Answer:
628
Step-by-step explanation:
We have the standard deviation of the sample, so we use the t-distribution to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 12 - 1 = 11
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 11 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.95}{2} = 0.975[/tex]. So we have T = 2.2
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.2\frac{59}{\sqrt{12}} = 37[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 665 - 37 = 628 hours.
The answer is 628
Determine the area (in units2) of the region between the two curves by integrating over the x-axis. y = x2 − 24 and y = 1
The area bounded by region between the curve [tex]y = x^2- 24[/tex] and [tex]y = 1[/tex] is
[tex]0[/tex] square units.
To find the Area,
Integrate the difference between the two curves over the interval of intersection.
Find the points of intersection between the curves [tex]y = x^2- 24[/tex] and [tex]y = 1[/tex] .
The point of Intersection is the common point between the two curve.
Value of [tex]x[/tex] and [tex]y[/tex] coordinate will be equal for both curve at point of intersection
In the equation [tex]y = x^2- 24[/tex], Put the value of [tex]y = 1[/tex].
[tex]1 = x^2-24[/tex]
Rearrange, like and unlike terms:
[tex]25 = x^2[/tex]
[tex]x =[/tex] ±5
The point of intersection for two curves are:
[tex]x = +5[/tex] and [tex]x = -5[/tex]
Integrate the difference between the two curve over the interval [-5,5] to calculate the area.
Area = [tex]\int\limits^5_{-5} {x^2-24-1} \, dx[/tex]
Simplify,
[tex]= \int\limits^5_{-5} {x^2-25} \, dx[/tex]
Integrate,
[tex]= [\dfrac{1}{3}x^3 - 25x]^{5} _{-5}[/tex]
Put value of limits in [tex]x[/tex] and subtract upper limit from lower limit.
[tex]= [\dfrac{1}{3}(5)^3 - 25(5)] - [\dfrac{1}{3}(-5)^3 - 25(-5)][/tex]
= [tex]= [\dfrac{125}{3} - 125] - [\dfrac{-125}{3} + 125][/tex]
[tex]= [\dfrac{-250}{3}] - [\dfrac{-250}{3}]\\\\\\= \dfrac{-250}{3} + \dfrac{250}{3}\\\\\\[/tex]
[tex]= 0[/tex]
The Area between the two curves is [tex]0[/tex] square units.
Learn more about Integration here:
https://brainly.com/question/30402524
#SPJ4
Identifico el nombre de la propiedad a la que hacen referencia las siguientes expresiones:
Hacen falta las expresiones para poder responder a tu pregunta, estuve investigando y adjuntaré una imagen que hace referencia a tus preguntas, espero no equivocarme.
Si este es el caso, son 9 expresiones y el nombre de cada propiedad es:
1. Inverso aditivo (Sumar un número por su opuesto el resultado es 0)
2. Ley conmutativa (El orden de los factores no altera el producto)
3. Ley asociativa (Agrupar los términos sin alterar el resultado)
4. Ley de la identidad, (Sumar un número con 0 se obtiene el mismo número)
5. Ley distributiva (La misma respuesta cuando multiplicas un conjunto de números por otro número que cuando se hace cada multiplicación por separado)
6. Ley distributiva
7. Ley distributiva
8. Ley asociativa
9. Ley conmutativa
Determine what type of study is described. Explain. Researchers wanted to determine whether there was an association between high blood pressure and the suppression of emotions. The researchers looked at 1800 adults enrolled in a Health Initiative Observational Study. Each person was interviewed and asked about their response to emotions. In particular they were asked whether their tendency was to express or to hold in anger and other emotions. The degree of suppression of emotions was rated on a scale of 1 to 10. Each person's blood pressure was also measured. The researchers analyzed the results to determine whether there was an association between high blood pressure and the suppression of emotions.
Answer:
Experimental Study
Step-by-step explanation:
In an experimental study, the researchers involve always produce and intervention (in this case they were asked whether their tendency was to express or to hold in anger and other emotions. The degree of suppression of emotions was rated on a scale of 1 to 10) and study the effects taking measurements.
These studies are usually randomized ie subjects are group by chance.
As opposed to observation studies, where the researchers only measures what was observed, seen or hear without any intervention on their parts.
PLSSS PEOPLE I NEED HELP
Answer:C
Step-by-step explanation:
The vertical line test
Is the area of this shape approximately 24 cm* ? If not give the correct area.
311
101
True
False
Answer:
19.2 feet square
Step-by-step explanation:
We khow that the area of an octagon is :
A= 1/2 * h * P where h is the apothem and p the perimeter
A= (1/2)*1.6*(3*8) = 19.2 feet squareIt was reported that 23% of U.S. adult cellphone owners called a friend for advice about a purchase while in a store. If a sample of 15 U.S adult cellphone owners is selected, what is the probability that 7 called a friend for advice about a purchase while in a store
Answer:
[tex] P(X=7)[/tex]
And using the probability mass function we got:
[tex]P(X=7)=(15C7)(0.23)^7 (1-0.23)^{15-7}=0.0271[/tex]
Step-by-step explanation:
Let X the random variable of interest, on this case we now that:
[tex]X \sim Binom(n=15, p=0.23)[/tex]
The probability mass function for the Binomial distribution is given as:
[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]
Where (nCx) means combinatory and it's given by this formula:
[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]
And we want to find the following probability:
[tex] P(X=7)[/tex]
And using the probability mass function we got:
[tex]P(X=7)=(15C7)(0.23)^7 (1-0.23)^{15-7}=0.0271[/tex]
An integer is 3 less than 5 times another. If the product of the two integers is 36, then find the integers.
Answer:
3, 12
Step-by-step explanation:
Et x and y be the required integers.
Case 1: x = 5y - 3...(1)
Case 2: xy = 36
Hence, (5y - 3)*y = 36
[tex]5 {y}^{2} - 3y = 36 \\ 5 {y}^{2} - 3y - 36 = 0 \\ 5 {y}^{2} - 15y + 12y - 36 = 0 \\ 5y(y - 3) + 12(y - 3) = 0 \\ (y - 3)(5y + 12) = 0 \\ y - 3 = 0 \: or \: 5y + 12 = 0 \\ y = 3 \: \: or \: \: y = - \frac{12}{5} \\ \because \: y \in \: I \implies \: y \neq - \frac{12}{5} \\ \huge \purple{ \boxed{ \therefore \: y = 3}} \\ \because \: x = 5y - 3..(equation \: 1) \\ \therefore \: x = 5 \times 3 - 3 = 15 - 3 = 12 \\ \huge \red{ \boxed{ x = 12}}[/tex]
Hence, the required integers are 3 and 12.
let
x = one integer
y = another integer
x = 5y - 3
If the product of the two integers is 36, then find the integers.
x * y = 36
(5y - 3) * y = 36
5y² - 3y = 36
5y² - 3y - 36 = 0
Solve the quadratic equation using factorization method
That is, find two numbers whose product will give -180 and sum will give -3
Note: coefficient of y² multiplied by -36 = -180
5y² - 3y - 36 = 0
The numbers are -15 and +12
5y² - 15y + 12y - 36 = 0
5y(y - 3) + 12 (y - 3) = 0
(5y + 12) (y - 3) = 0
5y + 12 = 0 y - 3 = 0
5y = - 12 y = 3
y = -12/5
The value of y can not be negative
Therefore,
y = 3
Substitute y = 3 into x = 5y - 3
x = 5y - 3
x = 5(3) - 3
= 15 - 3
= 12
x = 12
Therefore,
(x, y) = (12, 3)
Read more:
https://brainly.com/question/20411172
Help me please! I need an answer!
Answer: [tex]\bold{\dfrac{b_1}{b_2}=\dfrac{3}{2}}[/tex]
Step-by-step explanation:
Inversely proportional means a x b = k --> b = k/a
Given that a₁ = 2 --> b₁ = k/2
Given that a₂ = 3 --> b₂ = k/3
[tex]\dfrac{b_1}{b_2}=\dfrac{\frac{k}{2}}{\frac{k}{3}}=\large\boxed{\dfrac{3}{2}}[/tex]
A map's scale is 1 inch : 3.5 miles.
If the distance on the map is
8 inches, then the actual distance
in real life is __miles.
Answer:
28 miles
Step-by-step explanation:
to fin the actual distance you must multiply the didtance on the map by the map scale
3.5*8=28
Express it in slope-intercept form.
At noon, ship A is 120 km west of ship B. Ship A is sailing east at 20 km/h and ship B is sailing north at 15 km/h. How fast is the distance between the ships changing at 4:00 PM?
Answer:
1.39 km/h
Step-by-step explanation:
Let the initial position of ship B represent the origin of our coordinate system. Then the position of ship A as a function of time t is ...
A = -120 +20t . . . (east of the origin)
and the position of B is ...
B = 15t . . . (north of the origin)
Then the distance between them is ...
d = √(A² +B²) = √((-120 +20t)² +(15t)²) = √(625t² -4800t +1440)
And the rate of change is ...
d' = (625t -2400)/√(625t² -4800t +14400)
At t = 4, the rate of change is ...
d' = (625·4 -2400)/√(625·16 -4800·4 +14400) = 100/√5200 = 1.39 . . . km/h
The distance between the ships is increasing at about 1.39 km/h.
Pls help with this area question
Answer:
1
Step-by-step explanation:
The lateral area of a cylinder is ...
LA = 2πrh
The total area is that added to the areas of the two circular bases:
A = 2πr² +2πrh
We want the ratio of these to be 1/2:
LA/A = (2πrh)/(2πr² +2πrh) = h/(r+h) = 1/2 . . . . cancel factors of 2πr
Multiplying by 2(r+h) gives ...
2h = r+h
h = r . . . . . subtract h
So, the desired ratio is ...
h/r = h/h = 1
The ratio between height and radius is 1.
Betty tabulated the miles-per-gallon values for her car as 26.5, 28, 30.2, 29.6, 32.3, and 24.7. She wants to construct the 95% two-sided confidence interval. Which value should Betty use for the value of t* to construct the confidence interval?
Answer:
Betty should use T = 2.571 to construct the confidence interval
Step-by-step explanation:
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 6 - 1 = 5
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 5 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.95}{2} = 0.975[/tex]. So we have T = 2.571
Betty should use T = 2.571 to construct the confidence interval
Solve the algebraic expressio (0.4)(8)−2
Answer: -6.4
Step-by-step explanation:
(0.4)(8)(-2)
3.2*-2
-6.4
For the triangle show, what are the values of x and y (urgent help needed)
we just have to use the Pythagoras theorem and then calculate the value of x and y.
The number of degrees of freedom for the appropriate chi-square distribution in a test of independence is a. k – 1. b. A chi-square distribution is not used. c. number of rows minus 1 times number of columns minus 1. d. n – 1.
Answer:
Option C
Step-by-step explanation:
The chi square test of independence is used to determine if there is a significant association between two categorical variables from a population.
It tests the claim that the row and column variables are independent of each other.
The degrees of freedom for the chi-square are calculated using the following formula: df = (r-1) (c-1) where r is the number of rows and c is the number of columns.
Find the slope of the line passing through (6,8) and (-10,3)
Answer:
5/16
Step-by-step explanation:
Use the formula to find slope when 2 points are given.
m = rise/run
m = y2 - y1 / x2 - x1
m = 3 - 8 / -10 - 6
m = -5 / -16
m = 5/16
The slope of the line is 5/16.
Answer: m=5/16
Step-by-step explanation:
There are 7 students in a class: 5 boys and 2 girls.
If the teacher picks a group of 4 at random, what is the probability that everyone in the group is a boy?
Answer:
4/7
Step-by-step explanation:
5+2=7
7 children
4 boys Out of 7 children
Answer:1/7
Step-by-step explanation:
Khan academy
Select the correct answer from each drop down menu. AB is dilated by a scale factor of 3 to form A 1 B1. Point O, which lies on AB, is the center of dilation. The slope of AB is 3. The slope of A1 B1 is___. A1 B1 _____ through point O.
Answer:
the slope of A'B' = 3
A'B' passes through point O
Step-by-step explanation:
A dilation with scale factor 3 gives the effect of stretching the line AB three times longer. As dilation does not change the direction of the line, the slope will stay the same. If point O lies on AB and is the center of dilation, then the point O must also lie on A'B'
The required black space in the statement "The slope of AB is 3. The slope of A1 B1 is___. A1 B1 _____ through point O". is filled by 3 and passes.
Given that,
To Select the correct answer from each drop-down menu. AB is dilated by a scale factor of 3 to form A 1 B1. Point O, which lies on AB, is the center of dilation. The slope of AB is 3. The slope of A1 B1 is___. A1 B1 _____ through point O.
The scale factor is defined as the ratio of modified change in length to the original length.
Here, is o is the center of the line AB and slope of line AB is 3 than the line dilated with scale factor 3 A1B1 has also a scale factor of 3 because Position of dilation is center 0 thus dilation did not get any orientation.
And the center of dilation is O so line A1B1 passes through O.
Thus, the required black space in the statement "The slope of AB is 3. The slope of A1 B1 is___. A1 B1 _____ through point O". is filled by 3 and passes.
Learn more about line Scale factors here:
https://brainly.com/question/22312172
#SPJ2
Would this be correct even though I didn’t use the chain rule to solve?
Answer:
Dy/Dx=1/√ (2x+3)
Yeah it's correct
Step-by-step explanation:
Applying differential by chain differentiation method.
The differential of y = √(2x+3) with respect to x
y = √(2x+3)
Let y = √u
Y = u^½
U = 2x +3
The formula for chain differentiation is
Dy/Dx = Dy/Du *Du/Dx
So
Dy/Dx = Dy/Du *Du/Dx
Dy/Du= 1/2u^-½
Du/Dx = 2
Dy/Dx =( 1/2u^-½)2
Dy/Dx= u^-½
Dy/Dx=1/√ u
But u = 2x+3
Dy/Dx=1/√ (2x+3)
graph y=8 sec1/5 Ø the answers are graphs I am just unsure of how to answer
Answer:
Use a graphing calc.
Step-by-step explanation:
The completion times for a job task range from 11.1 minutes to 19.2 minutes and are thought to be uniformly distributed. What is the probability that it will require between 14.8 and 16.5 minutes to perform the task?
Answer:
[tex] P(14.8< X<16.5)= \frac{16.5-11.1}{19.2-11.1} -\frac{14.8-11.1}{19.2-11.1}= 0.667-0.457= 0.210[/tex]
The probability that it will require between 14.8 and 16.5 minutes to perform the task is 0.210
Step-by-step explanation:
Let X the random variable "completion times for a job task" , and we know that the distribution for X is given by:
[tex] X \sim Unif (a= 11.1, b= 19.2)[/tex]
And for this case we wantto find the following probability:
[tex] P(14.8< X<16.5)[/tex]
And for this case we can use the cumulative distribution given by:
[tex] F(x) =\frac{x-a}{b-a} , a\leq X \leq b[/tex]
And using this formula we got:
[tex] P(14.8< X<16.5)= \frac{16.5-11.1}{19.2-11.1} -\frac{14.8-11.1}{19.2-11.1}= 0.667-0.457= 0.210[/tex]
The probability that it will require between 14.8 and 16.5 minutes to perform the task is 0.210
volume of a cube size 7cm
Answer:
343 cm3
Step-by-step explanation:
Answer:
side(s) =7cm
volume (v)=l^3
or, v = 7^3
therefore the volume is 343cm^3.
hope its what you are searching for..
Estimate the area under the graph of f(x)=2x^2-12x+22 over the interval [0,2] using four approximating rectangles and right endpoints.
Answer:
The right Riemann sum is 21.5.
The left Riemann sum is 29.5.
Step-by-step explanation:
The right Riemann sum (also known as the right endpoint approximation) uses the right endpoints of a sub-interval:
[tex]\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_1)+f(x_2)+f(x_3)+...+f(x_{n-1})+f(x_{n})\right)[/tex], where [tex]\Delta{x}=\frac{b-a}{n}[/tex].
To find the Riemann sum for [tex]\int_{0}^{2}\left(2 x^{2} - 12 x + 22\right)\ dx[/tex] with 4 rectangles, using right endpoints you must:
We have that a = 0, b = 2, n = 4. Therefore, [tex]\Delta{x}=\frac{2-0}{4}=\frac{1}{2}[/tex].
Divide the interval [0,2] into n = 4 sub-intervals of length [tex]\Delta{x}=\frac{1}{2}[/tex]:
[tex]\left[0, \frac{1}{2}\right], \left[\frac{1}{2}, 1\right], \left[1, \frac{3}{2}\right], \left[\frac{3}{2}, 2\right][/tex]
Now, we just evaluate the function at the right endpoints:
[tex]f\left(x_{1}\right)=f\left(\frac{1}{2}\right)=\frac{33}{2}=16.5\\\\f\left(x_{2}\right)=f\left(1\right)=12\\\\f\left(x_{3}\right)=f\left(\frac{3}{2}\right)=\frac{17}{2}=8.5\\\\f\left(x_{4}\right)=f(b)=f\left(2\right)=6[/tex]
Finally, just sum up the above values and multiply by [tex]\Delta{x}=\frac{1}{2}[/tex]:
[tex]\frac{1}{2}(16.5+12+8.5+6)=21.5[/tex]
The left Riemann sum (also known as the left endpoint approximation) uses the left endpoints of a sub-interval:
[tex]\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_0)+f(x_1)+2f(x_2)+...+f(x_{n-2})+f(x_{n-1})\right)[/tex], where [tex]\Delta{x}=\frac{b-a}{n}[/tex].
To find the Riemann sum for [tex]\int_{0}^{2}\left(2 x^{2} - 12 x + 22\right)\ dx[/tex] with 4 rectangles, using left endpoints you must:
We have that a = 0, b = 2, n = 4. Therefore, [tex]\Delta{x}=\frac{2-0}{4}=\frac{1}{2}[/tex].
Divide the interval [0,2] into n = 4 sub-intervals of length [tex]\Delta{x}=\frac{1}{2}[/tex]:
[tex]\left[0, \frac{1}{2}\right], \left[\frac{1}{2}, 1\right], \left[1, \frac{3}{2}\right], \left[\frac{3}{2}, 2\right][/tex]
Now, we just evaluate the function at the left endpoints:
[tex]f\left(x_{0}\right)=f(a)=f\left(0\right)=22\\\\f\left(x_{1}\right)=f\left(\frac{1}{2}\right)=\frac{33}{2}=16.5\\\\f\left(x_{2}\right)=f\left(1\\\right)=12\\\\f\left(x_{3}\right)=f\left(\frac{3}{2}\right)=\frac{17}{2}=8.5[/tex]
Finally, just sum up the above values and multiply by [tex]\Delta{x}=\frac{1}{2}[/tex]:
[tex]\frac{1}{2}(22+16.5+12+8.5)=29.5[/tex]
Which equation represents the statement below?
Thirteen less than a number is forty-two.
Select one:
a. n – 13 = 42
b. 42 – 13 = n
c. 13 – n = 42
d. 13 – 42 = n
The answer is option A
Step-by-step explanation:
Thirteen less than a number is written as
n - 13
Equate it to 42
We have
n - 13 = 42
Hope this helps you
The three-dimensional figure below is a cylinder with a hole in the shape of a rectangular prism going through the center of it.
The radius is 10 yards. Find the volume of the solid in cubic yards, rounded to the nearest ten. Use 3.14 for pie.
A. 1,980
B. 1,788
C. 1,034
D. 1,884
Answer:
B. 1788
Step-by-step explanation:
The volume of solid shaped is expressed in cubic yards. The sides of the shape are multiplied or powered as 3 for the volume determination. Volume is the total space covered by the object. It includes height, length, width. The three dimensional objects volume is found by
length * height * width
The volume for current object is :
12 * 28 * 5
= 1788 cubic yards.
Answer: 1778
Step-by-step explanation:
because Ik I had the question
Find the area of a triangle whose two sides are 12 inches and 14 inches long, and has a perimeter of 34 inches.
Answer:
[tex]\huge\boxed{A=3\sqrt{255}\ in^2\approx47.91\ in^2}[/tex]
Step-by-step explanation:
We have two sides
[tex]a=12in;\ b=14in[/tex]
and the preimeter
[tex]P=34in[/tex]
We can calculate the length of the third side:
[tex]c=P-a-b[/tex]
substitute
[tex]c=34-12-14=8\ (in)[/tex]
Use the Heron's formula:
[tex]A=\sqrt{p(p-a)(p-b)(p-c)[/tex]
where
[tex]p=\dfrac{P}{2}[/tex]
substitute:
[tex]p=\dfrac{34}{2}=17\ (in)\\\\A=\sqrt{17(17-12)(17-14)(17-8)}=\sqrt{(17)(5)(3)(9)}\\\\=\sqrt{9}\cdot\sqrt{(17)(5)(3)}=3\sqrt{255}\ (in^2)\approx47.91\ (in^2)[/tex]
Professor Sanchez has been teaching Principles of Economics for over 25 years. He uses the following scale for grading. Grade Numerical Score Probability A 4 0.090 B 3 0.240 C 2 0.360 D 1 0.165 F 0 0.145 a. Convert the above probability distribution to a cumulative probability distribution. (Round your answers to 3 decimal places.)
The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
Professor Sanchez has been teaching Principles of Economics for over 25 years. He uses the following scale for grading. Grade Numerical Score Probability A 4 0.090 B 3 0.240 C 2 0.360 D 1 0.165 F 0 0.145
a. Convert the above probability distribution to a cumulative probability distribution. (Round your answers to 3 decimal places.)
b. What is the probability of earning at least a B in Professor Sanchez’s course? (Round your answer to 3 decimal places.)
c. What is the probability of passing Professor Sanchez’s course? (Round your answer to 3 decimal places.)
Answer:
a. Cumulative Probability Distribution
Grade P(X ≤ x)
F 0.145
D 0.310
C 0.670
B 0.910
A 1
b. P(at least B) = 0.330
c. P(pass) = 0.855
Step-by-step explanation:
Professor Sanchez has been teaching Principles of Economics for over 25 years.
He uses the following scale for grading.
Grade Numerical Score Probability
A 4 0.090
B 3 0.240
C 2 0.360
D 1 0.165
F 0 0.145
a. Convert the above probability distribution to a cumulative probability distribution. (Round your answers to 3 decimal places.)
The cumulative probability distribution is given by
Grade = F
P(X ≤ x) = 0.145
Grade = D
P(X ≤ x) = 0.145 + 0.165 = 0.310
Grade = C
P(X ≤ x) = 0.145 + 0.165 + 0.360 = 0.670
Grade = B
P(X ≤ x) = 0.145 + 0.165 + 0.360 + 0.240 = 0.910
Grade = A
P(X ≤ x) = 0.145 + 0.165 + 0.360 + 0.240 + 0.090 = 1
Cumulative Probability Distribution
Grade P(X ≤ x)
F 0.145
D 0.310
C 0.670
B 0.910
A 1
b. What is the probability of earning at least a B in Professor Sanchez’s course? (Round your answer to 3 decimal places.)
At least B means equal to B or greater than B grade.
P(at least B) = P(B) + P(A)
P(at least B) = 0.240 + 0.090
P(at least B) = 0.330
c. What is the probability of passing Professor Sanchez’s course? (Round your answer to 3 decimal places.)
Passing the course means getting a grade of A, B, C or D
P(pass) = P(A) + P(B) + P(C) + P(D)
P(pass) = 0.090 + 0.240 + 0.360 + 0.165
P(pass) = 0.855
Alternatively,
P(pass) = 1 - P(F)
P(pass) = 1 - 0.145
P(pass) = 0.855
A child is playing games with empty soda cups. There are three sizes: small, medium, and large. After some experimentation
she discovered she was able to measure out 160 ounces in the following ways:
1) 2 small, 2 medium, 4 large
2) 2 small, 6 medium, 1 large
3) 5 small, 1 medium, 3 large
Determine the size of the cups.
Answer:
S is the volume of the small cup, M the volume of the medium cup and L the volume of the large cup:
2*S + 2*M + 4*L = 160oz
2*S + 6*M + 1*L = 160oz
5*S + 1*M + 3*L = 160oz.
First, we must isolate one of the variables, for this we can use the first two equations and get:
2*S + 2*M + 4*L = 160oz = 2*S + 6*M + 1*L
We can cancel 2*S in both sides:
2*M + 4*L = 6*M + 1*L
now each side must have only one variable:
4*L - 1*L = 6*M - 2*M
3*L = 4*M
L = (4/3)*M.
now we can replace it in the equations and get :
2*S + 2*M + 4*(4/3)*M = 160oz
2*S + 6*M + (4/3)*M = 160oz
5*S + 1*M + 4M = 160oz.
simplifing them we have:
2*S + (22/3)*M + = 160oz
2*S + (22/3)*M = 160oz
5*S + 5*M = 160oz.
(the first and second equation are equal because we used those to get the relation of M and L, so we now have only two equations):
2*S + (22/3)*M = 160oz
5*S + 5*M = 160oz.
We can take the second equation and simplify it:
S + M = 160oz/5 = 32oz
S = 32oz - M
Now we can replace it in the first equation and solve it for M
2*S + (22/3)*M = 2*(32oz - M) + (22/3)*M = 160oz
62oz - 2*M + (22/3)*M = 160oz
-(6/3)*M + (22/3)*M = 98oz
(18/3)*M = 98oz
M = (3/18)*98oz = 16.33 oz
Then:
L = (4/3)*M =(4/3)*16.33oz = 21.78 oz
and:
S = 32oz - M = 32oz - 16.33oz = 15.67oz
A graph is given to the right. a. Explain why the graph has at least one Euler path. b. Use trial and error or Fleury's Algorithm to find one such path starting at Upper A, with Upper D as the fourth and seventh vertex, and with Upper B as the fifth vertex. A C B D E A graph has 5 vertices labeled A through E and 7 edges. The edges are as follows: Upper A Upper C, Upper A Upper B, Upper A Upper D, Upper C Upper D, Upper C Upper E, Upper B Upper D, Upper D Upper E. a. Choose the correct explanation below. A. It has exactly two odd vertices. Your answer is correct.B. It has exactly two even vertices. C. It has more than two odd vertices. D. All graphs have at least one Euler path. b. Drag the letters representing the vertices given above to form the Euler path.
Answer:
a. It has exactly two odd vertices
b. A C E D B A D C
Step-by-step explanation:
(a) There will not be an Euler path if the number of odd vertices is not 0 or 2. Here, the graph has exactly two odd vertices: A and C.
__
(b) We are required to produce a path of the form {A, _, _, D, B, _, D, _}.
Starting at A, there is only one way to get to node D as the 4th node on the path: via C and E. Node B must follow. From B, there is exactly one way to cover the remaining three edges that have not been traversed so far.
The Euler path meeting the requirements is ...
A C E D B A D C
It is shown by the arrows on the edges in the graph of the attachment.