a conducting loop is halfway into a magnetic field. suppose the magnitude of the magnetic field begins to increase rapidly in strength. what happens to the loop?

Answers

Answer 1

 If a conducting loop is halfway into a magnetic field when the magnitude of the magnetic field increases rapidly in strength, electromagnetic induction occurs which causes an electric current to flow within the loop.  

When a conducting loop is halfway into a magnetic field and the magnitude of the magnetic field begins to increase rapidly, an electromagnetic phenomenon known as electromagnetic induction occurs.

According to Faraday's law of electromagnetic induction, a changing magnetic field induces an electromotive force (EMF) in a conductor. This induced EMF leads to the flow of electric current within the conducting loop.

In this scenario, as the magnetic field rapidly increases in strength, the changing magnetic flux passing through the loop induces an EMF. This induced EMF causes an electric current to flow within the loop, following Lenz's law, which states that the induced current opposes the change that produced it.

The flow of electric current within the loop results in the generation of a magnetic field around the loop. The interaction between the increasing external magnetic field and the induced magnetic field in the loop can lead to various effects depending on the specific circumstances. These effects could include forces or torques acting on the loop, potentially causing it to move, rotate, or experience changes in its behavior.

for more such information on: magnetic field

https://brainly.com/question/26257705

#SPJ11


Related Questions

The more massive a white dwarf, the
A) higher its temperature.
B) smaller its radius.
C) larger its radius.
D) higher its luminosity.

Answers

The more massive a white dwarf, the smaller its radius.

A white dwarf is a remnant of a low to intermediate-mass star which has exhausted its nuclear fuel and undergone gravitational collapse. As a result of this collapse, the white dwarf's core becomes degenerate and is supported by electron degeneracy pressure.

This is because of the nature of electron degeneracy pressure. As a white dwarf's mass increases, its electrons become more tightly packed, and its velocity increases. As a result, the pressure they exert on each other also increases, pushing the outer layers of the white dwarf inward, causing the star's radius to decrease.

In conclusion, the more massive a white dwarf, the smaller its radius. This is due to the nature of electron degeneracy pressure, which becomes stronger as they become more tightly packed. A more massive white dwarf will eventually undergo further collapse and evolve into a neutron star or black hole.

To know more about white dwarf, visit:

https://brainly.in/question/50062726

#SPJ11

a ball is thrown horizontally from the top of a 20 m high hill. it strikes the ground at an angle of 45o as shown in the figure. with what speed was the ball thrown? neglect air resistance

Answers

To determine the initial speed with which the ball was thrown, we can analyze the horizontal and vertical components of its motion separately.

Since the ball is thrown horizontally from the top of the hill, its initial vertical velocity is 0 m/s. We can use the equation of motion for vertical motion:

Δy = V₀y * t + (1/2) * g * t²

In this case, Δy represents the vertical displacement (which is the height of the hill, 20 m), V₀y represents the initial vertical velocity (0 m/s), g represents the acceleration due to gravity (approximately 9.8 m/s²), and t represents the time of flight.

Substituting the known values:

20 = 0 * t + (1/2) * 9.8 * t²

20 = 4.9 * t²

t² = 20 / 4.9

t ≈ 2.04 s

Since the time of flight for the ball is 2.04 seconds, we can now determine the initial horizontal velocity using the equation:

V₀x = Δx / t

In this case, Δx represents the horizontal displacement, which is equal to the distance traveled horizontally when the ball strikes the ground (which we don't have in the given information).

Therefore, without the horizontal displacement or any additional information, we cannot determine the exact initial speed with which the ball was thrown.

Learn more about Displacement and Speed here:

https://brainly.com/question/16738360

#SPJ11

we know the kind of remnant we are observing, but we do not see perioditc flashes of radiation.

Answers

The type of remnant we are observing here is likely a supernova remnant, which is formed when a massive star explodes at the end of its life. As the shockwave from the explosion expands outward, it interacts with the surrounding interstellar medium and heats it up, creating a bright and glowing shell of gas and dust.

While some supernova remnants do emit periodic flashes of radiation, known as pulsars, not all of them do. Pulsars are formed when the core of the original star collapses and spins rapidly, emitting beams of radiation that are visible as pulses as they rotate. However, not all supernova explosions result in the formation of a pulsar, and even if they do, the pulsar may not be visible from our vantage point on Earth.

There are a variety of factors that can influence whether or not a pulsar is visible from our location, including the orientation of the pulsar's spin axis relative to our line of sight, as well as the strength and shape of the beams of radiation it emits. Additionally, some pulsars may simply be too faint or distant to detect, even with our most advanced telescopes and instrumentation.

So while the absence of periodic flashes of radiation from the supernova remnant we are observing may be notable, it is not necessarily indicative of any particular phenomenon or anomaly. Rather, it may simply reflect the fact that the remnant does not contain a visible pulsar or that the pulsar is not detectable from our location.

To know more about supernova remnant, refer

https://brainly.com/question/31868825

#SPJ11

(a) what is the maximum value of the angle, theta, that the laser beam can make with the vertical and still have the beam of light emerge into the air above the plastic?

Answers

The angle that the laser beam can make with the vertical is 41.805°.

When a light beam travelling through a medium with a higher refractive index approaches a second medium at an angle of incidence larger than the critical angle, a total internal reflection occurs at the border between the two transparent media.

Total internal reflection occurs at an angle of 90 degrees above the threshold final angle.

Now considering the boundary between the air and the plastic,  

Applying Snell's law,

n(plastic) sinθ' = n(air) sinθ

sinθ' = n(air) sinθ/n(plastic)

sinθ' = (1/1.5) x sin90

sinθ' = 2/3

Therefore, the angle that the laser beam can make with the vertical,

θ' = sin⁻¹(2/3)

θ' = 41.805°

To learn more about Total internal reflection, click:

https://brainly.com/question/13088998

#SPJ1

what evidence tells us that quasars are the centers of distant galaxies?

Answers

Quasars are extremely bright and distant celestial objects that emit a large amount of energy, including radiation, X-rays, and radio waves. Their brightness is believed to come from the accretion of gas and dust onto a supermassive black hole at the center of a distant galaxy.

This accretion process generates a tremendous amount of energy that is emitted as radiation, making quasars visible from vast distances.

There is strong evidence to support the theory that quasars are the centers of distant galaxies. Firstly, observations have shown that quasars are often surrounded by a large amount of gas and dust, which is believed to be the material being pulled into the supermassive black hole at the center of the galaxy. Secondly, studies of the motion of stars within galaxies have shown that the centers of galaxies are often associated with massive objects, such as supermassive black holes, which are believed to be the engines powering quasars. Additionally, the distribution of galaxies and quasars in the universe suggests a close relationship between the two, with quasars found mainly in the centers of galaxies.

To Learn more about Quasars. Click this!

brainly.com/question/29982221

#SPJ11

what is the de broglie wavelength of an electron travelling at a speed of 5.0×106 m/s? give your answer in pm.

Answers

The de Broglie wavelength of an electron traveling at a speed of 5.0×10^6 m/s is 12.4 pm.

The de Broglie wavelength is given by λ = h/mv, where h is Planck's constant, m is the mass of the particle, and v is the velocity of the particle. Substituting the values, we get λ = 6.626×10^-34 J s / (9.109×10^-31 kg)(5.0×10^6 m/s) = 12.4 pm. This result shows that even though electrons have very small mass, they exhibit wave-like properties when they move at high speeds. The de Broglie wavelength is an important concept in quantum mechanics and has been verified experimentally in many different settings.

Learn more about Wavelength here.

brainly.com/question/16103470

#SPJ11

helium-neon laser light (l = 632.8 nm) is sent through a single slit of width 0.30 mm. what is the width of the central maximum on a screen 1.0 m in back of the slit? (1 nm = 10-9 m)

Answers

The width of the central maximum on the screen is approximately [tex]4.219 * 10^{-6} m[/tex], or 4.219 µm.

To determine the width of the central maximum of the diffraction pattern produced by helium-neon laser light (λ = 632.8 nm) passing through a single slit of width 0.30 mm, you can use the formula for the angular width of the central maximum in a single-slit diffraction experiment:
θ = (2 * λ) / slit width
First, convert the given measurements to meters: λ = 632.8 nm = [tex]632.8 * 10^{-9} m[/tex], and slit width = 0.30 mm = [tex]0.30 * 10^{-3} m[/tex]. Next, calculate the angular width:
θ = [tex](2 * 632.8 * 10^{-9} m) / (0.30 * 10^{-3} m) = 4.219 * 10^{-6}[/tex] radians
Now, to find the width of the central maximum on a screen 1.0 m behind the slit, use the formula:
Width = distance to screen * θ
Width = [tex]1.0 m * 4.219 * 10^{-6} radians[/tex] ≈ [tex]4.219 * 10^{-6} m[/tex]

To learn more about diffraction click here https://brainly.com/question/12290582

#SPJ11

What is the entropy change when 275 g of water is heated from 20.0°C to 80.0 °cz О 214 J/K O 1600 JK 196 J/K O 236 J/K

Answers

The entropy change when 275 g of water is heated from 20.0°C to 80.0 °C is 236 J/K.

The formula for calculating the change in entropy is ΔS = Q/T, where Q is the heat added to the system and T is the temperature in Kelvin. In this case, we can use the specific heat capacity of water to calculate the heat added to the system.

First, we need to calculate the change in temperature:

ΔT = 80.0°C - 20.0°C = 60.0°C

Next, we can calculate the heat added to the system:

Q = mcΔT, where m is the mass of water and c is the specific heat capacity of water.

m = 275 g = 0.275 kg (converting from grams to kilograms)

c = 4.18 J/g°C (specific heat capacity of water)

Q = (0.275 kg)(4.18 J/g°C)(60.0°C) = 693.09 J

Finally, we can calculate the entropy change:

ΔS = Q/T

T = 20.0°C + 273.15 = 293.15 K (converting from Celsius to Kelvin)

ΔS = 693.09 J / 293.15 K = 2.36 J/K

Therefore, the entropy change is 236 J/K.

To learn more about Entropy click here

https://brainly.com/question/2899530

#SPJ11

Which one of the following part functionality does not depend on surface attributes? Friction and wear. Corrosion resistance . Thermal conductivity .Fatigue life

Answers

The part functionality that does not depend on surface attributes is thermal conductivity. Thermal conductivity refers to a material's ability to conduct heat, and it is an intrinsic property of the material that does not depend on the surface of the material.

Friction and wear, corrosion resistance, and fatigue life are all surface attributes that affect the part functionality. Friction and wear are affected by the surface roughness, hardness, and lubrication of the material. Corrosion resistance is affected by the surface composition, passivation, and coating of the material. Fatigue life is affected by the surface finish, residual stresses, and microstructure of the material.

In contrast, thermal conductivity depends on the molecular structure and bonding of the material, which are intrinsic properties that do not change with the surface of the material. Therefore, thermal conductivity is not influenced by the surface attributes of a part, and it remains constant for a given material regardless of its surface conditions.

To know more about Thermal conductivity click this link -

brainly.com/question/7643131

#SPJ11

what is the capacitance of a capacitor whose reactance is 111 ω at a frequency of 84.0 hz ?

Answers

The capacitance of the capacitor is 1.38 microfarads (μF) (rounded to two significant figures).

The capacitance of a capacitor whose reactance is 111 Ω at a frequency of 84.0 Hz can be calculated using the formula:
Capacitive reactance (Xc) = 1 / (2πfC)
Where f is the frequency in Hertz, C is the capacitance in Farads, and π is approximately equal to 3.14.
Rearranging the formula, we get:
C = 1 / (2πfXc)
Substituting the given values, we get:
C = 1 / (2π x 84.0 Hz x 111 Ω)
C = 1.38 x 10^-6 Farads

To learn more about capacitance, click here:
https://brainly.com/question/17176550

#SPJ11

Which one of these is Newton's 2 Law?
A=M*F
M=A*F
F=M+A
F=M*A

Answers

F=M*A is Newton’s 2 law

6. [10] can a 74as138 output drive a 74ac08 input when both are supplied with vcc = 4.5v? why or why not? be specific. assume both devices operate at a supply voltage vcc = 4.5v.

Answers



The 74AS138 is a 3-to-8 decoder/demultiplexer with active low outputs, while the 74AC08 is a quad 2-input AND gate. Both devices have different input and output characteristics, which can affect their compatibility when connected together.


In terms of input voltage levels, the 74AS138 has a high-level input voltage (VIH) of 2.0V minimum and a low-level input voltage (VIL) of 0.8V maximum, while the 74AC08 has a VIH of 2.0V minimum and a VIL of 0.8V maximum as well. This means that the input voltage levels of both devices are compatible with each other when supplied with VCC = 4.5V.

However, the output voltage levels of the 74AS138 may not be compatible with the input voltage levels of the 74AC08. The 74AS138 has active low outputs, which means that a logic high output voltage (VOH) is 0.5V maximum and a logic low output voltage (VOL) is 2.4V minimum when supplied with VCC = 4.5V. On the other hand, the 74AC08 has a VIH of 2.0V minimum and a VOL of 0.05V maximum when supplied with VCC = 4.5V. This means that the output voltage levels of the 74AS138 may not be able to drive the input voltage levels of the 74AC08, which can result in unreliable logic levels and/or damage to the devices.

To know more about AND gate visit:-

https://brainly.com/question/14183082

#SPJ11

an isolated point charge produces an electric field with magnitude e at a point 2 m away. a point at which the field magnitude is e/4 is:

Answers

The point where the electric field magnitude is e/4 is located 4 meters away from the isolated point charge.

The electric field due to a point charge decreases inversely with the square of the distance from the charge. Therefore, if the field magnitude is e at a distance of 2 meters, it will be (1/4)e at a distance of 4 meters. This is because the electric field strength is proportional to the inverse square of the distance from the point charge, so the field strength decreases rapidly with increasing distance.

In summary, the point where the electric field magnitude is e/4 is located 4 meters away from the isolated point charge due to the inverse square relationship between the electric field and distance from the charge.

Learn more about magnitude here:

brainly.com/question/14123452

#SPJ11

in the nuclear transmutation, 168 o (?, α ) 137 n, what is the bombarding particle?

Answers

In the nuclear transmutation 168 O (?, α) 137 N, the bombarding particle is a proton.

Nuclear transmutation involves changing one element into another by bombarding the target nucleus with a specific particle.

In this case, the target nucleus is 168 O (oxygen isotope), and the resulting nucleus is 137 N (nitrogen isotope). The α (alpha) particle indicates an alpha emission, meaning the target nucleus loses 2 protons and 2 neutrons.

To balance the nuclear equation, the bombarding particle must be a proton (1H), as it adds one proton to the nucleus.



Summary: In the given nuclear transmutation, a proton is the bombarding particle, converting 168 O into 137 N through an alpha emission.

Learn more about nucleus click here:

https://brainly.com/question/141626

#SPJ11

you are given two metal spheres on portable insulating stands a glass rod and a piece of silk. explain one method of giving the spheres exactly equal but opposite charges

Answers

Rub the glass rod with silk to make it positively charged and the silk negatively charged. Bring one metal sphere near the silk and the other near the glass rod to transfer charges and obtain two spheres with equal but opposite charges.

One method of giving the spheres exactly equal but opposite charges using the given materials is:

1. Rub the glass rod with the silk to transfer some electrons from the glass to the silk. The glass will become positively charged and the silk will become negatively charged.

2. Bring one of the metal spheres close to the charged silk. Electrons from the negative charge on the silk will repel the electrons in the metal sphere, causing some electrons to move away from the sphere and towards the stand. This leaves the sphere with a positive charge.

3. Bring the other metal sphere close to the charged glass rod. Electrons from the positive charge on the glass will be attracted to the metal sphere, causing some electrons to move from the stand to the sphere. This leaves the sphere with a negative charge.

4. Check the charges on the spheres using an electroscope or a pith ball. If the charges are not exactly equal and opposite, repeat steps 2 and 3 until the desired charges are obtained.

By following this method, the two metal spheres will be given exactly equal but opposite charges, with one sphere having a positive charge and the other sphere having a negative charge.

Visit to know more about Positively charged:-

brainly.com/question/23532831

#SPJ11

what is the volume occupied by 0.255 mol of helium gas at 1.25 atm and 305 k ?

Answers

The volume occupied by 0.255 mol of helium gas at 1.25 atm and 305 K is approximately 5.11 liters.

To find the volume occupied by 0.255 mol of helium gas at 1.25 atm and 305 K, we can use the Ideal Gas Law equation:
[tex]PV = nRT[/tex]
where P is pressure, V is volume, n is the number of moles, R is the gas constant (0.0821 L atm / K mol), and T is temperature.

the area that one mole of any (ideal) gas takes up at normal pressure and temperature
We have:
P = 1.25 atm
n = 0.255 mol
R = 0.0821 L atm / K mol
T = 305 K
Rearranging the equation for volume, V:
[tex]V = nRT / P[/tex]
Substitute the given values:
V = (0.255 mol)(0.0821 L atm / K mol)(305 K) / (1.25 atm)
Calculate the result:
V ≈ 5.11 L

Learn more about pressure  here

https://brainly.com/question/29493123

#SPJ11

A circular loop carrying a current i has wire of total length L. A uniform magnetic field B exist parallel to the plane of the loop.(a) Find the torque on the loop.(b) If the same length of the wire is used to form a square loop, what would be the torque? Which is larger?

Answers

(a) The torque on the circular loop can be found using the formula τ = NABi, where N is the number of turns in the loop, A is the area of the loop, and B is the magnetic field strength. Since the loop is circular, its area can be expressed as A = πr², where r is the radius of the loop. We can also express the total length of the wire as L = 2πr, which means that r = L/(2π). Substituting these values into the formula for torque, we get τ = (π/2)BLi.



(b) If the same length of wire is used to form a square loop, its side length would be L/4. The area of the square loop would be A = (L/4)² = L²/16. Using the same formula for torque, we get τ = (BLi)L²/16. Comparing the two torques, we can see that the torque on the square loop is larger, since it has a larger area than the circular loop.
To find the torque on the circular loop carrying a current i with a total wire length L in a uniform magnetic field B parallel to the plane of the loop, we can use the formula τ = μ × B, where μ is the magnetic moment.

For a circular loop, the magnetic moment is given by μ = iA, where A is the area of the loop. Since A = πr^2 and L = 2πr, we can solve for r: r = L/(2π). The torque on the circular loop is then τ_c = iBπ(L/(2π))^2.
For the square loop with the same wire length, the side length is L/4. The area of the square loop is (L/4)^2. The magnetic moment μ_s = i(L/4)^2, and the torque τ_s = iB(L/4)^2.
Comparing the two torques, τ_c = iBπ(L/(2π))^2 and τ_s = iB(L/4)^2, the torque on the circular loop is larger due to the π factor in the formula.

To know more about Magnetic visit-

https://brainly.com/question/2841288

#SPJ11

An office window has dimensions 3.4m by 2.1m. As a result of the passage of a storm, the outside air pressure drops to 0.96atm, but inside the pressure is held at 1.0atm. What net force pushes out on the window?

Answers

The net force pushing out on the window can be calculated using the formula:F = P * A. The net force pushing against the window is roughly 37,995 N, which is equivalent to 3.87 tonnes of force.

               First, we need to convert the pressures from atmospheres to Pascals:

Outside pressure = 0.96 atm = 96,000 Pa

Inside pressure = 1.0 atm = 101,325 Pa

The pressure difference is:

ΔP = P(outside) - P(inside)

ΔP = 96,000 - 101,325

ΔP = -5,325 Pa

Note that the pressure difference is negative, indicating that the net force will be pushing out on the window.

The area of the window is:

A = 3.4 * 2.1

A = 7.14 m^2

Now we can calculate the net force:

F = ΔP * A

F = -5,325 * 7.14

F = -37,994.5 N

The net force pushing out on the window is approximately 37,995 N, which is equivalent to approximately 3.87 tons of force.

To learn more about force:

https://brainly.com/question/13191643

#SPJ11

I need help with something, it's a science like question really, it's true or false.
Note: ONLY ANSWER IF YOU KNOW IT.
So true or false -A device that does 100 joules of work in 3 seconds has 300 watts of power.
Please answer before May 8th Thanks!

Answers

True because 100x3=300

why do we expect the cosmic background radiation to be almost, but not quite, the same in all directions?

Answers

We expect the cosmic background radiation (CBR) to be almost, but not quite, the same in all directions due to two primary reasons: the initial conditions of the universe and the Doppler effect.

1. Initial Conditions of the Universe: The CBR is the remnant radiation from the early universe, specifically from the period known as recombination, when atoms formed from the primordial plasma. The universe was initially highly homogeneous and isotropic, meaning it had similar properties in all directions. This leads to the CBR being almost the same in all directions.

2. Doppler Effect: Despite the initial uniformity, there are small fluctuations in the CBR due to the motion of the Earth relative to the cosmic microwave background. This motion causes a Doppler effect, which results in a slight anisotropy in the observed CBR. The Doppler effect makes the CBR appear slightly hotter (blueshifted) in the direction of our motion and slightly cooler (redshifted) in the opposite direction.

So, the cosmic background radiation is expected to be almost the same in all directions because of the homogeneous and isotropic nature of the early universe, but not quite the same due to the Doppler effect caused by the Earth's motion relative to the cosmic microwave background.

To learn more about Doppler effect - brainly.com/question/15318474

#SPJ11

Kelly does 600 J of work as the pushes a cow on roller skates. if she pushes the cow 4 meters away, how much force was Kelly pushing with?

Answers

To calculate the force Kelly was pushing with, we can use the equation:

Work (W) = Force (F) × Distance (d)

Given that Kelly does 600 J of work and pushes the cow 4 meters away, we can rearrange the equation to solve for force:

F = W / d

Plugging in the values, we get:

F = 600 J / 4 m

F = 150 N

Therefore, Kelly was pushing with a force of 150 Newtons.

A 10.0-cm-tall object is 12 cm in front of a diverging lens that has an-8-em focal length. Calculate the image distance A)-12.3 cm B)-4.80cm C)-1.55 cm D) 1.55 cm E) 4.80 cm F) 12.3 c

Answers

A 10.0-cm-tall object is 12 cm in front of a diverging lens that has an-8-em focal length. The image distance is 1.55 cm, option C is Correct.

We can use the thin lens equation:
[tex]\frac{1}{f} =\frac{1}{do} -\frac{1}{di}[/tex]
where f is the focal length, do is the object distance, and di is the image distance.
First, we need to convert the height of the object to meters:

A converging lens is an optical device that causes all light rays passing through it to converge. The primary purpose of a convergent lens is to focus and converge the incoming light rays from an object to produce a picture. The size of an object's picture will depend on how near it is to the lens; it might also remain the same.
10.0 cm = 0.1 m
Then, we can plug in the given values:
1/-8 = 1/0.12 - 1/di
Solving for di:
di = -1.55 cm
Since the image distance is negative, this means that the image is virtual (i.e. on the same side of the lens as the object).
Therefore, the answer is C) -1.55 cm.

Learn more about converging lens here

https://brainly.com/question/29994652

#SPJ11

If the pressure at a point is Im of water, what will be it's value in terms of 1m of oil? (Take, the density of oil to be 0.8 g/cm³) A. 0.8 B. 1 C. 1.25 D. 2.5​

Answers

The  value in terms of 1m of oil is 1.25

How to solve for the value

To convert the pressure at a point from 1 meter of water to its equivalent value in meters of oil, we can use the following formula:

Pressure = height × density × gravity

Let's first find the pressure exerted by 1 meter of water.

1 g x 0.8 = 0,8

1 x g x 1m = 0.8 x g * h2

We are to solve for h2

h2 = 1 / 0.8

= 1.25

Hence tghe  value in terms of 1m of oil is 1.25

Read more on pressure here:https://brainly.com/question/28012687

#SPJ1

in a young's double-slit experiment, the fringes are 1.0 mm apart. the screen is 1.8 m from the double slit that has a separation of 1.0 mm. what is the wavelength of the light?

Answers

In a Young's double-slit experiment, the fringes are formed due to interference of the light waves. The wavelength of the light used in the experiment is 360 nm.

The distance between two adjacent fringes is given by the equation d(sinθ) = mλ, where d is the separation between the two slits, θ is the angle of the fringe with respect to the central maximum, m is the order of the fringe, and λ is the wavelength of the light.

In this problem, we are given that the fringes are 1.0 mm apart and the slit separation is also 1.0 mm.

Since the distance from the double slit to the screen is 1.8 m, we can assume that the angle θ is small, so we can use the small-angle approximation sinθ ≈ θ.

Substituting the given values in the equation, we get [tex]1.0 * 10^{-3} = (1.8/\theta) * \lambda[/tex].

Solving for λ, we get λ = [tex]3.6 * 10^{-7}[/tex] m or 360 nm.

To learn more about wavelength click here https://brainly.com/question/13533093

#SPJ11

suppose a wire is 21 m long with a 0.075 mm diameter and has a resistance of 51 ω at 20.0°c.

Answers

The resistivity of the wire is 4.271 x 10^-8 Ωm.

To begin with, we need to use the formula for resistance:
R = ρ x L/A
where R is the resistance of the wire, ρ is the resistivity of the material, L is the length of the wire, and A is the cross-sectional area of the wire.
First, we need to calculate the cross-sectional area of the wire using its diameter:
d = 0.075 mm
r = d/2 = 0.0375 mm
A = π x r^2
A = π x (0.0375 mm)^2
A = 1.767 x 10^-6 m^2
Now, we can rearrange the formula for resistance to solve for resistivity:
ρ = RA/L
Substituting the given values:
R = 51 ω
A = 1.767 x 10^-6 m^2
L = 21 m

ρ = (51 ω x 1.767 x 10^-6 m^2) / 21 m
ρ = 4.271 x 10^-8 Ωm
Therefore, the resistivity of the wire is 4.271 x 10^-8 Ωm.

To know more about resistivity visit:-

https://brainly.com/question/29427458

#SPJ11

a 100-turn, 8.0-cm-diameter coil is made of 0.50-mm-diameter copper wire. a magnetic field is parallel to the axis of the coil. at what rate must b increase to induce a 2.0 a current in the coil?

Answers

To determine the required rate at which the magnetic field (B) must increase to induce a current of 2.0 A in the coil, we can use Faraday's law of electromagnetic induction, which states:

ε = -N * dΦ/dt

where ε represents the induced electromotive force (emf), N is the number of turns in the coil, and dΦ/dt is the rate of change of magnetic flux.

The magnetic flux (Φ) through the coil can be calculated as:

Φ = B * A

where B is the magnetic field and A is the area of the coil.

Given:

N = 100 turns

Diameter of the coil (d) = 8.0 cm = 0.08 m

Radius of the coil (r) = 0.04 m (half of the diameter)

Wire diameter (d_wire) = 0.50 mm = 0.00050 m

Current (I) = 2.0 A

The area of the coil can be calculated as:

A = π * r²

The area of the wire can be calculated as:

A_wire = π * (d_wire/2)²

The effective area for magnetic flux can be calculated as:

A_eff = A - A_wire

Substituting the given values into the equations, we can find A_eff and then calculate the required rate of change of magnetic field (dB/dt):

A = π * (0.04)^2

A_wire = π * (0.00050/2)^2

A_eff = A - A_wire

Using the calculated effective area, we can find dB/dt:

ε = -N * dΦ/dt

ε = -N * (dB/dt) * A_eff

Rearranging the equation to solve for dB/dt:

dB/dt = -(ε / (N * A_eff))

Substituting the known values:

N = 100 turns

A_eff = Calculated value

ε = I (current) = 2.0 A

By plugging in the values and performing the calculation, you will obtain the required rate at which the magnetic field must increase to induce a current of 2.0 A in the coil.

Learn more about Coil here:

https://brainly.com/question/15237530

#SPJ11

3. an object is 4.5 cm from a concave lens, with its base on the principal axis. the focal point of the lens is3 cm. a. show the location of the image relative to the lens using a ray diagram. is the image real or virtual, inverted or upright, and larger or smaller than the object?

Answers

1.8cm will be the location of the image relative to the lens. Image will be real, upright, and smaller  than the object

Define lens

A lens is a transmissive optical tool that employs refraction to focus or disperse a light beam. A compound lens is made up of numerous simple lenses that are often aligned along a common axis, as opposed to a simple lens, which is made up of a single transparent piece.

A concave lens is one that bends a straight light beam away from the source and focuses it into a distorted, upright virtual image. Both actual and virtual images can be created using it. At least one internal surface of concave lenses is curved.

u ⇒ 4.5cm

f ⇒ 3cm

v ⇒?

1/v ⇒ 1/f + 1/u

1/v ⇒ 1/3 +1/4.5

v ⇒3*4.5(3+4.5)

v ⇒1.8cm

To learn more about concave lens  use:

https://brainly.com/question/2289939

#SPJ4

suppose that water waves have a wavelength of 3.8 m and a period of 1.7 s. what is the velocity of these waves

Answers

Suppose that water waves have a wavelength of 3.8 m and a period of 1.7 s. The velocity of the water waves is 2.24 m/s.

Water waves are a type of disturbance or variation that propagate through water surfaces. These waves can be generated by wind, earthquakes, and other natural phenomena. Water waves are a type of disturbance or variation that propagate through water surfaces. These waves can be generated by wind, earthquakes, and other natural phenomena.
The velocity of a wave is given by the formula

v = λ/T,

where v is the velocity, λ is the wavelength, and T is the period.

Substituting the given values, we get

v = 3.8 m/1.7 s = 2.24 m/s.

Therefore, the velocity of the water waves is 2.24 m/s.


To learn more about, velocity, click here, https://brainly.com/question/30559316

#SPJ11

Two loudspeakers in a room emit 686 Hz sound wavesalong the x-axis.a. If the speakers are in phase, what is the smallest distance between the speakers for which the interference of the soundwaves is maximum destructive?b. If the speakers are out of phase, what is the smallest distancebetween the speakers for which the interference of the soundwaves is maximum constructive?

Answers

Smallest distance for constructive interference = λ ≈ 0.5 m

To answer this question, we need to use the equation for the interference of sound waves, which is given by:
I = I1 + I2 + 2I1I2cosΔφ
where I is the total intensity of the sound waves, I1 and I2 are the intensities of the individual waves emitted by the two loudspeakers, Δφ is the phase difference between the waves, and cosΔφ is the cosine of the phase difference.
a. If the speakers are in phase, then Δφ = 0, which means that cosΔφ = 1. In this case, the interference is maximum destructive when the waves are completely out of phase, which occurs when the path difference between the waves is equal to half a wavelength. The wavelength of the sound waves is given by:
λ = c/f
where c is the speed of sound in air (approximately 343 m/s at room temperature and atmospheric pressure), and f is the frequency of the waves (686 Hz). Therefore, the wavelength of the waves is:
λ = 343/686 = 0.5 m
Half a wavelength is therefore:
λ/2 = 0.25 m
This is the path difference that corresponds to maximum destructive interference. The distance between the two speakers is equal to this path difference, since the waves are emitted along the x-axis. Therefore, the smallest distance between the speakers for maximum destructive interference is 0.25 m.
b. If the speakers are out of phase, then Δφ = π, which means that cosΔφ = -1. In this case, the interference is maximum constructive when the waves are completely in phase, which occurs when the path difference between the waves is equal to an integer number of wavelengths.
d = λ = 0.5 m
This is the smallest distance for which maximum constructive interference occurs when the speakers are out of phase.
a. For maximum destructive interference when speakers are in phase, the path difference between the sound waves should be an odd multiple of half the wavelength (λ/2). The smallest distance corresponds to the first odd multiple, which is simply λ/2.
To find the wavelength, use the formula: λ = v / f, where v is the speed of sound (approximately 343 m/s at room temperature) and f is the frequency (686 Hz).
λ = 343 m/s / 686 Hz ≈ 0.5 m
Smallest distance for destructive interference = λ/2 ≈ 0.5 m / 2 ≈ 0.25 m
b. For maximum constructive interference when speakers are out of phase, the path difference should be an even multiple of half the wavelength (nλ/2). The smallest distance corresponds to the first even multiple, which is 1λ.

The smallest distance between the speakers for maximum destructive interference is approximately 0.25 meters. the smallest distance between the speakers for maximum constructive interference is 0.5 meters.

To determine the smallest distance between the speakers for maximum destructive interference (when the speakers are in phase) and maximum constructive interference (when the speakers are out of phase), we need to consider the interference pattern created by the sound waves.

a. Maximum Destructive Interference (Speakers in Phase):

In destructive interference, the crests of one sound wave coincide with the troughs of the other, resulting in cancellation. For maximum destructive interference, the path difference between the two speakers must be half a wavelength (λ/2).

The formula for the path difference is given by:

Δx = (m + 1/2) * λ/2

Where:

Δx = Path difference

m = Integer representing the order of destructive interference

λ = Wavelength of the sound wave

Since the frequency of the sound wave is given as 686 Hz, we can find the wavelength (λ) using the formula:

λ = c / f

Where:

c = Speed of sound in air (approximately 343 m/s at room temperature)

f = Frequency of the sound wave (686 Hz)

Substituting the values:

λ = 343 m/s / 686 Hz

λ ≈ 0.5 m (approximately)

To find the smallest distance for maximum destructive interference, we set m = 0 to minimize the path difference:

Δx = (0 + 1/2) * 0.5 m

Δx ≈ 0.25 m

Therefore, the smallest distance between the speakers for maximum destructive interference is approximately 0.25 meters.

b. Maximum Constructive Interference (Speakers out of Phase):

In constructive interference, the crests of one sound wave coincide with the crests of the other, resulting in reinforcement. For maximum constructive interference, the path difference between the two speakers must be an integer number of wavelengths (m * λ).

Using the same wavelength (λ) calculated in part a (approximately 0.5 m), we can find the smallest distance for maximum constructive interference by setting m = 1 to minimize the path difference:

Δx = 1 * 0.5 m

Δx = 0.5 m

Therefore, the smallest distance between the speakers for maximum constructive interference is 0.5 meters.

Learn more about destructive interference

https://brainly.com/question/31857527

#SPJ4

Suppose you have a uniform Electric field with magnitude of 5 V/m in the +x direction. What can ycu say about potential difference between two points separated by a distance of 2 m along the x-axis? What can you say about potential difference between two points separated by a distance of 3 m along the y-axis? Is your answer to this question consistent with the answer to the question 2? 3.

Answers

The potential difference between two points separated by a distance of 2 m along the x-axis is 10 V. The potential difference between two points separated by a distance of 3 m along the y-axis is 0 V. Yes, my answer is consistent with the answer to questions 2 and 3.

The potential difference between two points in an electric field is given by the product of the electric field strength and the distance between the two points. Therefore, the potential difference between two points separated by a distance of 2 m along the x-axis is 5 V/m * 2 m = 10 V. Similarly, the potential difference between two points separated by a distance of 3 m along the y-axis is 5 V/m * 0 m = 0 V, because the electric field is perpendicular to the y-axis and does not contribute to the potential difference. This is consistent with the fact that the electric field is uniform and only has a component in the x-direction.

To learn more about potential difference:

https://brainly.com/question/12198573

#SPJ11

Other Questions
which of the following events appears in the cash flows from financing activities section of the statement of cash flows? a. cash purchase of equipment b. cash purchase of bonds issued by another company c. cash received as repayment for funds loaned d. cash purchase of treasury stock Answer the following questions by referring to the recipe: You want to teach learners to write their own recipe or instructions for making or doing something. Explain how you would take them through the different phases of the writing process to come up with a product (their own recipe or instructions for making or doing something). (Remember: You will not receive any marks for a general discussion of the writing phases - you need to explain how you would teach them to write a recipe or instructions during the writing process. The focus is on the writing process, not the demonstration of a recipe!) (30) an online buying club requires an annual fee of $140 in order to qualify for a discount on purchases of 18 percent. what amount would a person have to buy in order to save enough to cover the cost of the membership? T/F: For a party to take by adverse possession, the party's possession must not be hostile to the true owner's rights PLEASE HELPPPP it's urgent!!(PART A) 12x+18x-12Factor completely. -----(PART B)Check your work from Part A by multiplying.* YOU MUST SHOW ALL WORK FOR CREDIT * who were the only mesoamerican people to devise a complete written language? an unsought product is described as a product that the consumer either does not know about or knows about but does not normally consider or desire buying.T/F A mother got a surprise visit from her son, a criminal on the run. Her son asked her to give him her gun so that he could kill a drug dealer who was pursuing him. He told her that the drug dealer would kill him if he did not kill the drug dealer first. The mother, who loved her son more than anything, gave him her gun and a package of bullets. The next day, the son went to another city, found the drug dealer, and shot and killed him. A few days later, the police found the son hiding in a shed in a friend's backyard and arrested him for the drug dealer's murder. They then traced the gun's ownership to the mother and charged her with murder as well. The son was later convicted of the drug dealer's murder.Can the mother be convicted of murdering the drug dealer? which of the following is a key principle of ecological models of health behavior? which of the following is a key principle of ecological models of health behavior? a. multilevel interventions are the most effective at behavior change b. interventions targeting 1 level of influence are the most effective at behavior change c. interventions should target all levels of influence d. ecological models are not applicable for behavior change, just behavior description on january 2, 20x1, ziegler company issues a four-year note in exchange for a license agreement requiring four annual payments of $27,956. the market value of the four-year agreement is $100,000. the first payment is due on the day the agreement is signed. the effective interest rate is 8%. the first payment includes interest expense of: What is the cosine of angle P? the water pressure 10 feet underwater in a swimming pool is blank the water pressure under 5 feet of water true or false? the highest concentration of thc is found in the stems and seeds. what are the values of sys.argv[1] and type(sys.argv[2]) for the command-line input > python prog.py june 16 ? group of answer choices june, june, 16 june, none june, in which phase of the group talk process does a team decide on acceptable standards and move toward unanimity? Here are two triangles show that the triangles are similar what is the scale factor from triangle abc to abc A conducting rod whose length is ? = 27.0 cm is placed on frictionless U-shaped metal rails that is connected to a lightbulb having a resistance of 5.00 ? as shown in the figure. The rails and the rod are in the plane of the page. A constant uniform magnetic field of strength 1.20 T is applied perpendicular to and out of the paper. An external applied force moves the rod to the right with a constant speed. At what speed should the rod be pulled so that the lightbulb will consume energy at a rate of 1.10 W? Which page orientation should you select to accommodate a wide chart or table?TallPortraitWideLandscape Suppose Kenji runs a small business that manufactures shirts. Assume that the market for shirts is a competitive market, and the market price is $20 per shirt. The following graph shows Kenji's total cost curve. Use the blue points (circle symbol) to plot total revenue and the green points (triangle symbol) to plot profit for shirts quantities zero through seven (inclusive) that Kenfi produces. (circie symbol) to plot marginal revenue and the orange points (square symbol) to piot marginal cost at each quantity. Kenji's profit is maximized when he produces __________ shirts. When he does this, the marginal cost of the last shirt he produces is $__________ which is __________ than the price Kenji receives for each shirt he sells. The marginal cost of producing an additional shirt (that is, one more shirt than would maximize his profit) is $__________, which is __________ than the price Kenji receives for each shirt he sells. Therefore, Kenji's profit-maximizing quantity corresponds to the intersection of the __________ curves. Because Kenji is a price taker, this last condition can also be written as __________. What conflicting views did Lincoln have regarding the abolition of slavery?