A computer manufacturer both produces and assembles computer parts in its plant. It was reported that 30 percent of the batteries produced are defective. The probability that the digital scanner will notice that a battery is defective and remove it from the assembly line is 0.9 if the battery is defective. The probability that the digital scanner will mistake a battery to be defective and remove it from the assembly line is 0.2 if the battery is not defective. Find the probability that a battery is defective given that it is removed from the assembly line. (30 points)

Answers

Answer 1

The probability that a battery is defective given that it is removed from the assembly line is 0.617.

Here, We have to find the probability that a battery is defective given that it is removed from the assembly line.

According to Bayes' theorem,

P(D|A) = P(A|D) × P(D) / [P(A|D) × P(D)] + [P(A|ND) × P(ND)]

Where, P(D) = Probability of a battery being defective = 0.3

P(ND) = Probability of a battery not being defective = 1 - 0.3 = 0.7

P(A|D) = Probability that digital scanner will remove the battery from the assembly line if it is defective = 0.9

P(A|ND) = Probability that digital scanner will remove the battery from the assembly line if it is not defective = 0.2

Probability that a battery is defective given that it is removed from the assembly line

P(D|A) = P(A|D) × P(D) / [P(A|D) × P(D)] + [P(A|ND) × P(ND)]P(D|A) = 0.9 × 0.3 / [0.9 × 0.3] + [0.2 × 0.7]P(D|A) = 0.225 / (0.225 + 0.14)

P(D|A) = 0.617

Approximately, the probability that a battery is defective given that it is removed from the assembly line is 0.617.

Learn more about probability visit:

brainly.com/question/31828911

#SPJ11


Related Questions

a) We have a quadratic function in two variables
z=f(x,y)=2⋅y^2−2⋅y+2⋅x^2−10⋅x+16
which has a critical point.
First calculate the Hesse matrix of the function and determine the signs of the eigenvalues. You do not need to calculate the eigenvalues to determine the signs.
Find the critical point and enter it below in the form [x,y]
Critical point:
Classification:
(No answer given)
b)
We have a quadratic function
w=g(x,y,z)=−z^2−8⋅z+2⋅y^2+6⋅y+2⋅x^2+18⋅x+24
which has a critical point.
First calculate the Hesse matrix of the function and determine the signs of the eigenvalues. You do not need to calculate the eigenvalues to determine the signs.
Find the critical point and enter it below in the form [x,y,z]
Critical point:
Classify the point. Write "top", "bottom" or "saal" as the answer.
Classification:
(No answer given)

Answers

a)

Critical point: [1,1]

Classification: Minimum point

b)

Critical point: [-3,-2,-5]

Classification: Maximum point

The Hesse matrix of a quadratic function is a symmetric matrix that has partial derivatives of the function as its entries. To find the eigenvalues of the Hesse matrix, we can use the determinant or characteristic polynomial. However, in this problem, we do not need to calculate the eigenvalues as we only need to determine their signs.

For function f(x,y), the Hesse matrix is:

H(f) = [4 0; 0 4]

Both eigenvalues are positive, indicating that the critical point is a minimum point.

For function g(x,y,z), the Hesse matrix is:

H(g) = [4 0 0; 0 4 -1; 0 -1 -2]

The determinant of H(g) is negative, indicating that there is a negative eigenvalue. Thus, the critical point is a maximum point.

By setting the gradient of each function to zero and solving the system of equations, we can find the critical points.

Know more about Hesse here:

https://brainly.com/question/31508978

#SPJ11

Kristina invests a total of $28,500 in two accounts paying 11% and 13% simple interest, respectively. How much was invested in each account if, after one year, the total interest was $3,495.00. A

Answers

Kristina made the investment of $10,500 at 11% and $18,000 at 13% in each account, after one year if the the total interest was $3,495.00.

Let x be the amount invested at 11% and y be the amount invested at 13%.

The sum of the amounts is the total amount invested, which is $28,500.

Therefore, we have:

x + y = 28,500

We are also given that the total interest earned after one year is $3,495.

We can use the simple interest formula:

I = Prt,

where I is the interest,

P is the principal,

r is the interest rate as a decimal,

and t is the time in years. For the 11% account, we have:

I₁ = 0.11x(1) = 0.11x

For the 13% account, we have:

I₂ = 0.13y(1) = 0.13y

The sum of the interests is equal to $3,495, so we have:

0.11x + 0.13y = 3,495

Multiplying the first equation by 0.11, we get:

0.11x + 0.11y = 3,135

Subtracting this equation from the second equation, we get:

0.02y = 360

Dividing both sides by 0.02, we get:

y = 18,000

Substituting this into the first equation, we get:

x + 18,000 = 28,500x = 10,500

Therefore, Kristina invested $10,500 at 11% and $18,000 at 13%.

To know more about investment refer here:

https://brainly.com/question/15105766

#SPJ11

Find a quadratic equation whose sum and product of the roots are 7 and 5 respectively.

Answers

Let us assume that the roots of a quadratic equation are x and y respectively.

[tex](2),x(7-x)=5=>7x - x² = 5=>x² - 7x + 5 = 0[/tex]

[tex]x² - 7x + 10 = 0[/tex]

So, two numbers that add up to -7 and multiply to 5 are -5 and -2. Then, we can factorize the above quadratic equation into.

 [tex](x-2)(x-5)=0[/tex]

The roots of the quadratic equation are x=2 and x=5.Therefore, the required quadratic equation is: Expanding the above quadratic equation we get.

[tex]x² - 7x + 10 = 0[/tex]

To know more about assume visit:

https://brainly.com/question/24282003

#SPJ11

Marcus makes $30 an hour working on cars with his uncle. If y represents the money Marcus has earned for working x hours, write an equation that represents this situation.

Answers

Answer:    y    =     30x

Hence, The Equation Representing the money that MARCUS EARNS for WORKING (X)  HOURS  is:      y    =     30x

Step-by-step explanation:

MAKE A PLAN:

We need to find the Equation that represents the money MARCUS EARNS based on the number of hours he works.

Y  represents the money that MARCUS EARNED in X HOURS

Now,   Y   =   30x

SOLVE THE PROBLEM:

        In an Hour MARCUS makes:

        $30.00

In X HOURS MARCUS makes:

        30  *   X

(1) - WRITE THE EQUATION

         Y  represents the money that MARCUS EARNED in X HOURS

         Y   =    30x

DRAW THE CONCLUSION:

Hence, The Equation Representing the money that MARCUS EARNS for WORKING (X)  HOURS is:      y    =     30x

I hope this helps you!

Suppose at a Supermarket chain the weekly demand for potatoes has an average of 10600 kg with a standard deviation of 960 kg . What is the z-score in a week where the demand is X = 10984 kg
O a. None of the other choices is correct
O b. 0.40
O c. -2.65
O d. -420

Answers

Option (a) None of the other choices is correct is the answer.

Mean (μ) = 10600 kg Standard deviation (σ) = 960 kgThe demand is X = 10984 kg.

To find the z-score, we use the formula of z-score=z=(X-μ)/σ Substitute the given values= (10984 - 10600) / 960= 3.9333 ≈ 3.93Therefore, the z-score in a week where the demand is X = 10984 kg is 3.93 which is not given in the options.

Learn more about Standard deviation

https://brainly.com/question/29115611

#SPJ11

. Compute f ′
(a) algebraically for the given value of a. HINT [See Example 1.] f(x)=−5x−x 2
;a=9

Answers

The derivative of [tex]f(x) = -5x - x^{2} at x = 9 is f'(9) = -23.[/tex]

To compute the derivative of the function f(x) = [tex]-5x - x^2[/tex] algebraically, we can use the power rule and the constant multiple rule.

Given:

[tex]f(x) = -5x - x^2}[/tex]

a = 9

Let's find the derivative f'(x):

[tex]f'(x) = d/dx (-5x) - d/dx (x^2})[/tex]

Applying the constant multiple rule, the derivative of -5x is simply -5:

[tex]f'(x) = -5 - d/dx (x^2})[/tex]

To differentiate [tex]x^2[/tex], we can use the power rule. The power rule states that for a function of the form f(x) =[tex]x^n[/tex], the derivative is given by f'(x) = [tex]nx^{n-1}[/tex]. Therefore, the derivative of [tex]x^2[/tex] is 2x:

f'(x) = -5 - 2x

Now, we can evaluate f'(x) at a = 9:

f'(9) = -5 - 2(9)

f'(9) = -5 - 18

f'(9) = -23

Therefore, the derivative of [tex]f(x) = -5x - x^2} at x = 9 is f'(9) = -23.[/tex]

Learn more about derivative at:

brainly.com/question/989103

#SPJ4

There is a road consisting of N segments, numbered from 0 to N-1, represented by a string S. Segment S[K] of the road may contain a pothole, denoted by a single uppercase "x" character, or may be a good segment without any potholes, denoted by a single dot, ". ". For example, string '. X. X" means that there are two potholes in total in the road: one is located in segment S[1] and one in segment S[4). All other segments are good. The road fixing machine can patch over three consecutive segments at once with asphalt and repair all the potholes located within each of these segments. Good or already repaired segments remain good after patching them. Your task is to compute the minimum number of patches required to repair all the potholes in the road. Write a function: class Solution { public int solution(String S); } that, given a string S of length N, returns the minimum number of patches required to repair all the potholes. Examples:

1. Given S=". X. X", your function should return 2. The road fixing machine could patch, for example, segments 0-2 and 2-4.

2. Given S = "x. Xxxxx. X", your function should return 3The road fixing machine could patch, for example, segments 0-2, 3-5 and 6-8.

3. Given S = "xx. Xxx", your function should return 2. The road fixing machine could patch, for example, segments 0-2 and 3-5.

4. Given S = "xxxx", your function should return 2. The road fixing machine could patch, for example, segments 0-2 and 1-3. Write an efficient algorithm for the following assumptions:

N is an integer within the range [3. 100,000);

string S consists only of the characters". " and/or "X"

Answers

Finding the smallest number of patches needed to fill in every pothole on a road represented by a string is the goal of the provided issue.Here is an illustration of a Java implementation:

Java class Solution, public int solution(String S), int patches = 0, int i = 0, and int n = S.length();        as long as (i n) and (S.charAt(i) == 'x') Move to the section following the patched segment with the following code: patches++; i += 3; if otherwise i++; // Go to the next segment

       the reappearance of patches;

Reason: - We set the starting index 'i' to 0 and initialise the number of patches to 0.

- The string 'S' is iterated over till the index 'i' reaches its conclusion.

- We increase the patch count by 1 and add a patch if the current segment at index 'i' has the pothole indicated by 'x'.

learn more about issue here :

https://brainly.com/question/29869616

#SPJ11

What is the intersection of these two sets: A = {2,3,4,5) B = {4,5,6,7)?

Answers

The answer to the given question is the intersection of set A = {2, 3, 4, 5} and set B = {4, 5, 6, 7} is {4, 5}.The intersection of two sets refers to the elements that are common to both sets. In this particular question, the intersection of set A = {2, 3, 4, 5} and set B = {4, 5, 6, 7} is the set of elements that are present in both sets.

To find the intersection of two sets, you need to compare the elements of one set to the elements of another set. If there are any elements that are present in both sets, you add them to the intersection set.

In this case, the intersection of set A and set B would be {4, 5}.This is because 4 and 5 are common to both sets, while 2 and 3 are only present in set A and 6 and 7 are only present in set B.

Therefore, the intersection of A and B is {4, 5}.Thus, the answer to the given question is the intersection of set A = {2, 3, 4, 5} and set B = {4, 5, 6, 7} is {4, 5}.

For more question on intersection

https://brainly.com/question/30915785

#SPJ8

The
dot product of the vectors is: ?
The angle between the vectors is ?°
Compute the dot product of the vectors u and v , and find the angle between the vectors. {u}=\langle-14,0,6\rangle \text { and }{v}=\langle 1,3,4\rangle \text {. }

Answers

Therefore, the dot product of the vectors is 10 and the angle between the vectors is approximately 11.54°.

The vectors are u=⟨−14,0,6⟩ and v=⟨1,3,4⟩. The dot product of the vectors is:

Dot product of u and v = u.v = (u1, u2, u3) .

(v1, v2, v3)= (-14 x 1)+(0 x 3)+(6 x 4)=-14+24=10

Therefore, the dot product of the vectors u and v is 10.

The angle between the vectors can be calculated by the following formula:

cos⁡θ=u⋅v||u||×||v||

cosθ = (u.v)/(||u||×||v||)

Where ||u|| and ||v|| denote the magnitudes of the vectors u and v respectively.

Substituting the values in the formula:

cos⁡θ=u⋅v||u||×||v||

cos⁡θ=10/|−14,0,6|×|1,3,4|

cos⁡θ=10/√(−14^2+0^2+6^2)×(1^2+3^2+4^2)

cos⁡θ=10/√(364)×26

cos⁡θ=10/52

cos⁡θ=5/26

Thus, the angle between the vectors u and v is given by:

θ = cos^-1 (5/26)

The angle between the vectors is approximately 11.54°.Therefore, the dot product of the vectors is 10 and the angle between the vectors is approximately 11.54°.

To know more about dot product visit:

https://brainly.com/question/23477017

#SPJ11

In the country of United States of Heightlandia, the height measurements of ten-year-old children are approximately normally distributed with a mean of 55 inches, and standard deviation of 5.4 inches. A) What is the probability that a randomly chosen child has a height of less than 56.9 inches? Answer= (Round your answer to 3 decimal places.) B) What is the probability that a randomly chosen child has a height of more than 40 inches?

Answers

Given that the height measurements of ten-year-old children are approximately normally distributed with a mean of 55 inches and a standard deviation of 5.4 inches.

We have to find the probability that a randomly chosen child has a height of less than 56.9 inches and the probability that a randomly chosen child has a height of more than 40 inches. Let X be the height of the ten-year-old children, then X ~ N(μ = 55, σ = 5.4). The probability that a randomly chosen child has a height of less than 56.9 inches can be calculated as:

P(X < 56.9) = P(Z < (56.9 - 55) / 5.4)

where Z is a standard normal variable and follows N(0, 1).

P(Z < (56.9 - 55) / 5.4) = P(Z < 0.3148) = 0.6236

Therefore, the probability that a randomly chosen child has a height of less than 56.9 inches is 0.624 (rounded to 3 decimal places).We need to find the probability that a randomly chosen child has a height of more than 40 inches. P(X > 40).We know that the height measurements of ten-year-old children are normally distributed with a mean of 55 inches and standard deviation of 5.4 inches. Using the standard normal variable Z, we can find the required probability.

P(Z > (40 - 55) / 5.4) = P(Z > -2.778)

Using the standard normal distribution table, we can find that P(Z > -2.778) = 0.997Therefore, the probability that a randomly chosen child has a height of more than 40 inches is 0.997.

The probability that a randomly chosen child has a height of less than 56.9 inches is 0.624 (rounded to 3 decimal places) and the probability that a randomly chosen child has a height of more than 40 inches is 0.997.

To learn more about standard normal variable visit:

brainly.com/question/30911048

#SPJ11

match the developmental theory to the theorist. psychosocial development:______

cognitive development:____

psychosexual development: _________

Answers

Developmental Theory and Theorist Match:

Psychosocial Development: Erik Erikson

Cognitive Development: Jean Piaget

Psychosexual Development: Sigmund Freud

Erik Erikson was a prominent psychoanalyst and developmental psychologist who proposed the theory of psychosocial development. According to Erikson, individuals go through eight stages of psychosocial development throughout their lives, each characterized by a specific psychosocial crisis or challenge. These stages span from infancy to old age and encompass various aspects of social, emotional, and psychological development. Erikson believed that successful resolution of each stage's crisis leads to the development of specific virtues, while failure to resolve these crises can result in maladaptive behaviors or psychological issues.

To know more about developmental theory here

https://brainly.com/question/30766397

#SPJ4

a company produces two types of the jackets; windbreakers and rainbreakers. the company has at most 72 hours of finishing time per week and 61 hours of packaging time per week. each windbreaker jacket takes 42 minutes of finishing time and 22 minutes of packaging time per week, whereas each rainbreaker jacket takes 69 minutes of finshing time and 33 minutes of packaging time per week. the company's profit for each windbreaker and rainbreaker jacket is 25 and 41, respectively. let x denote the number of windbeaker jackets they should produce and y denote the number of rainbreaker jackets they should produce. the company wants to maximize profit. set up the linear programming problem for this situation. a) max p

Answers

The linear programming problem can be formulated as follows:

Maximize p = 25x + 41y

Subject to:

0.7x + 1.15y ≤ 72 (Finishing Time Constraint)

0.37x + 0.55y ≤ 61 (Packaging Time Constraint)

x ≥ 0

y ≥ 0

To set up the linear programming problem for maximizing the profit, let's define the decision variables and the objective function.

Decision Variables:

Let:

x: the number of windbreaker jackets produced per week

y: the number of rainbreaker jackets produced per week

Objective Function:

The objective is to maximize the profit (p) for the company. The profit for each windbreaker jacket is $25, and for each rainbreaker jacket is $41. Therefore, the objective function is:

p = 25x + 41y

Constraints:

Finishing Time Constraint: The company has at most 72 hours of finishing time per week. Each windbreaker jacket takes 42 minutes of finishing time, and each rainbreaker jacket takes 69 minutes of finishing time. Converting the finishing time to hours:

42 minutes = 42/60 hours = 0.7 hours (for each windbreaker)

69 minutes = 69/60 hours ≈ 1.15 hours (for each rainbreaker)

The constraint can be written as:

0.7x + 1.15y ≤ 72

Packaging Time Constraint: The company has at most 61 hours of packaging time per week. Each windbreaker jacket takes 22 minutes of packaging time, and each rainbreaker jacket takes 33 minutes of packaging time. Converting the packaging time to hours:

22 minutes = 22/60 hours ≈ 0.37 hours (for each windbreaker)

33 minutes = 33/60 hours ≈ 0.55 hours (for each rainbreaker)

The constraint can be written as:

0.37x + 0.55y ≤ 61

Non-Negativity Constraints:

x ≥ 0 (the number of windbreaker jackets cannot be negative)

y ≥ 0 (the number of rainbreaker jackets cannot be negative)

To know more about linear programming click here :

https://brainly.com/question/29405477

#SPJ4

Can You Choose + Or − At Each Place To Get A Correct Equality 1±2±3±4±5±6±7±8±9±10=0

Answers

By carefully choosing the signs, we can obtain an equality where 1±2±3±4±5±6±7±8±9±10 equals 0. To find a combination of plus (+) and minus (-) signs that makes the equation 1±2±3±4±5±6±7±8±9±10 equal to 0, we need to carefully consider the properties of addition and subtraction.

Since the equation involves ten terms, we have several possibilities to explore.

First, let's observe that if we alternate between adding and subtracting the terms, the sum will always be odd. This means that we cannot simply use alternating signs for all the terms.

Next, we can consider the sum of the ten terms without any signs. This sum is 1+2+3+4+5+6+7+8+9+10 = 55. Since 55 is odd, we know that we need to change some of the signs to make the sum equal to 0.

To achieve a sum of 0, we can notice that if we pair numbers with opposite signs, their sum will be 0. For example, if we pair 1 and -1, 2 and -2, and so on, the sum of each pair will be 0, resulting in a total sum of 0.

To implement this approach, we can choose the signs as follows:

1 + 2 - 3 + 4 - 5 + 6 - 7 + 8 - 9 + 10 = 0

In this arrangement, we have paired each positive number with its corresponding negative number. By doing so, we ensure that the sum of each pair is 0, resulting in a total sum of 0.

Therefore, by carefully choosing the signs, we can obtain an equality where 1±2±3±4±5±6±7±8±9±10 equals 0.

Learn more about negative number here:

https://brainly.com/question/30291263

#SPJ11

What are irrational numbers between 1 and square root 2

Answers

The irrational numbers between 1 and √2 are 1.247......, 1.367.... and  1.1509....

How to determine the irrational numbers between the numbers

From the question, we have the following parameters that can be used in our computation:

1 and square root 2

Rewrite as

1 and √2

When evaluated, we have

1 and 1.41421356.....

The irrational numbers between the numbers are numbers that cannot be expressed as fractions

Some of these numbers are

1.247......

1.367....

1.1509....

Read more about irrational numbers at

https://brainly.com/question/20400557

#SPJ1

Describe verbally the transformations that can be used to obtain the graph of g from the graph of f . g(x)=4^{x+3} ; f(x)=4^{x} Select the correct choice below and, if necessary, fill

Answers

To obtain the graph of g(x) from the graph of f(x), we perform a horizontal translation of 3 units to the left and a vertical stretch of 4. The correct choice is B.

The transformations that can be used to obtain the graph of g from the graph of f are described below: Translation If we replace f (x) with f (x) + k, where k is a constant, the graph is translated k units upward. If we substitute f (x − h), we obtain the graph that is shifted h units to the right.

On the other hand, if we substitute f (x + h), we obtain the graph that shifted h units to the left. In this case, [tex]g(x) = 4^{(x + 3)}[/tex] and [tex]f(x) = 4^x[/tex], therefore to obtain the graph of g from the graph of f, we will translate the graph of f three units to the left.

Vertical stretch - The graph is vertically stretched by a factor of a > 1 if we replace f (x) with f (x). The graph of f(x) will be stretched vertically by a factor of 4 to obtain the graph of g(x).

Thus, if the transformation rules are applied, we can move the graph of f(x) three units to the left and stretch it vertically by a factor of 4 to obtain the graph of g(x).

So, the transformation from f(x) to g(x) is a horizontal translation of 3 units to the left and a vertical stretch of 4. Therefore, the correct choice is B.

For more questions on graph

https://brainly.com/question/19040584

#SPJ8

Gordon Rosel went to his bank to find out how long it will take for \( \$ 1,300 \) to amount to \( \$ 1,720 \) at \( 12 \% \) simple interest. Calculate the number of years. Note: Round time in years

Answers

To calculate the number of years it will take for $1,300 to amount to $1,720 at 12% simple interest, we can use the formula for simple interest:

[tex]\[ I = P \cdot r \cdot t \].[/tex] I is the interest earned, P is the principal amount (initial investment), r is the interest rate (as a decimal), t is the time period in years

In this case, we have:

- P = $1,300

- I = $1,720 - $1,300 = $420

- r = 12% = 0.12

- t is what we need to calculate

Substituting the given values into the formula, we have:

[tex]\[ 420 = 1300 \cdot 0.12 \cdot t \][/tex]

To solve for t, we divide both sides of the equation by (1300 * 0.12):

[tex]\[ \frac{420}{1300 \cdot 0.12} = t \][/tex]

Evaluating the right-hand side of the equation, we find:

[tex]\[ t \approx 0.1077 \][/tex]

Rounding to the nearest whole number, the time in years is approximately 1 year.

Therefore, it will take approximately 1 year for $1,300 to amount to $1,720 at 12% simple interest.

Learn more about principal amount here:

https://brainly.com/question/31561681

#SPJ11

Make up a piecewise function that changes behaviour at x=−5,x=−2, and x=3 such that at two of these points, the left and right hand limits exist, but such that the limit exists at exactly one of the two; and at the third point, the limit exists only from one of the left and right sides. (Prove your answer by calculating all the appropriate limits and one-sided limits.)
Previous question

Answers

A piecewise function that satisfies the given conditions is:

f(x) = { 2x + 3, x < -5,

        x^2, -5 ≤ x < -2,

        4, -2 ≤ x < 3,

        √(x+5), x ≥ 3 }

We can construct a piecewise function that meets the specified requirements by considering the behavior at each of the given points: x = -5, x = -2, and x = 3.

At x = -5 and x = -2, we want the left and right hand limits to exist but differ. For x < -5, we choose f(x) = 2x + 3, which has a well-defined limit from both sides. Then, for -5 ≤ x < -2, we select f(x) = x^2, which also has finite left and right limits but differs at x = -2.

At x = 3, we want the limit to exist from only one side. To achieve this, we define f(x) = 4 for -2 ≤ x < 3, where the limit exists from both sides. Finally, for x ≥ 3, we set f(x) = √(x+5), which has a limit only from the right side, as the square root function is not defined for negative values.

By carefully choosing the expressions for each interval, we create a piecewise function that satisfies the given conditions regarding limits and one-sided limits at the specified points.

To know more about piecewise function refer here:

https://brainly.com/question/28225662

#SPJ11

Let X 1

,…,X n

be a random sample from a gamma (α,β) distribution. ​
. f(x∣α,β)= Γ(α)β α
1

x α−1
e −x/β
,x≥0,α,β>0. Find a two-dimensional sufficient statistic for θ=(α,β)

Answers

The sum of the random variables T(X) = X1 + X2 + ... + Xn is a two-dimensional sufficient statistic for the parameters θ = (α, β) in the gamma distribution.

To find a two-dimensional sufficient statistic for the parameters θ = (α, β) in a gamma distribution, we can use the factorization theorem of sufficient statistics.

The factorization theorem states that a statistic T(X) is a sufficient statistic for a parameter θ if and only if the joint probability density function (pdf) or probability mass function (pmf) of the random variables X1, X2, ..., Xn can be factorized into two functions, one depending only on the data and the statistic T(X), and the other depending only on the parameter θ.

In the case of the gamma distribution, the joint pdf of the random sample X1, X2, ..., Xn is given by:

f(x1, x2, ..., xn | α, β) = (β^α * Γ(α)^n) * exp(-(x1 + x2 + ... + xn)/β) * (x1 * x2 * ... * xn)^(α - 1)

To find a two-dimensional sufficient statistic, we need to factorize this joint pdf into two functions, one involving the data and the statistic, and the other involving the parameters θ = (α, β).

Let's define the statistic T(X) as the sum of the random variables:

T(X) = X1 + X2 + ... + Xn

Now, let's rewrite the joint pdf using the statistic T(X):

f(x1, x2, ..., xn | α, β) = (β^α * Γ(α)^n) * exp(-T(X)/β) * (x1 * x2 * ... * xn)^(α - 1)

We can see that the joint pdf can be factorized into two functions as follows:

g(x1, x2, ..., xn | T(X)) = (x1 * x2 * ... * xn)^(α - 1)

h(T(X) | α, β) = (β^α * Γ(α)^n) * exp(-T(X)/β)

Now, we have successfully factorized the joint pdf, where the first function g(x1, x2, ..., xn | T(X)) depends only on the data and the statistic T(X), and the second function h(T(X) | α, β) depends only on the parameters θ = (α, β).

Therefore, the sum of the random variables T(X) = X1 + X2 + ... + Xn is a two-dimensional sufficient statistic for the parameters θ = (α, β) in the gamma distribution.

To Know More About gamma distribution, Kindly Visit:

https://brainly.com/question/28335316

#SPJ11

The distribution of bags of chips produced by a vending machine is normal with a mean of 8.1 ounces and a standard deviation of 0.1 ounces.
The proportion of bags of chips that weigh under 8 ounces or more is:
O 0.159
0.500
0.841
0.659

Answers

The proportion of bags of chips that weigh under 8 ounces or more is approximately 0.159, or 15.9%.

To find the proportion of bags of chips that weigh under 8 ounces or more, we need to calculate the cumulative probability up to the value of 8 ounces in a normal distribution with a mean of 8.1 ounces and a standard deviation of 0.1 ounces.

Using a standard normal distribution table or a statistical software, we can find the cumulative probability for the z-score corresponding to 8 ounces.

The z-score can be calculated using the formula:

z = (x - μ) / σ

where x is the value of interest (8 ounces), μ is the mean (8.1 ounces), and σ is the standard deviation (0.1 ounces).

Substituting the values:

z = (8 - 8.1) / 0.1

z = -1

Looking up the cumulative probability for a z-score of -1 in a standard normal distribution table, we find the value to be approximately 0.159.

Therefore, the proportion of bags of chips that weigh under 8 ounces or more is approximately 0.159, or 15.9%.

Learn more about  proportion of bags  from

https://brainly.com/question/1496357

#SPJ11

Another model for a growth function for a limited population is given by the Gompertz function, which is a solution of the differential equation
dP/dt cln (K/P)P
where c is a constant and K is the carrying capacity.
(a) Solve this differential equation for c = 0.2, K = 4000, and initial population Po= = 300.
P(t) =
(b) Compute the limiting value of the size of the population.
limt→[infinity] P(t) =
(c) At what value of P does P grow fastest?
P =

Answers

InAnother model for a growth function for a limited population is given by the Gompertz function, which is a solution of the differential equation

dP/dt cln (K/P)P where c is a constant and K is the carrying capacity The limiting value of the size of the population is \( \frac{4000}{e^{C_2 - C_1}} \).

To solve the differential equation \( \frac{dP}{dt} = c \ln\left(\frac{K}{P}\right)P \) for the given parameters, we can separate variables and integrate:

\[ \int \frac{1}{\ln\left(\frac{K}{P}\right)P} dP = \int c dt \]

Integrating the left-hand side requires a substitution. Let \( u = \ln\left(\frac{K}{P}\right) \), then \( \frac{du}{dP} = -\frac{1}{P} \). The integral becomes:

\[ -\int \frac{1}{u} du = -\ln|u| + C_1 \]

Substituting back for \( u \), we have:

\[ -\ln\left|\ln\left(\frac{K}{P}\right)\right| + C_1 = ct + C_2 \]

Rearranging and taking the exponential of both sides, we get:

\[ \ln\left(\frac{K}{P}\right) = e^{-ct - C_2 + C_1} \]

Simplifying further, we have:

\[ \frac{K}{P} = e^{-ct - C_2 + C_1} \]

Finally, solving for \( P \), we find:

\[ P(t) = \frac{K}{e^{-ct - C_2 + C_1}} \]

Now, substituting the given values \( c = 0.2 \), \( K = 4000 \), and \( P_0 = 300 \), we can compute the specific solution:

\[ P(t) = \frac{4000}{e^{-0.2t - C_2 + C_1}} \]

To compute the limiting value of the size of the population as \( t \) approaches infinity, we take the limit:

\[ \lim_{{t \to \infty}} P(t) = \lim_{{t \to \infty}} \frac{4000}{e^{-0.2t - C_2 + C_1}} = \frac{4000}{e^{C_2 - C_1}} \]

Learn more about limiting value here :-

https://brainly.com/question/29896874

#SPJ11

An automobile manufacturer buys a 1,000 radios per order from a supplier. When each shipment of 1,000 radios arrives, the automobile manufacturer takes a random sample of 10 radios from the shipment. If more than one radio in the sample is defective, the automobile manufacturer rejects the shipment and sends all of the radios back to the supplier. (Copy in the PMF table you used from excel) a. If 0.5% of all the radios in the shipment are defective (i e., the chance that any one radio is defective is 0.5% ), find the probability that none of the radios in the sample of ten are defective. b. If 0.5% of all the radios in the shipment are defective, find the probability that exactly one of the ten radios sampled will be defective. c. If 0.5% of all the radios in the shipment are defective, find the probability that the entire shipment will be accepted? d. If 0.5% of all the radios in the shipment are defective, find the probability that the entire shipment will be rejected?

Answers

d) the probability that the entire shipment will be rejected is approximately 0.0050 or 0.50%.

To answer these questions, we can use the binomial probability formula. The probability mass function (PMF) table is not necessary for these calculations.

Let's solve each part separately:

a. Probability that none of the radios in the sample of ten are defective:

To calculate this probability, we use the binomial probability formula: P(X = k) = C(n, k) * p^k * (1-p)^(n-k), where n is the sample size, k is the number of successes, p is the probability of success, and C(n, k) is the binomial coefficient.

Given:

n = 10 (sample size)

k = 0 (number of successes)

p = 0.005 (probability of any one radio being defective)

P(X = 0) = C(10, 0) * (0.005^0) * (1-0.005)^(10-0)

P(X = 0) = 1 * 1 * (0.995)^10

P(X = 0) ≈ 0.995^10

P(X = 0) ≈ 0.9950

Therefore, the probability that none of the radios in the sample of ten are defective is approximately 0.9950 or 99.50%.

b. Probability that exactly one of the ten radios sampled will be defective:

Using the same formula, we calculate:

P(X = 1) = C(10, 1) * (0.005^1) * (1-0.005)^(10-1)

P(X = 1) = 10 * 0.005 * 0.995^9

P(X = 1) ≈ 0.0480

Therefore, the probability that exactly one of the ten radios sampled will be defective is approximately 0.0480 or 4.80%.

c. Probability that the entire shipment will be accepted:

If the shipment is accepted, it means there are no defective radios in the sample of ten. We calculated this probability in part a:

P(X = 0) ≈ 0.9950

Therefore, the probability that the entire shipment will be accepted is approximately 0.9950 or 99.50%.

d. Probability that the entire shipment will be rejected:

If the shipment is rejected, it means there is at least one defective radio in the sample of ten. We can calculate this probability as:

P(X ≥ 1) = 1 - P(X = 0)

P(X ≥ 1) ≈ 1 - 0.9950

P(X ≥ 1) ≈ 0.0050

To know more about means visit:

brainly.com/question/31101410

#SPJ11

Our method of simplifying expressions addition/subtraction problerns with common radicals is the following. What property of real numbers justifies the statement?3√3+8√3 = (3+8) √3 =11√3

Answers

The property of real numbers that justifies the statement is the distributive property of multiplication over addition.

According to the distributive property, for any real numbers a, b, and c, the expression a(b + c) can be simplified as ab + ac. In the given expression, we have 3√3 + 8√3, where √3 is a common radical. By applying the distributive property, we can rewrite it as (3 + 8)√3, which simplifies to 11√3.

The distributive property is a fundamental property of real numbers that allows us to distribute the factor (in this case, √3) to each term within the parentheses (3 and 8) and then combine the resulting terms. It is one of the basic arithmetic properties that govern the operations of addition, subtraction, multiplication, and division.

In the given expression, we are using the distributive property to combine the coefficients (3 and 8) and keep the common radical (√3) unchanged. This simplification allows us to obtain the equivalent expression 11√3, which represents the sum of the two radical terms.

Learn more about real numbers here:

brainly.com/question/31715634

#SPJ11

Given that xn is bounded a sequence of real numbers, and given that an = sup{xk : k ≥ n} and bn = inf{xk : k ≥ n}, let the lim sup xn = lim an and lim inf xn = lim bn.
Prove that if xn converges to L, then bn ≤ L ≤ an, for all natural numbers n.
Answers within the next 6 hours will receive an upvote.

Answers

If L is the limit of xn, for any positive ε, there exists a natural number N such that for all n ≥ N, |xn - L| < ε. This means that L + ε > xn for all n ≥ N. Therefore, L + ε is an upper bound for the set {xn : n ≥ N}, and an is the least upper bound for this set. Hence, L ≤ an.

Let xn be a sequence of real numbers that converges to L. This means that for any positive ε, there exists a natural number N such that for all n ≥ N, |xn - L| < ε.

Now consider bn = inf{xk : k ≥ n} and an = sup{xk : k ≥ n}. We want to show that bn ≤ L ≤ an for all natural numbers n.

First, let's prove that bn ≤ L. Since L is the limit of xn, for any positive ε, there exists a natural number N such that for all n ≥ N, |xn - L| < ε. This means that L - ε < xn for all n ≥ N. Therefore, L - ε is a lower bound for the set {xn : n ≥ N}, and bn is the greatest lower bound for this set. Hence, bn ≤ L.

Next, let's prove that L ≤ an. Similarly, since L is the limit of xn, for any positive ε, there exists a natural number N such that for all n ≥ N, |xn - L| < ε. This means that L + ε > xn for all n ≥ N. Therefore, L + ε is an upper bound for the set {xn : n ≥ N}, and an is the least upper bound for this set. Hence, L ≤ an.

In conclusion, if xn converges to L, then bn ≤ L ≤ an for all natural numbers n.

Learn more about natural number here : brainly.com/question/32686617

#SPJ11

Write the equation of the parabola in gencral Form that satisfies the conditions vertex (-4,6) and Focus is at (-8,6)

Answers

Thus, the equation of the parabola in general form is: x² + 8x + 16 = 16y - 96

Given the conditions, vertex (-4, 6) and focus (-8, 6), we can find the equation of the parabola in general form.

To start, let's find the value of p, which is the distance between the focus and vertex.

p = 4 (since the focus is 4 units to the left of the vertex)

Next, we use the formula (x - h)² = 4p(y - k) to find the equation of the parabola in general form where (h, k) is the vertex.

Substituting the values of h, k, and p into the equation gives us:

(x + 4)² = 4(4)(y - 6)

Simplifying the right-hand side gives us:

(x + 4)² = 16y - 96

Now, let's expand the left-hand side by using the binomial formula

(x + 4)² = (x + 4)(x + 4)

= x² + 8x + 16

To know more about parabola visit:

https://brainly.com/question/21685473

#SPJ11

Using the definition, show that f(z)=(a−z)/(b−z), has a complex derivative for b
=0.

Answers

f(z) has a complex derivative for all z except z = b, as required.

To show that the function f(z) = (a-z)/(b-z) has a complex derivative for b ≠ 0, we need to verify that the limit of the difference quotient exists as h approaches 0. We can do this by applying the definition of the complex derivative:

f'(z) = lim(h → 0) [f(z+h) - f(z)]/h

Substituting in the expression for f(z), we get:

f'(z) = lim(h → 0) [(a-(z+h))/(b-(z+h)) - (a-z)/(b-z)]/h

Simplifying the numerator, we get:

f'(z) = lim(h → 0) [(ab - az - bh + zh) - (ab - az - bh + hz)]/[(b-z)(b-(z+h))] × 1/h

Cancelling out common terms and multiplying through by -1, we get:

f'(z) = -lim(h → 0) [(zh - h^2)/(b-z)(b-(z+h))] × 1/h

Now, note that (b-z)(b-(z+h)) = b^2 - bz - bh + zh, so we can simplify the denominator to:

f'(z) = -lim(h → 0) [(zh - h^2)/(b^2 - bz - bh + zh)] × 1/h

Factoring out h from the numerator and cancelling with the denominator gives:

f'(z) = -lim(h → 0) [(z - h)/(b^2 - bz - bh + zh)]

Taking the limit as h approaches 0, we get:

f'(z) = -(z-b)/(b^2 - bz)

This expression is defined for all z except z = b, since the denominator becomes zero at that point. Therefore, f(z) has a complex derivative for all z except z = b, as required.

learn more about complex derivative here

https://brainly.com/question/31959354

#SPJ11

PLEASE HELP URGENT
If the area of the rectangle is 36 square units, what is the eare of the inscribed triangle?

Answers

Answer:

  14.5 square units

Step-by-step explanation:

You want the area of the triangle inscribed in the 4×9 rectangle shown.

Pick's theorem

Pick's theorem tells you the area can be found using the formula ...

  A = i +b/2 -1

where i is the number of interior grid points, and b is the number of grid points on the boundary. This theorem applies when the vertices of a polygon are at grid intersections.

The first attachment shows there are 14 interior points, and 3 boundary points. Then the area is ...

  A = 14 + 3/2 -1 = 14 1/2 . . . . square units

The area of the triangle is 14.5 square units.

Determinants

The area of a triangle can also be found from the determinant of a matrix of its vertex coordinates. The second attachment shows the area computed for vertex coordinates A(0, 4), C(7, 0) and B(9, 3).

The area of the triangle is 14.5 square units.

__

Additional comment

The area can also be found by subtracting the areas of the three lightly-shaded triangles from that of the enclosing rectangle. The same result is obtained for the area of the inscribed triangle.

The area value shown in the first attachment is provided by the geometry app used to draw the triangle.

We find the least work is involved in counting grid points, which can be done using the given drawing.

<95141404393>

schedules the processor in the order in which they are requested. question 25 options: first-come, first-served scheduling round robin scheduling last in first scheduling shortest job first scheduling

Answers

Scheduling the processor in the order in which they are requested is "first-come, first-served scheduling."

The scheduling algorithm that schedules the processor in the order in which they are requested is known as First-Come, First-Served (FCFS) scheduling. In FCFS scheduling, the processes are executed based on the order in which they arrive in the ready queue. The first process that arrives is the first one to be executed, and subsequent processes are executed in the order of their arrival.

FCFS scheduling is simple and easy to understand, as it follows a straightforward approach of serving processes based on their arrival time. However, it has some drawbacks. One major drawback is that it doesn't consider the burst time or execution time of processes. If a long process arrives first, it can block the execution of subsequent shorter processes, leading to increased waiting time for those processes.

Another disadvantage of FCFS scheduling is that it may result in poor average turnaround time, especially if there are large variations in the execution times of different processes. If a long process arrives first, it can cause other shorter processes to wait for an extended period, increasing their turnaround time.

Overall, FCFS scheduling is a simple and fair scheduling algorithm that serves processes in the order of their arrival. However, it may not be the most efficient in terms of turnaround time and resource utilization, especially when there is a mix of short and long processes. Other scheduling algorithms like Round Robin, Last In First Scheduling, or Shortest Job First can provide better performance depending on the specific requirements and characteristics of the processes.

To learn more about Scheduling here:

https://brainly.com/question/32904420

#SPJ4

100g of apple contains 52 calories
100g of grapes contains 70 calories
a fruit pot contains 150g of apple pieces and 60g of grapes
work out how many calories there are In the fruit pot

Answers

Answer:

There are 120 calories in the fruit pot.

Step-by-step explanation:

Calories per 100g of apple: 52 calories

Calories from 150g of apple pieces: (52 calories / 100g) * 150g = 78 calories

Calories per 100g of grapes: 70 calories

Calories from 60g of grapes: (70 calories / 100g) * 60g = 42 calories

Total calories in the fruit pot: 78 calories + 42 calories = 120 calories

For each of the following problems, identify the variable, state whether it is quantitative or qualitative, and identify the population. Problem 1 is done as an 1. A nationwide survey of students asks "How many times per week do you eat in a fast-food restaurant? Possible answers are 0,1-3,4 or more. Variable: the number of times in a week that a student eats in a fast food restaurant. Quantitative Population: nationwide group of students.

Answers

Problem 2:

Variable: Height

Type: Quantitative

Population: Residents of a specific cityVariable: Political affiliation (e.g., Democrat, Republican, Independent)Population: Registered voters in a state

Problem 4:

Variable: Temperature

Type: Quantitative

Population: City residents during the summer season

Variable: Level of education (e.g., High School, Bachelor's degree, Master's degree)

Type: Qualitative Population: Employees at a particular company Variable: Income Type: Quantitative Population: Residents of a specific county

Variable: Favorite color (e.g., Red, Blue, Green)Type: Qualitative Population: Students in a particular school Variable: Number of hours spent watching TV per day

Type: Quantitativ  Population: Children aged 5-12 in a specific neighborhood Problem 9:Variable: Blood type (e.g., A, B, AB, O) Type: Qualitative Population: Patients in a hospital Variable: Sales revenueType: Quantitative Population: Companies in a specific industry

Learn more abou Quantitative here

https://brainly.com/question/32236127

#SPJ11

What is the growth rate for the following equation in Big O notation? 8n 2
+nlog(n) O(1) O(n)
O(n 2
)
O(log(n))
O(n!)

Answers

The growth rate of the equation 8n² + nlog(n) is O(nlog(n)), indicating logarithmic growth as n increases.

To determine the growth rate of the equation 8n² + nlog(n) in Big O notation, we examine the dominant term that has the greatest impact on the overall growth as n increases.

In this equation, we have two terms: 8n² and nlog(n). Among these, the term with the highest growth rate is nlog(n), as it involves logarithmic growth. The term 8n² represents quadratic growth, which is surpassed by the logarithmic term as n becomes large.

Therefore, the growth rate for this equation can be expressed as O(nlog(n)). This indicates that the overall growth of the function is proportional to n multiplied by the logarithm of n. As n increases, the runtime or complexity of the function will increase at a rate dictated by the logarithmic growth of n.

In summary, the growth rate of the equation 8n² + nlog(n) is O(nlog(n)), signifying logarithmic growth as n becomes large.

To know more about Big O notation, refer to the link below:

https://brainly.com/question/32495582#

#SPJ11

Other Questions
Please provide the correct answers! Be careful! Thank you! comment if you have questions. Look at photo. We did everything adults would do. What went wrong page number Thesis statements are important to historical essays because they:A. ensure that nobody can make counterclaims against an essay.B. signal that an article will be argumentative rather than explanatory.C. allow the author to paraphrase sources rather than quoting them.D. prepare readers for the evidence presented in an essay.SUBMIT Consider the following query. Assume there is a B+ tree index on bookNo. What is the most-likely access path that the query optimiser would choose? SELECT bookTitle FROM book WHERE bookNo = 1 OR bookNo = 2; Index Scan Index-only scan Full table scan Cannot determine In reality, there is friction in the piping, which means that an additional pressure equivalent to a height of 100 m is needed to pump the water from the bottom tank to the top tank. What is the minimum power required when accounting for friction? By what percentage has friction increased the minimum power required? Remember to show your calculations. the fourth amendment prevents the government from taking your property without giving you notice and a hearing. Weather Forecast Each day, a weather forecaster predicts whether or not it will rain. For 80% of rainy days, she correctly predicts that it will rain. For 94% of non-rainy days, she correctly predicts that it will not rain. Suppose that 6% of days are rainy and 94% are nonrainy. Section 02.03 Exercise 27.a-Correct Weather Forecasts What proportion of the forecasts are correct? Numeric Response Required information Section 02.03 Exercise 27-Weather Forecast Each day, a weather forecaster predicts whether or not it will rain. For 80% of rainy days, she correctly predicts that it will rain. For 94% of non-rainy days, she correctly predicts that it will not rain. Suppose that 6% of days are rainy and 94% are nonrainy. ction 02.03 Exercise 27.b-A Constant Prediction other forecaster always predicts that there will be no rain. What proportion of these forecasts are correct? Multiple Choice A forecast of no rain will be correct on every nonrainy day. Therefore the probability is 0.94. A forecast of no rain will be correct on every nonrainy day. Therefore the probability is 0.8. a hacker that uses his skills and attitudes to convey a political message is known as a: The Jackson-Timberlake Wardrobe Company just paid a dividend of $1.34 per share on its stock. The dividends are expected to grow at a constant rate of 4 percent per year indefinitely. a. If investors require a return of 9 percent on the company's stock, what is the current price? Current price b. What will the price be in 14 years? a driver knows more than his auto insurer about how cautiously he drives. this is an example of a. the condorcet paradox. b. a hidden characteristic. c. a hidden action. d. adverse selection. which of the following is primarily designed to allow caregivers to have a moment to themselves? a) milieu therapy b) respite care c) adult day care d)stress relief care Which of the following did you include in your explanation? Check all that apply. chose an example of a tissue described the structure of that example described the function of that example explained how the structure enables the function place the steps involved in post-translational sorting of a protein to the mitochondrial matrix in the proper order. start with the earliest step at the top. True or False: In an air embolism, the air pressure in the lungs remains constant while the external pressure on the chest increases. hich nurse theorist believed that "the beauty of medicine and nursing is the combination of your heart, your head and your hands and where you separate them, you diminish them"?a) Florence Nightingaleb) Virginia Hendersonc) Dorothea Oremd) Nola Pendere) Jean Watson What are the leading coefficient and degree of the polynomial? -10u^(5)-4-20u+8u^(7) Suppose you have some money to invest-for simplicity. $1-and you are planning to put a fraction w into a stock market mutual fund and the rest, 1 - w, into a bond mutual fund. Suppose that $1 invested in a stock fund yields R_s after 1 year and that $1 invested in a bond fund yields R_g. suppose that R_g is random with mean 0.07 (7%) and standard deviation 0.06, and suppose that R_b is random with mean 0.04 (4%) and standard doviatlon 0.03. The correlation between R_s and R_b is 0.21. If you place a fraction w of your money in the stock fund and the rest, 1 - w, in the bond fund, then the retum on your investment is R=wR_s +(1w)R_b Find the position function x(t) of a moving particle with the given acceleration a(t), initial position x0=x(0), and initial velocity v0=v(0). a(t)=4(t+3)2,v0=2,x0=3 Find the velocity function. v(t)=34(t+3)32t Supposed that an increase of Php. 14. 00 in the price of kilo of pork result in an increase of 200 kilos in the quantity demanded by consumers, if the price is Php 140 per kilo, 350 kilos will be demanded in the market and quantity supplied at this price is also 350 kilos At public TV station, QQTV, the Membership Department currently keeps donation information on database which runs on their local area network. QQTV would like to pursue more direct marketing and World Wide Web applications. At QQTV there are two kinds of donors: individual and corporate. Cash donations are made by both. Corporations also make "in-kind" donations, i.e., donations of non-cash items such as food, office supplies, advertising space, etc.The following information is kept on in-kind donations: the item, quantity, and cash value. In-kind donations are not accepted from individuals. Individuals who donate a total of $50 or more a year are considered members and receive a monthly magazine and discount coupons from local merchants. Individual who donate less than $50 and corporations do not receive these items. Individuals and corporate members receive annual renewal notification one month in advance of their membership expiration.Additional donations and new members are sought during quarterly, week long on-air fund drives. Some corporations provide "matching gift" programs where employee contributions to QQTV are matched by the corporation. Finally, QQTV seeks donations through estate planning and bequests.The computing environment at QQTV consists of a local area network of PCs running the Microsoft Windows XP operating system. Users of the system will be the full-time staff of QQTV and volunteers. The typical full-time staff member has a background in broadcast communications and basic facility with the Microsoft Office Suite and Internet applications. During pledge drives, volunteers will be performing data entry tasks. These volunteers possess a wide range of computer skills and have all chosen "data entry" as their task for the fund drive.The objective of this assignment is to: Develop a business plan for introducing an integrated IS (Internet/Electronic commerce) strategy to QQTVYou should develop an integrated IS (Internet/E-commerce) strategy for a first phase of Internet business presence at QQTV.This will include explaining what Internet capabilities should be used, technical requirements (hardware, software, and other equipment) and how this new technology would be integrated into the business.Please find the answer on Chegg that has 3 up votes for this question, use that answer to answer the following questions:1. What are the technical requirements (hardware, software, and other equipment) to support the integrated IS strategy?2. What resources (personnel, equipment, etc.) will be needed to implement your strategy?3. Purpose of the web site you developed