² + z² = 1, and y = 0, we need to set up the appropriate limits of integration.

Let's break down the integration into smaller steps:

Start by considering the limits of integration for x and z.

For the function cylinder x² + z² = 1, we can rewrite it as z = √(1 - x²) or z = -√(1 - x²). So, the limits for x will be between -1 and 1.

For the plane x + y + z = 2, we can rewrite it as y = 2 - x - z. Since we are given that y = 0, we have 0 = 2 - x - z. Solving for z, we get z = 2 - x.

Therefore, the limits for z will be between 2 - x and sqrt(1 - x²).

Next, we need to determine the limits for y. Since we are given that y = 0, the limits for y will be from 0 to 0.

Now we have the limits for x, y, and z. We can set up the triple integral to integrate the function over the region W:

∫∫∫ f(x, y, z) dy dz dx

The limits of integration will be:

x: -1 to 1

y: 0 to 0

z: 2 - x to √(1 - x²)

The integral becomes:

∫∫∫ y dy dz dx

Integrating y with respect to y gives (1/2)y². Since y ranges from 0 to 0, this term evaluates to zero.

The integral simplifies to:

∫∫ 0 dz dx

Integrating 0 with respect to z gives 0. Since z ranges from 2 - x to √(1 - x²), this term evaluates to zero.

The integral further simplifies to:

∫ 0 dx

Integrating 0 with respect to x gives 0. Since x ranges from -1 to 1, this term evaluates to zero as well. Therefore, the result of the integral is zero.

Therefore, the integral of the function f(x, y, z) = y over the region W is zero.

To know more about function check the below link:

https://brainly.com/question/25638609

#SPJ4

The three side lengths of a triangle are x, x + 5, and x + 11. If the sides of the triangle have integral length, what is the minimum value of x?

Answers

We are looking for integer solutions, the minimum value of x that satisfies all three inequalities is x = 7.

To determine the minimum value of x, we need to find the smallest possible integer value that satisfies the triangle inequality. According to the triangle inequality theorem, the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.

In this case, we have three side lengths: x, x + 5, and x + 11. So, we need to find the smallest integer value for x that satisfies the following inequalities:

x + (x + 5) > (x + 11) (1)

x + 5 + (x + 11) > x (2)

x + (x + 11) > (x + 5) (3)

Simplifying these inequalities, we get:

2x + 5 > x + 11 (1)

2x + 16 > x (2)

2x + 11 > x + 5 (3)

Solving each inequality separately, we find:

x > 6 (1)

x > -16 (2)

x > -6 (3)

Since we are looking for integer solutions, the minimum value of x that satisfies all three inequalities is x = 7.

Learn more about integer  here:

https://brainly.com/question/15276410

#SPJ11

Calcula la distancia d entre un barco y un
faro, sabiendo que la altura del faro es de
65 m y que el barco se observa desde lo
alto del faro con un ángulo de depresión
de 42°.

Answers

Using a trigonometric relation, we can see that the distance is 72.2m

How to find the distance?

We can model this with a right triangle, we want to find the value of the adjacent cathetus to the known angle (D, the horizontal distance between the lighthouse and the ship)

And we know the opposite cathetus, which is of 65m, and the angle, of 42°.

Then we can use the trigonometric relation:

tan(a) = (opposite cathetus)/(adjacent cathetus)

Replacing the things we know, we will get:

tan(42°) = 65m/D

Solving for D:

D = 65m/tan(42°)

D = 72.2m

Learn more about right triangles at:

https://brainly.com/question/2217700

#SPJ1

use the definition of the definite integral or theorem 4 to find the exact value of the definite integral ∫(3x^4)dx

Answers

In this case, the integral evaluates to 243/5.

The exact value of the definite integral ∫(3x⁴)dx can be found using the definition of the definite integral or Theorem 4. Both methods involve finding an expression that simplifies to the exact value of the integral. In this case, the integral evaluates to 243/5.

The definite integral of ∫(3x⁴)dx can be found by using the definition of the definite integral or Theorem 4. Using the definition, we can write the integral as the limit of a sum: ∫(3x⁴)dx = lim n→∞ [3(x1⁴)Δx + 3(x2⁴)Δx + ... + 3(xn⁴)Δx], where Δx = (b-a)/n and xi = a + iΔx for i = 0, 1, ..., n. By simplifying this expression and taking the limit as n approaches infinity, we can find the exact value of the definite integral. Alternatively, Theorem 4 states that if f(x) is continuous on [a, b], then ∫(f(x))dx = [F(x)]bᵃ, where F(x) is any antiderivative of f(x). Applying this theorem, we can find an antiderivative of 3x^4, which is (3/5)x⁵, and evaluate it at the limits of integration: ∫(3x⁴)dx = [(3/5)x⁵]3⁰ = 243/5.

The exact value of the definite integral ∫(3x⁴)dx can be found using the definition of the definite integral or Theorem 4. Using the definition, we can write the integral as the limit of a sum and simplify the expression to find the exact value. Alternatively, Theorem 4 states that if f(x) is continuous on [a, b], then ∫(f(x))dx = [F(x)]bᵃ, where F(x) is any antiderivative of f(x). By finding an antiderivative of 3x⁴)and evaluating it at the limits of integration, we can obtain the exact value of the integral. In this case, the integral evaluates to 243/5.

The exact value of the definite integral ∫(3x⁴)dx can be found using the definition of the definite integral or Theorem 4. Both methods involve finding an expression that simplifies to the exact value of the integral. In this case, the integral evaluates to 243/5.

To know more about integral visit:

brainly.com/question/31433890

#SPJ11

In AWXY, X = 700 cm, w = 710 cm and Angle W= 249. Find all possible values of Angle X, to the nearest 10th of a degree. ​

Answers

From law of sines, in a triangle WXY, with x = 700 cm, w = 710 cm and measure of Angle W= 249, the possible value of angle X is equals to the -62.3°.

The law of sines is defined a relationship between the sines of a triangle and the length of the sides opposite these angles. We can determine the missing sides and angles of a triangle by using this law, [tex]\frac{sin⁡X}{x}= \frac{sin⁡W}{w} = \frac{sin⁡Y}{y}[/tex], where the capital letters represent the angles of a triangle, and the lowercase letters are the sides opposite the angles, respectively. We have a triangle ∆WXY with x = 700 cm, w = 710 cm and measure of angle W = 249°. We have to determine the possible value of measure of angle X. Now, apply the law of sines, [tex]\frac{sin⁡X } {x} = \frac{sin⁡W}{w}[/tex]

Substituting all known values,

[tex]\frac{sin⁡X } {700 } = \frac{sin⁡(249°) }{710}[/tex]

[tex]sin(X) = 700× \frac{sin⁡(249°) }{710}[/tex] = - 0.920431

[tex]X = sin^{-1} ( - 0.920431)[/tex]

= −62.251509095

X≈ -62.3°

Hence, required value is -62.3°.

For more information about law of sines, visit:

https://brainly.com/question/30248261

#SPJ4

Complete question:

In ∆WXY, x = 700 cm, w = 710 cm and Angle W= 249. Find all possible values of Angle X, to the nearest 10th of a degree.

Other Questions
If a 0.5 liter solution of bichloride contains 1 gram of bichloride, then 250 mL will contain how many grams of bichloride? An entrepreneur could choose to buy a franchise because.....1. It can be started as a sole proprietorship, partnership, or corporation2. It is less stressful than starting a business from scratch. 3. It's a business brand with a proven track record. During ventricular tachycardia (v-tach), the heart:a. beats very slowly and ineffectively pumps bloodb. beats too fast to pump blood effectivelyc. quivers and cannot pump bloodd. momentarily stops and then restarts Cast a cold eye/ On life, on death/ Horseman, pass by. What did these words of WB Yeats mean? what starting materials are required to synthesize the following azo compound? 6) A telemarketer found that there was a 3% chance of a sale from his phone solicitations. Find the probability of getting 35 or more sales for 1000 telephone ... Define f : and g : by the formulas f(x) = x + 4 and g(x) = x for each x . Find the following.a) (g f)1 =b) g1 =c) f1. =d) f1 g1 =State how (g f)1 and f1 g1 are related. please use matrix method to find eigenvalues and eigenvectors bysubstituting one of the X's as tFind solution of the system of linear differential equa- tion.. Use matrix method. 4 1 1 X' = 1 4 1 X 1 1 4 Write clean, and clear. Show steps of calculations. if the required reserve ratio is 20 percent, the largest possible increase in the money supply that could result ismillion, and the smallest possible increase ismillion. grade it now save & continue if cats become a more popular pet in the united states than they are now, what can we expect to happen to the market for cat food workers? the new leader development courses focus on what subject matter according to the entrepreneurial ethos, prosperity resulted from write a speech to be delivered at your school graduation day on the schools achievement and failure in the academic year Because Allison is assertive, cheerful, and sociable, she would likely rate Multiple Choice low on agreeableness. high on extroversion. high on conscientiousness. low on emotional stability. Look at the equation for a displacement reaction. Which substance is reduced in the reaction? Give the full name, not the symbols. pls help its due in a few days t/f weisbord believed that questionnaires were the best wat to diagnose the organization every color can be broken down into the three properties of let : 2 2 be a linear transformation that maps = [5 2] [2 1] and m, aps = [1 3] [31]. use the fact that t is linear to find the images under t of 3u, 2v and 3u = 2v why data analysis is necessary for discovering credible findings for nursing which stereochemical outcome do you expect for the reaction of the dibromo compound with 2 moles of nacn? Steam Workshop Downloader