Answer:
Explanation:
C. warm weather
Answer:
stormy weather
Identify the Sun activity that travels from one sunspot to another sunspot.
Group of answer choices
Prominence
corona mass ejection
solar wind
solar flare
Answer:
solar flair I think I'm not sure
A change of state is a(n)
process.
A. irreversible
B. reversible
Answer:
Changes of states are reversible, you can go from a solid to liquid and liquid to solid.Answer:
Reversible
Explanation:
Changes of state are physical changes in matter. Common changes of the state include melting, freezing, sublimation, deposition, condensation, and vaporization.
A quantity of water is heated from 25.0°C to 36.4°C by absorbing 325 J of heat energy. If the specific heat of water is 4.18 J / g°C, what mass is this quantity of water?
Answer:
6,8 g
Explanation:
c = 4.18 J/(g * °C) = 4180 J / (kg * °C)
[tex]t_{1}[/tex] = 25 °C
[tex]t_{2}[/tex] = 36,4 °C
Q = 325 J
The formula is: Q = c * m * ([tex]t_{2} - t_{1}[/tex])
m = [tex]\frac{Q}{c * (t_{2} - t_{1} )}[/tex]
Calculating:
m = 325 / 4180 * (36,4 - 25) ≈ 0,0068 kg = 6,8 g
The mass of the quantity of water heated from 25.0°C to 36.4°C by absorbing 325 J of heat energy is 6.8grams.
HOW TO CALCULATE MASS:
The mass of a substance can be calculated by using the following formula:
Q = m × c × ∆T
Where;
Q = quantity of heat absorbed (J)c = specific heat capacity (4.18 J/g°C)m = mass of substance∆T = change in temperature (°C)According to this question;
m = ?
∆T = 36.4°C - 25°C = 11.4°C
Q = 325J
325 = m × 4.18 × 11.4
325 = 47.65m
m = 325 ÷ 47.65
m = 6.8g
Therefore, the mass of the quantity of water heated from 25.0°C to 36.4°C by absorbing 325 J of heat energy is 6.8grams.
Learn more about specific heat capacity at: https://brainly.com/question/2530523?referrer=searchResults
How many formula units are contained in 0.57 g Cao?
The total thermal energy of a system depends jointly on the temperature, total number of in the system _______________, and the _______________of the material. *
1. Molecules/State
2. Molecules/Heat
3. Matter/Heat
4. Atoms/State
Answer:
Molecules/State
Explanation:
We know from the kinetic molecular theory that matter is made up of molecules. These molecules are in constant motion at various velocities and energies.
The total thermal energy refers to the total kinetic energies of these particles. It depends on the temperature of the system, the energies of the molecules present in the material and the arrangement of the object's molecules (states of matter).
Indium has a tetragonal unit cell for which the a and c lattice parameters are 0.459 and 0.495 nm, respectively. (a) If the atomic packing factor and atomic radius are 0.693 and 0.1625 nm, respectively, determine the number of atoms in each unit cell. (b) The atomic weight of indium is 114.82 g/mol; compute its theoretical density. (a) Enter your answer for part (a) in accordance to the question statement atoms/unit cell (b) Enter your answer for part (b) in accordance to the question statement g/cm3
Answer:
A) 4 atoms/unit cell
B) 7.31 g/cm^3
Explanation:
A) Determine the number of atoms in each unit cell
attached below is the detailed solution
number of atoms per unit cell ( n ) = 4 atoms/unit cell
B) Given atomic weight of indium = 114.82 g/mol
hence the theoretical density = 7.31 g/cm^3
Attached below is a detailed solution of the question
Which option is the basic unit of water, a compound?
A. A water atom
B. A hydrogen atom
C. A hydrogen molecule
D. A water molecule
Answer:
D. A water molecule
Explanation:
Every morning, Jeremiah uses a blender to make a smoothie for breakfast. Which of the
following shows the energy transformation that the blender demonstrates?
А
Electrical - light
B
Chemical → mechanical
с
Mechanical → chemical
D
Electrical mechanical
Answer:
D
Explanation:
Answer:
D: Electrical -> mechanical
Explanation:
Hope this helps!
As the temperature of a substance increases, the average___________ energy of the particles also increases, and movement overcomes forces of ________ more easily. As temperature decreases particles move more slowly and the_________ forces between particles dominate.
Answer:
Kinetic; attraction; attraction.
Explanation:
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;
[tex] K.E = \frac{1}{2}MV^{2}[/tex]
Where, K.E represents kinetic energy measured in Joules.
M represents mass measured in kilograms.
V represents velocity measured in metres per seconds square.
Conduction involves the transfer of electric charge or thermal energy due to the movement of particles. When conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.
Hence, as the temperature of a substance increases, the average kinetic energy of the particles also increases, and movement overcomes forces of attraction more easily. As temperature decreases particles move more slowly and the attraction-forces between particles dominate.
In conclusion, when a substance or an object is heated, a phase change starts to occur only when the average kinetic energy of its particles is great enough to overcome the force of attraction between its particles.
The ozone "hole" over Antarctica formed as the result of a series of chemical reactions. The loss occurs in part through three consecutive steps in which ozone is broken down: Step 1: Chlorine atoms react with ozone (O3) to form chlorine monoxide and molecular oxygen. Step 2: Chlorine monoxide molecules combine to form ClOOCl gas Step 3: ClOOCl absorbs sunlight and breaks into chlorine atoms and molecular oxygen. a) Write a balanced equation for each step. b) Write an overall balanced equation for the sequence
Answer:
A)
Cl + O3 --> ClO + O2
2ClO --> ClOOCl
ClOOCl --> 2 Cl + O2
B)
Cl2 + 4O3 -> 2 ClO + 5O2
Explanation:
Step 1: Chlorine atoms react with ozone (O3) to form chlorine monoxide and molecular oxygen
Cl + O3 --> ClO + O2
Step 2: Chlorine monoxide molecules combine to form ClOOCl gas
2ClO --> ClOOCl
Step 3: ClOOCl absorbs sunlight and breaks into chlorine atoms and molecular oxygen
ClOOCl --> 2 Cl + O2
B) Overall Balanced equation
Cl2 + 4O3 -> 2 ClO + 5O2
PLEASE HELP BRAINLIEST AND 15 points.
1. Which substance is nonvolatile ?
(1.5 Points)
Substance B, boiling point of 105 °C
Substance C, boiling point of 25 °C
Substance A, boiling point of 75 °C
Substance d, boiling point of 45 °C
Answer:
Substance B, boiling point of 105 °C
Explanation:
Non volatile substances have high boiling points
Calculate the mass of butane needed to produce 99.0 g of carbon dioxide.
Express your answer to three significant figures and include the appropriate units.
Answer:
32.7 g
Explanation:
Step 1: Write the balanced combustion reaction
C₄H₁₀ + 6.5 O₂ ⇒ 4 CO₂ + 5 H₂O
Step 2: Calculate the moles corresponding to 99.0 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
99.0 g × 1 mol/44.01 g = 2.25 mol
Step 3: Calculate the moles of C₄H₁₀ needed to produce 2.25 moles of CO₂
The molar ratio of C₄H₁₀ to CO₂ is 1:4. The moles of C₄H₁₀ needed are 1/4 × 2.25 mol = 0.563 mol.
Step 4: Calculate the mass corresponding to 0.563 moles of C₄H₁₀
The molar mass of C₄H₁₀ is 58.12 g/mol.
0.563 mol × 58.12 g/mol = 32.7 g
if LiCl and MgBr2 were to enter into a chemical reaction which member of MgBr2 will chlorine replace?
Answer:
It replaces Br in MgBr2.
Explanation:
Hello!
In this case, when carrying out double displacement reactions, we need to take into account that cations and anions are switched; thus, when LiCl and MgBr2 react, since Li and Mg are the cations, Br and Cl switch as shown below:
[tex]2LiCl+MgBr_2\rightarrow 2LiBr+MgCl_2[/tex]
Thus, chlorine replace Br in MgBr2 to form MgCl2.
Best regards!
What is the value of 4.698 after rounding it down to 3 significant figures?
What is the total amount of heat released in kilojoules when 112.0 g water at 50.0∘C cools to form ice at −45.0∘C? Use the following values for calculations, as needed.
Properties of Water−−−−−−−−−−−−−−−−−−Specific Heats(∘C)gas=1.84 J/g∘Cliquid=4.184 J/g∘Csolid=2.09 J/g∘C
Heat of VaporizationΔHvap=40.7 kJ/molHeat of FusionΔHfus=6.01 kJ/mol
Answer:
Q = 44.5 kJ
Explanation:
Given that,
Mass of water, m = 112 g
Water at 50.0°C cools to form ice at −45.0°C
We need to find the total amount of heat released. The formula for heat released is given by :
[tex]Q=mc\Delta T[/tex]
c is the specific heat of water, c = 4.184 J/g°C
So,
[tex]Q=112\times 4.184 \times (-45-50)\\\\Q=-44517.76\ J[/tex]
or
Q = -44.5 kJ
So, 44.5 kJ of heat is released.
What is the mass of 3.00 -1023 particles of water? Water has a molar mass of 18.0 g/mol.
3.00 grams
18.0 grams
6.00 grams
9.00 grams
Answer:
bro
Explanation:
guhfuyfouyvyu
Answer:
9.00
Explanation:
I took the test and got it correct ...
a sample of fully saturated clay weighs 1350 g in its natural state and 975 g after drying. what is the natural water content of the soil
Answer:
The soil has a percentage of water by mass of 27.8 %.
Explanation:
Keeping in mind that
Mass of Clay = Mass of water + Mass of Dry Soilwe can calculate the mass of water:
1350 g = Mass of Water + 975 gMass of Water = 375 gWe can then calculate the mass percentage of water in the soil:
375 / 1350 * 100% = 27.8 %What is wrong with the following electron configuration?
Answer:
a. without completing 2p stuff...electrons cant go to 3s. the correct configuration is
1s2, 2s2, 2p6, 3s1
b. after 4s, 3d comes not 4d. the correct configuration is 1s2, 2s2, 2p6, 3s2, 4s2, 3d6
c. after 4s, it is 3d and then 4p the correct configuration is 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6.
Hope it helps you 。◕‿◕。
To determine the concentration of citric acid, you will need to titrate this solution with 0.100 M NaOH. You are given a 1.00 M NaOH stock solution and will need to make enough 0.100 M NaOH to perform 3 titrations. For each titration, you will use 20.0 mL of 0.100 M NaOH solution.
Calculate the total volume (in mL) of the diluted solution you will need to prepare for the 3 titrations.
Determine the minimum volume (in mL) of 1.00 M NaOH stock solution needed to prepare the 0.100 M NaOH solution.
Answer:
60.0mL of the diluted solution are needed
6.00mL of the 1.00M NaOH stock solution is the minimum volume needed to prepare the diluted solution.
Explanation:
As in each titration we need to use 20.0mL of the diluted 0.100M solution. As there are 3 titration, the volume must be:
3 * 20.0mL = 60.0mL of the diluted solution are needed
Now, to prepare a 0.100M NaOH solution from a 1.00M NaOH stock solution the dilution must be of:
1.00M / 0.100M = 10 times must be diluted the solution.
As we need at least 60.0mL, the minimum volume of the stock solution must be:
60.0mL / 10 times =
6.00mL of the 1.00M NaOH stock solution is the minimum volume needed to prepare the diluted solution.identify the equipment best suited for extinguishing each type of fire. Your choices are: fire extinguisher, overturned beaker, fire blanket.
Answer: The equipment best suited for extinguishing each type of fire are listed below:
--> Fire extinguisher: Large fire on the floor
--> Overturned beaker: Small benchtop fire
--> Fire blanket: clothing fire.
Explanation:
Fire outbreaks is a common event that can be prevented in a standard chemistry laboratory with the aid of fire safety equipments.
The method used by these equipments to extinguish fire is to suffocate the fire by obstructing the source of oxygen, by reducing the heat with the use of water and removing the fuel or oxygen source.
These fire safety equipments should be highly visible and easily accessible in a laboratory. Example of fire safety equipments includes:
--> Fire extinguisher: A laboratory personnel needs to be trained in the use of this since it's made up of different types. it can be used to extinguish ( put out) large fire on the floor.
--> Overturned beaker: this can be used to suffocate small fire on the bench which is also common in the laboratory.
-->Fire blanket: This should be used in the event that a person’s body or clothing catches fire.
If the oxidation state of H is +1 and O is -2, what is the oxidation state of C in C2H4O?
Answer:
-1
Explanation:
According to this question, the oxidation state/number of H and O in C2H4O is +1 and -2 respectively.
The oxidation state of carbon in the compound can be calculated thus:
Where;
x represents the oxidation number of C
C2H4O = 0 (net charge)
x(2) + 1(4) - 2 = 0
2x + 4 - 2 = 0
2x + 2 = 0
2x = -2
Divide both sides by 2
x = -1
The oxidation number of C in C2H4O is -1.
Why is glass NOT a crystal?
A its is a solid
B it is transparent
C it is not a crystalline
D it fractures
Answer:
I think it's B- it is transparent
Answer:A
Explanation:Glass can not be classified as a crystal when it is in its amorphous phase.
When a precipitation reaction occurs, the ions that do not take part in the reaction are called
A.non participants
B.useless ions
C.independent variables
D.spectator ions
Answer:
D. spectator ions.
Explanation:
Hello!
In this case, when going over net ionic equations by which precipitation reactions are analyzed, we can consider the example of lead (II) nitrate with potassium iodide to yield insoluble lead (II) iodide and soluble potassium nitrate according to:
[tex]2KI(aq)+Pb(NO_3)_2(aq)\rightarrow PbI_2(s)+2KNO_3(aq)[/tex]
Whereas aqueous species remain in solution:
[tex]2K^+(aq)+2I^-(aq)+Pb^{2+}(aq)+2(NO_3)^-(aq)\rightarrow PbI_2(s)+2K^+(aq)+2(NO_3)^-(aq)[/tex]
It means that potassium and nitrate ions are spectator ions because they are not involved in the precipitation reaction, which is represented by the net ionic one:
[tex]2I^-(aq)+Pb^{2+}(aq)\rightarrow PbI_2(s)[/tex]
Thus, the answer to this question is D. spectator ions.
Best regards!
Sulfurous acid reacts with barium hydroxide.
Answer:
Ba(OH)2 + H2SO3 = BaSO3 + H2O -
Explanation:
How many molecules are in 15 moles of CO2?
There are 90.345 x 10^23 molecules in 15 moles of CO2.
What is Avogadro's number?Avogadro's number is the number of units, atoms or molecules in one mole of a substance which is equals to 6.02214076 × 1023. This number is also known as the Avogadro constant.
This means that one mole of a substance is equals to 6.02214076 × 1023 atoms, ions or molecules then 15 moles is equals to 90.345 x 10^23 molecules so we can conclude that there are 90.345 x 10^23 molecules are in 15 moles of CO2.
Learn more about mole here: brainly.com/question/1427235
Where and in what features is water found on Earth?
Answer: On Earth, liquid water exists on the surface in the form of oceans, lakes and rivers. It also exists below ground as groundwater, in wells and aquifers. Water vapor is most visible as clouds and fog. The frozen part of Earth's hydrosphere is made of ice: glaciers, ice caps and icebergs.
In general, weathering tends to occur more rapidly in warm climates than in cool climates. How does this trend explain the effect of temperature on erosion rates?
Answer:
See explanation
Explanation:
Weathering refers to the breakdown of rocks to form soil. There are several agents of weathering.
In warmer regions, there are more vegetation and microorganisms and they increase the rate of biological weathering.
Since weathering leads to the formation of soil and the rate of weathering is greater in warmer climates, it also follows that as temperature increases and more soil is formed, erosion will happen faster at this higher temperature owing to the presence of more soil compared to colder climates.
There is a huge and direct effect of temperature on the rates of erosion.
The highest rate of weathering occurs in warm and wet climate because in warm and wet climatic regions, more rainfall occurs which increase the rate of weathering. Rainfall and temperature can affect the rate in which rock weathering occurs.
High temperatures and greater rainfall increase the rate of chemical weathering. Rocks in tropical regions exposed to abundant rainfall so we can conclude that hot temperatures weather much faster than similar rocks residing in cold, dry regions.
Learn more: https://brainly.com/question/20929061
A compound is made of 6.00 grams of oxygen, 7.00 grams of nitrogen, and 20.00grams of hydrogen. Find the percent composition of the compound.
A O-18.18%, N-21.21%, H-60.60%
B O-11.18%, N-22.21%, H-69.60%
C O-20%, N-30%, H-50%
D O-60.60%, N-21.21%, H-18.18%
The percent composition of the compound.
A O-18.18%, N-21.21%, H-60.60%
Further explanationGiven
6.00 grams of oxygen,
7.00 grams of nitrogen,
20.00 grams of hydrogen.
Required
The percent composition
Solution
Total mass :
= mass of O + mass of N + mass of H
= 6 + 7 + 20
= 33 g
% O = 6/33 x 100%= 18.18%
% N = 7/33 x 100%=21.21%
% H = 20/33 x 100% = 60.6 %
The heat of vaporization of water at the normal boiling point, 373.2 K, is 40.66 kJ/mol. The molar heat capacity of liquid water is 75.37 J K-1 mol-1 and that of gaseous water is 36.4 J K-1 mol-1. Assume that these values are independent of temperature. What is the heat of vaporization of water at 300.2 K?
Answer:
[tex]\Delta _{vap}H(300.2K)=43,658\frac{J}{mol}=43.66\frac{kJ}{mol}[/tex]
Explanation:
Hello!
In this case, according to the Kirchhoff's law for the enthalpy change, it is possible to compute the heat of vaporization at 300.2 K by considering the following thermodynamic route:
[tex]\Delta _{vap}H(300.2K)=Cp_{liq}(T_b-T\°)+\Delta _{vap}H\°+Cp_{vap}(T-T_B)[/tex]
Whereas the first term stands for the effect of taking the liquid from 298.15 K to 373.15 K, the second term stands for the standard enthalpy of vaporization and the last term that of the vapor from the boiling point to 300.2 K; thus we plug in to obtain:
[tex]\Delta _{vap}H(300.2K)=75.37\frac{J}{mol*K} (373.2K-298.15K)+40,660\frac{J}{mol} +36.4\frac{J}{mol*K}(300.2K-373.2K)\\\\\Delta _{vap}H(300.2K)=43,658\frac{J}{mol}=43.66\frac{kJ}{mol}[/tex]
Best regards!
*SCIENCE*
A nebula contains large amounts of dust and clouds. What role does gravity play inside of nebulae?
0 The gravitational pull between the gas and dusť matter leads to the formation of new galaxies.
0 The gravity pulls the gas and dust apart, leading to the formation of a larger nebula.
0 The gravitational pull between the gas and dust matter leads to the formation of new stars and planets.
0 There is no gravity inside nebulae because each dust particle is so small.
Answer:
The gravitational pull between the gas and dust matter leads to the formation of new galaxies
Explanation:
My teacher went over the answers and said that one was correct.
A nebula contains large amounts of dust and clouds. The gravitational pull between the gas and dusť matter leads to the formation of new galaxies does gravity play inside of nebulae. Therefore, option A is correct.
What is gravity ?Gravity is the force that pulls objects toward the center of a planet or other body. The gravitational force keeps all the planets in orbit around the sun.
Gravity pulls you toward the ground because all objects with mass, such as our Earth, actually bend and curve the fabric of the universe, known as spacetime. Gravity is the curvature of the earth.
A nebula is densely packed with dust and clouds.The gravity play a role inside nebulae, The gravitational pull between gas and dus matter leads to the formation of new galaxies.
Thus, option A is correct.
To learn more about the gravity, follow the link;
https://brainly.com/question/4014727
#SPJ6