Answer:
$624.90
Step-by-step explanation:
The total cost is the integral of the marginal cost. Here, you're asked to approximate that integral using 5 equal-width rectangles. The area of each rectangle is the product of its height and width. The height is given by the function value at the left end of the interval.
The table shows the function values at the left end of each of the 5 intervals. The intervals have width 1600/5 = 320. The total estimated cost is the sum of products of 320 and each of the table values. (Of course, 320 can be factored out of the sum to make the math easier.)
The estimated cost is ...
320(58 + 50.576 + 41.104 + 29.584 +16.016) = 62,489.6 . . . cents
≈ $624.90 . . . . cost of manufacturing 1600 yards of fancy ribbon
The oblique pyramid has a square base. What is the volume of the pyramid? 2.5 cm3 5 cm3 6 cm3 7.5 cm3
Take a look at the attachment below. It fills in for the attachment that wasn't provided in the question -
An oblique pyramid is one that has a top not aligned with the base. Due to this, the height of the pyramid connects with two vertices at its ends to form a right angle present outside the pyramid, knowing that it is always perpendicular to the base. There is no difference between the calculations of the volume of an oblique pyramid and a pyramid however -
[tex]\\Base Area = 2 cm * 2 cm = 4 cm^2,\\Volume ( Pyramid ) = 1 / 3 * ( Base Area ) * ( Height ),\\Volume = 1 / 3 * ( 4 ) * ( 3.75 ),\\-------------------------\\Volume = 5 cm^3[/tex]
And thus, you're solution is 5 cm^3, or in other words option b!
Answer:
The answer is B
Step-by-step explanation:
Find the length of a leg of a right triangle (in inches) if the other leg measures 9 in. and the hypotenuse measures 19 in. Round to the nearest thousandth. __________________ in
Answer:
a = 16.733
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean theorem
a^2 + b^2 = c^2
a^2 + 9^2 = 19^2
a^2 = 19^2 - 9^2
a^2 = 361-81
a^2 =280
Taking the square root of each side
sqrt(a^2) = sqrt(280)
a = 16.73320053
Rounding to the nearest thousandth
a = 16.733
graph the linear equation. Find three points that solve the equation, then plot on the graph. -3y=-x-6
Answer:
hope u get it.......!!
Which equation represents the line passing through points A and C on the graph below? On a coordinate plane, point A is at (2, 3), point B is at (negative 2, 1), point C is at (negative 4, negative 3), and point D is at (4, negative 5). y= negative x minus 1 y = negative x + 1 y = x minus 1 y = x + 1
The equation that represents the line that passes through the points A and C is y = x + 1
What is a linear equation?A linear equation is an equation that has a constant rate or slope, and is represented by a straight line
The points are given as:
(x,y) = (2,3) and (-4,-3)
Calculate the slope, m using:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
So, we have:
[tex]m = \frac{-3 -3}{-4 - 2}[/tex]
Evaluate
m = 1
The equation is then calculated as:
y = m *(x - x1) + y1
So, we have:
y = 1 * (x - 2) + 3
Evaluate
y = x - 2 + 3
This gives
y = x + 1
Hence, the equation that represents the line that passes through the points A and C is y = x + 1
Read more about linear equations at:
https://brainly.com/question/14323743
#SPJ2
Answer:
y = x + 1
Step-by-step explanation:
Edge2020
pls help me help me help me
Answer:
C. -3/2
Step-by-step explanation:
Perpendicular lines have negative reciprocal slopes.
We know that line m is perpendicular to line l.
Line l has a slope of 2/3. To find the slope of line m, find the negative reciprocal of 2/3.
Negative: switch the sign
2/3 --> -2/3
Reciprocal: switch the numerator (top number) and denominator (bottom number)
-2/3 --> -3/2
Line m has a slope of -3/2 and C is correct.
Answer:
C
Step-by-step explanation:
perpendicular lines have negative reciprocal slope
Find (f - g) (4)
f(x) = 4x - 3
g(x) = x^3+2x
a) 59
b) 85
c)-59
d) 285
Which graph represents an exponential function?
Answer:
Presumably the first graph solely based on its shape.
Graph A is showing the exponential function. Then the correct option is A.
What is an exponential function?The mathematical expression f(x)= [tex]e^x[/tex] denotes the exponential function. The term typically refers to the positive-valued function of a real variable, unless otherwise specified.
A graph is the representation of the data on the vertical and horizontal coordinates so we can see the trend of the data. In graph A we can see that the values are varying exponentially from the second quadrant to the first quadrant.
Hence, the correct option is A.
To know more about exponential functions follow
https://brainly.com/question/2456547
#SPJ5
What is the approximate length of minor arc LM? Round
to the nearest tenth of a centimeter.
12.4 centimeters
15.7 centimeters
31.4 centimeters
36.7 centimeters
Answer:
Length of the arc LM = 15.7 cm
Step-by-step explanation:
To determine the length of the arc LM we have to find the circumference of the the big circle then divide by the ratio of the angle or go straight to use the radians as the angle and look for the length.
Radius= 30cm
π= 3.142
Value of the angle is in radians
360° = 2π
π = 180
π/6 = 180/6
π/6= 30
Value of the angle is 30°
Length of the arc = 2πr * 30/360
Length of the arc = 2πr/12
Length of the arc = πr/6
Length of the arc = 30π/6
Length of the arc =5π
Length of the arc = 5*3.142
Length of the arc = 15.71
Approximately Length of the arc
= 15.7cm
Answer:
B. 15.7cm
Step-by-step explanation:
c. Find the price of 16 shirts if 5 costs GH¢80
Answer:
16 shirts = GH¢256
Step-by-step explanation:
If 5 shirts cost GH¢80
Let's determine the price of 16 shirts by cross multiplying the values
This method of evaluating answers is one of the essential methods .
It's just Making sure that the values within each side of the wall to symbol crosses each other.
But one shirt = GH¢80/5
one shirt = GH¢16
So
5 shirts= GH¢80
16 shirts = (16 shirts * GH¢80)/5 shirts
16 shirts = GH¢1280/5
16 shirts = GGH256
Suppose A is a 5times7 matrix. How many pivot columns must A have if its columns span set of real numbers RSuperscript 5? Why?
Answer:
Five
Step-by-step explanation:
Pivot columns are said to be columns where pivot exist and a pivot exist in the first nonzero entry of each row in a matrix that is in a shape resulting from a Gaussian elimination.
Suppose A = 5 × 7 matrix
So; if A columns span set of real numbers R⁵
The number of pivot columns that A must have must be present in each row. In a 5 × 7 matrix ; we have 5 rows and 7 columns . So , since A must be present in each row, then :
The matrix must have five pivot columns and we can infer that about the statements that "A has a pivot position in every row" and "the columns of A spans R⁵" are logically equivalent.
Stuck Right now, Help would be appreciated :)
Answer:
C. c = (xv - x) / (v - 1).
Step-by-step explanation:
v = (x + c) / (x - c)
(x - c) * v = x + c
vx - vc = x + c
-vc - c = x - vx
vc + c = -x + vx
c(v + 1) = -x + vx
c = (-x + vx) / (v + 1)
c = (-x + xv) / (v + 1)
c = (xv - x) / (v + 1)
So, the answer should be C. c = (xv - x) / (v + 1).
Hope this helps!
Find all solutions to the equation.
7 sin2x - 14 sin x + 2 = -5
If yall can help me for Pre-Calc, that would be great.
-Thanks.
If the equation is
[tex]7\sin^2x-14\sin x+2=-5[/tex]
then rewrite the equation as
[tex]7\sin^2x-14\sin x+7=0[/tex]
Divide boths sides by 7:
[tex]\sin^2x-2\sin x+1=0[/tex]
Since [tex]x^2-2x+1=(x-1)^2[/tex], we can factorize this as
[tex](\sin x-1)^2=0[/tex]
Now solve for x :
[tex]\sin x-1=0[/tex]
[tex]\sin x=1[/tex]
[tex]\implies\boxed{x=\dfrac\pi2+2n\pi}[/tex]
where n is any integer.
If you meant sin(2x) instead, I'm not sure there's a simple way to get a solution...
Chloe has a budget of $800 for costumes for the 18 members of her musical theater group. What is the maximum she can spend for each costume?
Answer:
$42.10
Step-by-step explanation:
Assuming that she did not yet buy a costume for herself, 800 dollars divided among 18 people plus herself is equal to $42.10 maximum per person.
Answer:
44.44
Step-by-step explanation:
800 didvided by 18.
Nika baked three loaves of zucchini bread. Each cake needed StartFraction 17 over 4 EndFraction cups of flour. Which expression shows the best estimate of the number of cups of flour that Nika used? 4 + 4 + 4 = 12 5 + 5 + 5 = 15 4 + 4 + 4 = 16 17 + 17 + 17 = 51
Answer:
(A)4 + 4 + 4 = 12
Step-by-step explanation:
Each of Nika's cake needed 17/4 cups of flour. Now, we know that:
[tex]\dfrac{17}{4}=4.25 \approx 4[/tex]
Therefore, for three loaves of bread, the best estimate of the number of cups of flour Nika used is:
4 + 4 + 4 = 12
The correct option is A.
Answer:
The correct answer is A.)4 + 4 + 4 = 12
What is the slope of the function, represented by the table of values below?
Answer:
C. -2
Step-by-step explanation:
Slope Formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Simply use 2 xy values and plug them into the formula:
m = (-4 - 0)/(5 - 3)
m = -4/2
m = -2
Answer:
-2
Step-by-step explanation:
Since we have two points we can use the slope formula
m = (y2-y1)/(x2-x1)
= (10-6)/(-2-0)
=4/-2
-2
The area of this parallelogram is 120 ft2 find the value of h
Answer: 6
Step-by-step explanation:
A=bh plus 120 for A and 20 for B
120=20b
/20 divide by 20 each side
H=6
Find the area of the parallelogram with vertices A(−1,3,3), B(0,5,7), C(1,2,6), and D(2,4,10).
Answer:
Step-by-step explanation:
The diagonal of the parallelogram ABCD divides it into 2 equal triangles. Considering triangle ABC, it means that the area of the parallelogram would be
2 × area of triangle ABC
Writing the vertices of triangle ABC,
A(−1,3,3), B(0,5,7), C(1,2,6)
We would determine the length of each side of the triangle.
AB = √(0 - - 1)² + (5 - 3)² + (7 - 3)^2
AB = √(1 + 4 + 16) = √21
BC = √(1 - 0)² + (2 - 5)² + (6 - 7)²
BC = √(1 + 9 + 1) = √11
AC = √(1 - - 1)² + (2 - 3)² + (6 - 3)²)
AC = √(4 + 1 + 9) = √14
We would apply the heron's formula for determining the area of a triangle
Area = √s(s - a)(s - b)(s - c)
Where
s = (a + b + c)/2
a = AB, b = BC, c = AC
s = (√21 + √11 + √14)/2 = 5.82
s - a = 5.82 - √21 = 1.24
s - b = 5.82 - √11 = 2.5
s - c = 5.82 - √14 = 2.08
Area = √(5.82 × 1.24 × 2.5 × 2.08) = 6.126
Therefore, area of parallelogram ABCD is
6.126 × 2 = 12.252
. Jayvon bakes two small circular cakes that are 8 inches across their widest point and 3 inches high. He removes the cake from the pans to frost them. Jayvon would like a consistent quarter-inch deep layer of frosting. How many cubic inches of frosting does he need for the cakes if he wants to frost only the top and sides of each cake
Answer:
20π in³ or 62.832 in³
Step-by-step explanation:
The surface area for each cake is given by:
[tex]S=\pi r^2+2\pi rh[/tex]
Where 'r' is the radius of each cake (4 inches), and 'h' is the height of each cake (3 inches). Since there are two cakes, the total surface area is:
[tex]A=2*(\pi r^2+2\pi rh)\\A=2*(\pi 4^2+2\pi*4*3)\\A=80\pi\ in^2[/tex]
If Jayvon wants a consistent quarter-inch deep layer of frosting covering the surface of the cakes, the volume of frosting required is:
[tex]V=80\pi *0.25\\V=20\pi\ in^3 = 62.832\ in^3[/tex]
He needs 20π in³ or 62.832 in³ of frosting.
Find the sum. A. 4x2 – x – 5 B. 10x2 + 7x – 5 C. –10x2 + 7x + 11 D. 4x2 + x – 11
Answer:
A
Step-by-step explanation:
7x² - 4x - 8 - [ -3x² - 3x - 3]
In subtraction, flip the sign of all terms in the minuend
7x² - 4x - 8
3x² + 3x + 3
4x² - x - 5
evaluate -x+4 when x = -2
Answer:
6Step-by-step explanation:
f(x)=-x+4
f(-2)=-(-2)+4
f(-2)=+2+4
f(-2)=6
Answer:
6
Step-by-step explanation:
-(-2)+4=___
+(+2)+4=6
Explain how you found the volume of the rectangular prism with a hole through it. Explain how you found the volume of the rectangular prism with a hole through it.
Answer:
Step-by-step explanation:
We khow that the volume of a prism the product of the base and the height
We have a hole inside it so we must khow what is the geometrical form of this whole to calculate its volum then substract from the total volume
Sample Answer:
I found the volume of the large rectangular prism. Then I found the volume of the small rectangular prism. I subtracted the volume of the smaller prism from the volume of the larger prism.
A heavy rope, 30 ft long, weighs 0.4 lb/ft and hangs over the edge of a building 80 ft high. Approximate the required work by a Riemann sum, then express the work as an integral and evaluate it.How much work W is done in pulling half the rope to the top of the building
Answer:
180 fb*lb
45 ft*lb
Step-by-step explanation:
We have that the work is equal to:
W = F * d
but when the force is constant and in this case, it is changing.
therefore it would be:
[tex]W = \int\limits^b_ a {F(x)} \, dx[/tex]
Where a = 0 and b = 30.
F (x) = 0.4 * x
Therefore, we replace and we would be left with:
[tex]W = \int\limits^b_a {0.4*x} \, dx[/tex]
We integrate and we have:
W = 0.4 / 2 * x ^ 2
W = 0.2 * (x ^ 2) from 0 to 30, we replace:
W = 0.2 * (30 ^ 2) - 0.2 * (0 ^ 2)
W = 180 ft * lb
Now in the second part it is the same, but the integral would be from 0 to 15.
we replace:
W = 0.2 * (15 ^ 2) - 0.2 * (0 ^ 2)
W = 45 ft * lb
Following are the calculation to the given value:
Given:
[tex]length= 30 \ ft\\\\mass= 0.4 \ \frac{lb}{ft}\\\\edge= 80 \ ft \\\\[/tex]
To find:
work=?
Solution:
Using formula:
[tex]\to W=fd[/tex]
[tex]\to W=\int^{30}_{0} 0.4 \ x\ dx\\\\[/tex]
[tex]= [0.4 \ \frac{x^2}{2}]^{30}_{0} \\\\= [\frac{4}{10} \times \frac{x^2}{2}]^{30}_{0} \\\\= [\frac{2}{10} \times x^2]^{30}_{0} \\\\= [\frac{1}{5} \times x^2]^{30}_{0} \\\\= [\frac{x^2}{5}]^{30}_{0} \\\\= [\frac{30^2}{5}- 0] \\\\= [\frac{900}{5}] \\\\=180[/tex]
Therefore, the final answer is "[tex]180\ \frac{ lb}{ft}[/tex]".
Learn more:
brainly.com/question/15333493
pleasssssseeeeeeeeeeeeeeeeeeee
━━━━━━━☆☆━━━━━━━
▹ Answer
0.5 = 1/2 and the rectangle with 3 cubes shaded in
0.6 = 60/100 and circle with three parts shaded in
0.8 = Rectangle with 8 cubes shaded and 4/5
▹ Step-by-Step Explanation
You can convert the fractions into decimals, and count the shaded parts for the shaded images.
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Given
f(x) = 2x2 + 1
and
g(x) = 3x - 5
find the following.
f-g
Answer:
The answer is
2x² - 3x + 6Step-by-step explanation:
f(x) = 2x² + 1
g(x) = 3x - 5
To find f - g(x) subtract g(x) from f(x)
That's
f-g(x) = 2x² + 1 - (3x - 5)
= 2x² + 1 - 3x + 5
= 2x² - 3x + 6
Hope this helps you
The weights of steers in a herd are distributed normally. The standard deviation is 300lbs and the mean steer weight is 1100lbs. Find the probability that the weight of a randomly selected steer is between 920 and 1730lbs round to four decimal places.
Answer:
The probability that the weight of a randomly selected steer is between 920 and 1730 lbs
P(920≤ x≤1730) = 0.7078
Step-by-step explanation:
Step(i):-
Given mean of the Population = 1100 lbs
Standard deviation of the Population = 300 lbs
Let 'X' be the random variable in Normal distribution
Let x₁ = 920
[tex]Z = \frac{x-mean}{S.D} = \frac{920-1100}{300} = - 0.6[/tex]
Let x₂ = 1730
[tex]Z = \frac{x-mean}{S.D} = \frac{1730-1100}{300} = 2.1[/tex]
Step(ii)
The probability that the weight of a randomly selected steer is between 920 and 1730 lbs
P(x₁≤ x≤x₂) = P(Z₁≤ Z≤ Z₂)
= P(-0.6 ≤Z≤2.1)
= P(Z≤2.1) - P(Z≤-0.6)
= 0.5 + A(2.1) - (0.5 - A(-0.6)
= A(2.1) +A(0.6) (∵A(-0.6) = A(0.6)
= 0.4821 + 0.2257
= 0.7078
Conclusion:-
The probability that the weight of a randomly selected steer is between 920 and 1730 lbs
P(920≤ x≤1730) = 0.7078
Answer:
0.7975
Step-by-step explanation:
How does a perpendicular bisector divide a triangle
Let f(x) = −4(0.25)^x. The graph of g(x) = f(x)+k is shown below. Identify the value of k. k=
Consider the following set of sample data: (34, 32, 34, 32, 40, 37, 31, 31, 29, 27). We're interested in using this data to test a null hypothesis about the population mean. Which of the following statements are true?
I. Assuming this represents a random sample from the population, the sample mean is an unbiased estimator of the population mean.
II. Because they're robust, t procedures are justified in this case.
III. We'd use zprocedures here, since we're interested in the population mean.
a. I only
b. II only
c. III only
d. I and II only
e. I and III only
Answer:
Option I and II
Step-by-step explanation:
I. Assuming this represents a random sample from the population, the sample mean is an unbiased estimator of the population mean.
II. Because they're robust, t procedures are justified in this case.
The t procedures are utilized because they are used as a hypothesis testing tool, which allows for testing of an hypothesis applicable to a population where in this case we are testing the null hypothesis about the population mean.
help with this I don't know how to solve please
Answer:
The right answer is the first one, 6,245.
Step-by-step explanation:
[tex]EG^2=DG*GF \\ EG^2 = ab\\ EG^2 = 3*13\\ EG^2=39\\ EG=\sqrt{39}[/tex]
[tex]\sqrt{39} = 6,2449... = 6,245[/tex]
the polynomial p(x)=x^3-7x-6 has a known factor of (x+1) rewrite p(x) as a product of linear factors p(x)=
Answer:(x+1)(x+2)(x-3)
Because..