The radius of the circle is 3.5 cm.
The formula for the arc length of a circle is s = rθ, where s is the arc length, r is the radius, and θ is the central angle in radians. We know that s = 8 cm and θ = 2.3 radians, so we can solve for r.
r = s / θ = 8 cm / 2.3 radians = 3.478 cm
Here is an explanation of the steps involved in solving the problem:
We know that the arc length is 8 cm and the central angle is 2.3 radians.
We can use the formula s = rθ to solve for the radius r.
Plugging in the known values for s and θ, we get r = 3.478 cm.
Rounding to the nearest tenth, we get r = 3.5 cm.
To learn more about radius here:
https://brainly.com/question/31831831
#SPJ4
Correct Question:
A circular arc has measure 8 cm and is intercepted by a central angle of 2.3 radians. Find the radius of the circle. Do not round any intermediate computations, and round your answer to the nearest tenth.
Let g:R^2→R be given by
g(v,ω)=v^2−w^2
This exercise works out the contour plot of g via visual reasoning; later it will be an important special case for the study of what are called "saddle points" in the multivariable second derivative test. (a) Sketch the level set g(v,ω)=0.
The correct option in the multivariable second derivative test is (C) Two lines, v = w and v = -w.
Given the function g: R^2 → R defined by g(v, ω) = v^2 - w^2. To sketch the level set g(v, ω) = 0, we need to find the set of all pairs (v, ω) for which g(v, ω) = 0. So, we have
v^2 - w^2 = 0
⇒ v^2 = w^2
This is a difference of squares. Hence, we can rewrite the equation as (v - w)(v + w) = 0
Therefore, v - w = 0 or
v + w = 0.
Thus, the level set g(v, ω) = 0 consists of all pairs (v, ω) such that either
v = w or
v = -w.
That is, the level set is the union of two lines: the line v = w and the line
v = -w.
The sketch of the level set g(v, ω) = 0.
To know more about the derivative, visit:
https://brainly.com/question/29144258
#SPJ11
From the base price level of 100 in 1981, Saudi Arablan and U.S. price levels in 2010 stood at 240 and 100 , respectively. Assume the 1981$/rlyal exchange rate was $0.42 rlyal. Suggestion: Using the purchasing power parity, adjust the exchange rate to compensate for Inflation. That Is, determine the relative rate of Inflation between the United States and Saudi Arabia and multiply this times $/riyal of 0.42. What should the exchange rate be in 2010 ? (Do not round Intermedlate calculatlons. Round your answer to 2 decimal places.)
The exchange rate in 2010 should be $0.66/riyal. To determine the adjusted exchange rate in 2010 based on purchasing power parity, we need to calculate the relative rate of inflation between the United States and Saudi Arabia and multiply it by the 1981$/riyal exchange rate of $0.42.
The formula for calculating the relative rate of inflation is:
Relative Rate of Inflation = (Saudi Arabian Price Level / U.S. Price Level) - 1
Given that the Saudi Arabian price level in 2010 is 240 and the U.S. price level in 2010 is 100, we can calculate the relative rate of inflation as follows:
Relative Rate of Inflation = (240 / 100) - 1 = 1.4 - 1 = 0.4
Next, we multiply the relative rate of inflation by the 1981$/riyal exchange rate:
Adjusted Exchange Rate = 0.4 * $0.42 = $0.168
Finally, we add the adjusted exchange rate to the original exchange rate to obtain the exchange rate in 2010:
Exchange Rate in 2010 = $0.42 + $0.168 = $0.588
Rounding the exchange rate to 2 decimal places, we get $0.59/riyal.
Based on purchasing power parity and considering the relative rate of inflation between the United States and Saudi Arabia, the exchange rate in 2010 should be $0.66/riyal. This adjusted exchange rate accounts for the changes in price levels between the two countries over the period.
To know more about rate , visit;
https://brainly.com/question/29781084
#SPJ11
Graph all vertical and horizontal asymptotes of the rational function. \[ f(x)=\frac{5 x-2}{-x^{2}-3} \]
The horizontal line y = 0 represents the horizontal asymptote of the function, and the points (2/5,0) and (0,-2/3) represent the x-intercept and y-intercept, respectively.
To find the vertical asymptotes of the function, we need to determine where the denominator is equal to zero. The denominator is equal to zero when:
-x^2 - 3 = 0
Solving for x, we get:
x^2 = -3
This equation has no real solutions since the square of any real number is non-negative. Therefore, there are no vertical asymptotes.
To find the horizontal asymptote of the function as x goes to infinity or negative infinity, we can look at the degrees of the numerator and denominator. Since the degree of the denominator is greater than the degree of the numerator, the horizontal asymptote is y = 0.
Therefore, the only asymptote of the function is the horizontal asymptote y = 0.
To graph the function, we can start by finding its intercepts. To find the x-intercept, we set y = 0 and solve for x:
5x - 2 = 0
x = 2/5
Therefore, the function crosses the x-axis at (2/5,0).
To find the y-intercept, we set x = 0 and evaluate the function:
f(0) = -2/3
Therefore, the function crosses the y-axis at (0,-2/3).
We can also plot a few additional points to get a sense of the shape of the graph:
When x = 1, f(x) = 3/4
When x = -1, f(x) = 7/4
When x = 2, f(x) = 12/5
When x = -2, f(x) = -8/5
Using these points, we can sketch the graph of the function. It should be noted that the function is undefined at x = sqrt(-3) and x = -sqrt(-3), but there are no vertical asymptotes since the denominator is never equal to zero.
Here is a rough sketch of the graph:
|
------|------
|
-----------|-----------
|
/ \
/ \
/ \
/ \
/ \
The horizontal line y = 0 represents the horizontal asymptote of the function, and the points (2/5,0) and (0,-2/3) represent the x-intercept and y-intercept, respectively.
Learn more about function from
https://brainly.com/question/11624077
#SPJ11
At the beginning of the year 1995, the population of Townsville was 3754. By the beginning of the year 2015, the population had reached 4584. Assume that the population is grr g exponentially, answer the following.
A) Estimate the population at the beginning of the year 2019. The population at the beginning of 2019 will be about
B) How long (from the beginning of 1995) will it take for the population to reach 9000? The population will reach 9000 about years after the beginning of 1995.
C) In what year will/did the population reach 9000?
The population will (or did) hit 9000 in the year.
A = 4762 (approx) . Therefore, the population will reach 9000 about 0.12*12 = 1.44 years after the beginning of 1995.the population will reach 9000 in 1995 + 1.44 = 1996.44 or around September 1996.
Given: At the beginning of the year 1995, the population of Townsville was 3754. By the beginning of the year 2015, the population had reached 4584.A) Estimate the population at the beginning of the year 2019.As the population is growing exponentially, we can use the formula:
A = P(1 + r/n)ntWhere,
A = final amount
P = initial amount
r = annual interest rate
t = number of years
n = number of times interest is compounded per year
To find the population at the beginning of 2019,P = 4584 (given)
Let's find the annual growth rate first.
r = (4584/3754)^(1/20) - 1
r = 0.00724A
= 4584(1 + 0.00724/1)^(1*4)
A = 4762 (approx)
Therefore, the population at the beginning of 2019 will be about 4762.
B) How long (from the beginning of 1995) will it take for the population to reach 9000?We need to find the time taken to reach the population of 9000.
A = P(1 + r/n)nt9000
= 3754(1 + 0.00724/1)^t(20)
ln 9000/3754
= t ln (1.00724/1)(20)
ln 2.397 = 20t.
t = 0.12 years (approx)
Therefore, the population will reach 9000 about 0.12*12 = 1.44 years after the beginning of 1995.
C) In what year will/did the population reach 9000?
In the previous step, we have found that it takes approximately 1.44 years to reach a population of 9000 from the beginning of 1995.
So, the population will reach 9000 in 1995 + 1.44 = 1996.44 or around September 1996.
To know more about population visit;
brainly.com/question/15889243
#SPJ11
in chapter 9, the focus of study is the dichotomous variable. briefly construct a model (example) to predict a dichotomous variable outcome. it can be something that you use at your place of employment or any example of practical usage.
The Model example is: Predicting Customer Churn in a Telecom Company
How can we use a model to predict customer churn in a telecom company?In a telecom company, predicting customer churn is crucial for customer retention and business growth. By developing a predictive model using historical customer data, various variables such as customer demographics is considered to determine the likelihood of a customer leaving the company.
The model is then assign a dichotomous outcome, classifying customers as either "churned" or "not churned." This information can guide the company in implementing targeted retention strategies.
Read more about dichotomous variable
brainly.com/question/26523304
#SPJ4
7. Prove that if f(z) is analytic in domain D , and satisfies one of the following conditions, then f(z) is a constant in D: (1) |f(z)| is a constant; (2) \arg f(z)
If f(z) is analytic in domain D, and satisfies one of the following conditions, then f(z) is a constant in D:(1) |f(z)| is a constant;(2) arg f(z).
Let's prove that if f(z) is analytic in domain D, and satisfies one of the following conditions, then f(z) is a constant in D:(1) |f(z)| is a constant;(2) arg f(z).
Firstly, we prove that if |f(z)| is a constant, then f(z) is a constant in D.According to the given condition, we have |f(z)| = c, where c is a constant that is greater than 0.
From this, we can obtain that f(z) and its conjugate f(z) have the same absolute value:
|f(z)f(z)| = |f(z)||f(z)| = c^2,As f(z)f(z) is a product of analytic functions, it must also be analytic. Thus f(z)f(z) is a constant in D, which implies that f(z) is also a constant in D.
Now let's prove that if arg f(z) is constant, then f(z) is a constant in D.Let arg f(z) = k, where k is a constant. This means that f(z) is always in the ray that starts at the origin and makes an angle k with the positive real axis. Since f(z) is analytic in D, it must be continuous in D as well.
Therefore, if we consider a closed contour in D, the integral of f(z) over that contour will be zero by the Cauchy-Goursat theorem. Then f(z) is a constant in D.
So, this proves that if f(z) is analytic in domain D, and satisfies one of the following conditions, then f(z) is a constant in D:(1) |f(z)| is a constant;(2) arg f(z). Hence, the proof is complete.
Know more about analytic functions here,
https://brainly.com/question/33109795
#SPJ11
1. For each of the following numbers, first plot them in the complex plane, then label the points in the planeusing both the rectangular (x,y) and polar (re iθ ) formats. Repeat the exercise for the complex conjugates of each of the numbers. 2i−2cosπ−isinπ2 e −iπ/4 2. First simplify each of the following numbers to the reiθ form. Then plot the number in the complex plane: 1i+43i−70.5(cos40 ∘ +isin40 ∘ )13. Find the norm of each of the following: z∗z3+4i25( 1−i1+i ) 54. Solve for all possible values of the real numbers x and y in the followingmequations: x+iy=3i−ixx+iy=(1+i) 2
1. a) Number: 2i - Rectangular form: (0, 2) - Polar form: 2e^(π/2)i
b) Number: -2cos(π) - isin(π/2) - Rectangular form: (-2, -i) - Polar form: 2e^(3π/2)i
c) Number: e^(-iπ/4) - Rectangular form: (cos(-π/4), -sin(-π/4)) - Polar form: e^(-iπ/4)
2. Number: 1i + 4/3i - 70.5(cos(40°) + isin(40°)) - Simplified form: (-70.5cos(40°) + 7/3, i + 70.5sin(40°))
3. a) Expression: z* z - Norm: sqrt[(Re(z))^2 + (Im(z))^2]
b) Expression: 3 + 4i - Norm: sqrt[(3^2) + (4^2)]
c) Expression: 25(1 - i)/(1 + i) - Simplified: -25/4 - (50/4)i - Norm: sqrt[(-25/4)^2 + (-50/4)^2]
4. a) Equation: x + iy = 3i - ix - Solve for x and y using the given equations.
b) Equation: x + iy = (1 + i)^2 - Simplify the equation.
1. Let's go through each number and plot them in the complex plane:
a) Number: 2i
- Rectangular form: (0, 2)
- Polar form: 2e^(π/2)i
Conjugate:
- Rectangular form: (0, -2)
- Polar form: 2e^(-π/2)i
b) Number: -2cos(π) - isin(π/2)
- Rectangular form: (-2, -i)
- Polar form: 2e^(3π/2)i
Conjugate:
- Rectangular form: (-2, i)
- Polar form: 2e^(-π/2)i
c) Number: e^(-iπ/4)
- Rectangular form: (cos(-π/4), -sin(-π/4))
- Polar form: e^(-iπ/4)
Conjugate:
- Rectangular form: (cos(-π/4), sin(-π/4))
- Polar form: e^(iπ/4)
2. Let's simplify the given number to the reiθ form and plot it in the complex plane:
Number: 1i + 4/3i - 70.5(cos(40°) + isin(40°))
- Simplified form: (1 + 4/3 - 70.5cos(40°), i + 70.5sin(40°))
- Rectangular form: (-70.5cos(40°) + 7/3, i + 70.5sin(40°))
- Polar form: sqrt[(-70.5cos(40°))^2 + (70.5sin(40°))^2] * e^(i * atan[(70.5sin(40°))/(-70.5cos(40°))])
3. Let's find the norm of each of the following expressions:
a) Expression: z* z
- Norm: sqrt[(Re(z))^2 + (Im(z))^2]
b) Expression: 3 + 4i
- Norm: sqrt[(3^2) + (4^2)]
c) Expression: 25(1 - i)/(1 + i)
- Simplify: (25/2) * (1 - i)/(1 + i)
Multiply numerator and denominator by the conjugate of the denominator: (25/2) * (1 - i)/(1 + i) * (1 - i)/(1 - i)
Simplify further: (25/2) * (1 - 2i + i^2)/(1 - i^2)
Since i^2 = -1, the expression becomes: (25/2) * (1 - 2i - 1)/(1 + 1)
Simplify: (25/2) * (-1 - 2i)/2 = (-25 - 50i)/4 = -25/4 - (50/4)i
- Norm: sqrt[(-25/4)^2 + (-50/4)^2]
4. Let's solve for the possible values of the real numbers x and y in the given equations:
a) Equation: x + iy = 3i - ix
- Rearrange: x + ix = 3i - iy
- Combine like terms: (1 + i)x = (3 - i)y
- Equate the real and imaginary parts: x = (3 - i)y and x = -(1 + i)y
- Solve for x and y using the equations above.
b) Equation: x + iy = (1 + i)^2
- Simplify
Learn more about Rectangular form here:
https://brainly.com/question/16814415
#SPJ11
The following set of jobs must be processed serially through a two-step system. The times at each process are in hours. If Johnson's Rule is used to sequence the jobs then Job A would complete processing on operation 2 at Job Process 1 Process 2 A 12 9 B 8 11 C 7 6 D 10 14 E 5 8
Select one: A. hour 35. B. hour 47. C. hour 38. D. hour 21.
The total time for all the jobs is 19 + 13 + 13 + 21 + 24 = 90 hours.
Johnson's Rule is a sequencing method used to determine the order in which jobs should be processed in a two-step system. It is based on the processing times of each job in the two steps. In this case, the processing times for each job in operation 2 at Job Process 1 and Process 2 are given as follows:
Job A: Process 1 - 12 hours, Process 2 - 9 hours
Job B: Process 1 - 8 hours, Process 2 - 11 hours
Job C: Process 1 - 7 hours, Process 2 - 6 hours
Job D: Process 1 - 10 hours, Process 2 - 14 hours
Job E: Process 1 - 5 hours, Process 2 - 8 hours
To determine the order, we first need to calculate the total time for each job by adding the processing times of both steps. Then, we select the job with the shortest total time and schedule it first. Continuing this process, we schedule the jobs in the order of their total times.
Calculating the total times for each job:
Job A: 12 + 9 = 21 hours
Job B: 8 + 11 = 19 hours
Job C: 7 + 6 = 13 hours
Job D: 10 + 14 = 24 hours
Job E: 5 + 8 = 13 hours
The job with the shortest total time is Job B (19 hours), so it is scheduled first. Then, we schedule Job C (13 hours) since it has the next shortest total time. After that, we schedule Job E (13 hours) and Job A (21 hours). Finally, we schedule Job D (24 hours).
Therefore, the order in which the jobs would complete processing on operation 2 at Job Process 1 and Process 2, when using Johnson's Rule, is:
Job B, Job C, Job E, Job A, Job D
The total time for all the jobs is 19 + 13 + 13 + 21 + 24 = 90 hours.
Therefore, the correct answer is not provided in the options given.
Learn more about total time from the given link
https://brainly.com/question/553636
#SPJ11
Amira practiced playing tennis for 2 hours during the weekend. This is one -ninth of the total time, m, she practiced playing tennis during the whole week. Complete the equation that can be used to determine how long, m, she practiced during the week.
m = 18 hours.
Let x be the total time Amira practiced playing tennis during the whole week.
We can determine the part of the total time by following the given information: 2 hours = one-ninth of the total time.
So, one part of the total time is:
Total time/9 = 2 hours (Multiplying both sides by 9),
we have:
Total time = 9 × 2 hours
Total time = 18 hours
So, the equation that can be used to determine how long Amira practiced playing tennis during the week is m = 18 hours.
Learn more about the Time related problems:
https://brainly.com/question/30018003
#SPJ11
During one month, a homeowner used 200 units of electricity and 120 units of gas for a total cost of $87.60. The next month, 290 units of electricity and 200 units of gas were used for a total cost of $131.70
Find the cost per unit of gas.
The cost per unit of gas is approximately $0.29 is obtained by solving a linear equations.
To find the cost per unit of gas, we can set up a system of equations based on the given information. By using the total costs and the respective amounts of gas used in two months, we can solve for the cost per unit of gas.
Let's assume the cost per unit of gas is represented by "g." We can set up the first equation as 120g + 200e = 87.60, where "e" represents the cost per unit of electricity. Similarly, the second equation can be written as 200g + 290e = 131.70. To find the cost per unit of gas, we need to isolate "g." Multiplying the first equation by 2 and subtracting it from the second equation, we eliminate "e" and get 2(200g) + 2(290e) - (120g + 200e) = 2(131.70) - 87.60. Simplifying, we have 400g + 580e - 120g - 200e = 276.40 - 87.60. Combining like terms, we get 280g + 380e = 188.80. Dividing both sides of the equation by 20, we find that 14g + 19e = 9.44.
Since we are specifically looking for the cost per unit of gas, we can eliminate "e" from the equation by substituting its value from the first equation. Substituting e = (87.60 - 120g) / 200 into the equation 14g + 19e = 9.44, we can solve for "g." After substituting and simplifying, we get 14g + 19((87.60 - 120g) / 200) = 9.44. Solving this equation, we find that g ≈ 0.29. Therefore, the cost per unit of gas is approximately $0.29.
To know more about linear equation refer here:
https://brainly.com/question/29111179
#SPJ11
"
Given that 5 is a zero of the polynomial function f(x) , find the remaining zeros. f(x)=x^{3}-11 x^{2}+48 x-90 List the remaining zeros (other than 5 ) (Simplify your answer. Type an exact answer, using radicals and i as needed. Use a comma to separate answers as needed.) "
The remaining zeros of the polynomial function f(x) = x^3 - 11x^2 + 48x - 90, other than 5, are -3 and 6.
Given that 5 is a zero of the polynomial function f(x), we can use synthetic division or polynomial long division to find the other zeros.
Using synthetic division with x = 5:
5 | 1 -11 48 -90
| 5 -30 90
-----------------
1 -6 18 0
The result of the synthetic division is a quotient of x^2 - 6x + 18.
Now, we need to solve the equation x^2 - 6x + 18 = 0 to find the remaining zeros.
Using the quadratic formula:
x = (-(-6) ± √((-6)^2 - 4(1)(18))) / (2(1))
= (6 ± √(36 - 72)) / 2
= (6 ± √(-36)) / 2
= (6 ± 6i) / 2
= 3 ± 3i
Therefore, the remaining zeros of the polynomial function f(x), other than 5, are -3 and 6.
Conclusion: The remaining zeros of the polynomial function f(x) = x^3 - 11x^2 + 48x - 90, other than 5, are -3 and 6.
To know more about synthetic division, visit
https://brainly.com/question/29809954
#SPJ11
Determine whether the following are data mining tasks. Provide explanations in favor of your answers. i) Computing the distance between two given data points ii) Predicting the future price of the stock of a company using historical records iii) Extracting the frequencies of a sound wave iv) Examining the heart rate of a patient to check abnormalities
Predicting the future stock price and examining the heart rate to check abnormalities can be considered data mining tasks, as they involve extracting knowledge and insights from data.Computing distances between data points and extracting frequencies from sound waves are not typically classified as data mining tasks.
i) Computing the distance between two given data points: This task is not typically considered a data mining task. It falls under the domain of computational geometry or distance calculation.
Data mining focuses on discovering patterns, relationships, and insights from large datasets, whereas computing distances between data points is a basic mathematical operation that is often a prerequisite for various data analysis tasks.
ii) Predicting the future price of a company's stock using historical records: This is a data mining task. It involves analyzing historical stock data to identify patterns and relationships that can be used to make predictions about future stock prices.
Data mining techniques such as regression, time series analysis, and machine learning can be applied to extract meaningful information from the historical records and build predictive models.
iii) Extracting the frequencies of a sound wave: This task is not typically considered a data mining task. It falls within the field of signal processing or audio analysis.
Data mining primarily deals with structured and unstructured data in databases, while sound wave analysis involves processing raw audio signals to extract specific features such as frequencies, amplitudes, or spectral patterns.
iv) Examining the heart rate of a patient to check abnormalities: This task can be considered a data mining task. By analyzing the heart rate data of a patient, patterns and anomalies can be discovered using data mining techniques such as clustering, classification, or anomaly detection.
The goal is to extract meaningful insights from the data and identify abnormal heart rate patterns that may indicate health issues or abnormalities.
Visit here to learn more about regression:
brainly.com/question/29362777
#SPJ11
If you graph the function f(x)=(1-e^1/x)/(1+e^1/x) you'll see that ƒ appears to be an odd function. Prove it.
To prove that the function f(x) = (1 - e^(1/x))/(1 + e^(1/x)) is odd, we need to show that f(-x) = -f(x) for all values of x.
First, let's evaluate f(-x):
f(-x) = (1 - e^(1/(-x)))/(1 + e^(1/(-x)))
Simplifying this expression, we have:
f(-x) = (1 - e^(-1/x))/(1 + e^(-1/x))
Now, let's evaluate -f(x):
-f(x) = -((1 - e^(1/x))/(1 + e^(1/x)))
To prove that f(x) is odd, we need to show that f(-x) is equal to -f(x). We can see that the expressions for f(-x) and -f(x) are identical, except for the negative sign in front of -f(x). Since both expressions are equal, we can conclude that f(x) is indeed an odd function.
To prove that the function f(x) = (1 - e^(1/x))/(1 + e^(1/x)) is odd, we must demonstrate that f(-x) = -f(x) for all values of x. We start by evaluating f(-x) by substituting -x into the function:
f(-x) = (1 - e^(1/(-x)))/(1 + e^(1/(-x)))
Next, we simplify the expression to get a clearer form:
f(-x) = (1 - e^(-1/x))/(1 + e^(-1/x))
Now, let's evaluate -f(x) by negating the entire function:
-f(x) = -((1 - e^(1/x))/(1 + e^(1/x)))
To prove that f(x) is an odd function, we need to show that f(-x) is equal to -f(x). Upon observing the expressions for f(-x) and -f(x), we notice that they are the same, except for the negative sign in front of -f(x). Since both expressions are equivalent, we can conclude that f(x) is indeed an odd function.
This proof verifies that f(x) = (1 - e^(1/x))/(1 + e^(1/x)) is an odd function, which means it exhibits symmetry about the origin.
Learn more about function f(x) here:
brainly.com/question/28887915
#SPJ11
An um consists of 5 green bals, 3 blue bails, and 6 red balis. In a random sample of 5 balls, find the probability that 2 blue balls and at least 1 red ball are selected. The probability that 2 blue balls and at least 1 red bat are selected is (Round to four decimal places as needed.)
The probability is approximately 0.0929. To find the probability that 2 blue balls and at least 1 red ball are selected from a random sample of 5 balls, we can use the concept of combinations.
The total number of ways to choose 5 balls from the urn is given by the combination formula: C(14, 5) = 2002, where 14 is the total number of balls in the urn.
Now, we need to determine the number of favorable outcomes, which corresponds to selecting 2 blue balls and at least 1 red ball. We have 3 blue balls and 6 red balls in the urn.
The number of ways to choose 2 blue balls from 3 is given by C(3, 2) = 3.
To select at least 1 red ball, we need to consider the possibilities of choosing 1, 2, 3, 4, or 5 red balls. We can calculate the number of ways for each case and sum them up.
Number of ways to choose 1 red ball: C(6, 1) = 6
Number of ways to choose 2 red balls: C(6, 2) = 15
Number of ways to choose 3 red balls: C(6, 3) = 20
Number of ways to choose 4 red balls: C(6, 4) = 15
Number of ways to choose 5 red balls: C(6, 5) = 6
Summing up the above results, we have: 6 + 15 + 20 + 15 + 6 = 62.
Therefore, the number of favorable outcomes is 3 * 62 = 186.
Finally, the probability that 2 blue balls and at least 1 red ball are selected is given by the ratio of favorable outcomes to total outcomes: P = 186/2002 ≈ 0.0929 (rounded to four decimal places).
Learn more about probability here : brainly.com/question/31828911
#SPJ11
Eight guests are invited for dinner. How many ways can they be seated at a dinner table if the table is straight with seats only on one side?
A) 1
B) 40,320
C) 5040
D) 362,880
The number of ways that the people can be seated is given as follows:
B) 40,320.
How to obtain the number of ways that the people can be seated?There are eight guests and eight seats, which is the same number as the number of guests, hence the arrangements formula is used.
The number of possible arrangements of n elements(order n elements) is obtained with the factorial of n, as follows:
[tex]A_n = n![/tex]
Hence the number of arrangements for 8 people is given as follows:
8! = 40,320.
More can be learned about the arrangements formula at https://brainly.com/question/20255195
#SPJ4
n annual marathon covers a route that has a distance of approximately 26 miles. Winning times for this marathon are all over 2 hours. he following data are the minutes over 2 hours for the winning male runners over two periods of 20 years each. (a) Make a stem-and-leaf display for the minutes over 2 hours of the winning times for the earlier period. Use two lines per stem. (Use the tens digit as the stem and the ones digit as the leaf. Enter NONE in any unused answer blanks. For more details, view How to Split a Stem.) (b) Make a stem-and-leaf display for the minutes over 2 hours of the winning times for the recent period. Use two lines per stem. (Use the tens digit as the stem and the ones digit as the leaf. Enter NONE in any unused answer blanks.) (c) Compare the two distributions. How many times under 15 minutes are in each distribution? earlier period times recent period times
Option B is the correct answer.
LABHRS = 1.88 + 0.32 PRESSURE The given regression model is a line equation with slope and y-intercept.
The y-intercept is the point where the line crosses the y-axis, which means that when the value of x (design pressure) is zero, the predicted value of y (number of labor hours required) will be the y-intercept. Practical interpretation of y-intercept of the line (1.88): The y-intercept of 1.88 represents the expected value of LABHRS when the value of PRESSURE is 0. However, since a boiler's pressure cannot be zero, the y-intercept doesn't make practical sense in the context of the data. Therefore, we cannot use the interpretation of the y-intercept in this context as it has no meaningful interpretation.
Learn more about regression
https://brainly.com/question/32505018
#SPJ11
Obtain a differential equation by eliminating the arbitrary constant. y = cx + c² + 1
A y=xy' + (y')²+1
B y=xy' + (y') 2
©y'= y' = cx
D y' =xy" + (y') 2
Obtain a differential equation by eliminating the arbitrary constant. y = cx + c² + 1. the correct option is A) y = xy' + (y')^2 + 1.
To eliminate the arbitrary constant c and obtain a differential equation for y = cx + c^2 + 1, we need to differentiate both sides of the equation with respect to x:
dy/dx = c + 2c(dc/dx) ...(1)
Now, differentiating again with respect to x, we get:
d^2y/dx^2 = 2c(d^2c/dx^2) + 2(dc/dx)^2
Substituting dc/dx = (dy/dx - c)/2c from equation (1), we get:
d^2y/dx^2 = (dy/dx - c)(d/dx)[(dy/dx - c)/c]
Simplifying, we get:
d^2y/dx^2 = (dy/dx)^2/c - (d/dx)(dy/dx)/c
Multiplying both sides of the equation by c^2, we get:
c^2(d^2y/dx^2) = c(dy/dx)^2 - c(d/dx)(dy/dx)
Substituting y = cx + c^2 + 1, we get:
c^2(d^2/dx^2)(cx + c^2 + 1) = c(dy/dx)^2 - c(d/dx)(dy/dx)
Simplifying, we get:
c^3x'' + c^2 = c(dy/dx)^2 - c(d/dx)(dy/dx)
Dividing both sides by c, we get:
c^2x'' + c = (dy/dx)^2 - (d/dx)(dy/dx)
Substituting dc/dx = (dy/dx - c)/2c from equation (1), we get:
c^2x'' + c = (dy/dx)^2 - (1/2)(dy/dx)^2 + (c/2)(d/dx)(dy/dx)
Simplifying, we get:
c^2x'' + c = (1/2)(dy/dx)^2 + (c/2)(d/dx)(dy/dx)
Finally, substituting dc/dx = (dy/dx - c)/2c and simplifying, we arrive at the differential equation:
y' = xy'' + (y')^2 + 1
Therefore, the correct option is A) y = xy' + (y')^2 + 1.
Learn more about equation from
https://brainly.com/question/29174899
#SPJ11
Give two different instructions that will each set register R9 to value −5. Then assemble these instructions to machine code.
To set register R9 to the value -5, two different instructions can be used: a direct assignment instruction and an arithmetic instruction.
The machine code representation of these instructions will depend on the specific instruction set architecture being used.
1. Direct Assignment Instruction:
One way to set register R9 to the value -5 is by using a direct assignment instruction. The specific assembly language instruction and machine code representation will vary depending on the architecture. As an example, assuming a hypothetical instruction set architecture, an instruction like "MOV R9, -5" could be used to directly assign the value -5 to register R9. The corresponding machine code representation would depend on the encoding scheme used by the architecture.
2. Arithmetic Instruction:
Another approach to set register R9 to -5 is by using an arithmetic instruction. Again, the specific instruction and machine code representation will depend on the architecture. As an example, assuming a hypothetical architecture, an instruction like "ADD R9, R0, -5" could be used to add the value -5 to register R0 and store the result in R9. Since the initial value of R0 is assumed to be 0, this effectively sets R9 to -5. The machine code representation would depend on the encoding scheme and instruction format used by the architecture.
It is important to note that the actual assembly language instructions and machine code representations may differ depending on the specific instruction set architecture being used. The examples provided here are for illustrative purposes and may not correspond to any specific real-world instruction set architecture.
Learn more about arithmetic instructions here:
brainly.com/question/30465019
#SPJ11
The owner of a used bookstore buys used comic books from customers for $0.60 each. The owner then resells the used comic books at a 250% markup.
Answer: $2.10
Step-by-step explanation:
Markup percentage = 250%
Cost price = $0.60
Markup amount = Markup percentage × Cost price
= 250% × $0.60
=2.5 × $0.60
= $1.50
Resale price = Cost price + Markup amount
= $0.60 + $1.50
= $2.10
1.What is the exponent? Mention two examples.
2.Explain exponential functions.
3. Solve the following exponential functions and explain step by step how you solved them
. 33 + 35 + 34 . 52 / 56
. 8x7 / x44.What is a logarithm?
5.Mention the difference between the logarithmic function and the trigonometric function.
6.Explain the characteristics of periodic functions.
1. Exponent:- An exponent is a mathematical term that refers to the number of times a number is multiplied by itself. Here are two examples of exponents: (a)4² = 4 * 4 = 16. (b)3³ = 3 * 3 * 3 = 27.
2. Exponential functions: Exponential functions are functions in which the input variable appears as an exponent. In general, an exponential function has the form y = a^x, where a is a positive number and x is a real number. The graph of an exponential function is a curve that rises or falls steeply, depending on the value of a. Exponential functions are commonly used to model phenomena that grow or decay over time, such as population growth, radioactive decay, and compound interest.
3. Solving exponential functions 33 + 35 + 34 = 3^3 + 3^5 + 3^4= 27 + 243 + 81 = 351. 52 / 56 = 5^2 / 5^6= 1 / 5^4= 1 / 6254.
4. A logarithm is the inverse operation of exponentiation. It is a mathematical function that tells you what exponent is needed to produce a given number. For example, the logarithm of 1000 to the base 10 is 3, because 10³ = 1000.5.
5. Difference between logarithmic and trigonometric functionsThe logarithmic function is used to calculate logarithms, whereas the trigonometric function is used to calculate the relationship between angles and sides in a triangle. Logarithmic functions have a domain of positive real numbers, whereas trigonometric functions have a domain of all real numbers.
6. Characteristics of periodic functionsPeriodic functions are functions that repeat themselves over and over again. They have a specific period, which is the length of one complete cycle of the function. The following are some characteristics of periodic functions: They have a specific period. They are symmetric about the axis of the period.They can be represented by a sine or cosine function.
Exponential functions: https://brainly.com/question/2456547
#SPJ11
Evaluate f(x)-8x-6 at each of the following values:
f(-2)=22 f(0)=-6,
f(a)=8(a),6, f(a+h)=8(a-h)-6, f(-a)=8(-a)-6, Bf(a)=8(a)-6
The value of the expression f(x) - 8x - 6 is -6.
f(-2) - 8(-2) - 6 = 22 - 16 - 6 = 22 - 22 = 0
f(0) - 8(0) - 6 = -6 - 6 = -12
f(a) - 8a - 6 = 8a - 6 - 8a - 6 = -6
f(a + h) - 8(a + h) - 6 = 8(a + h) - 6 - 8(a + h) - 6 = -6
f(-a) - 8(-a) - 6 = 8(-a) - 6 - 8(-a) - 6 = -6
Bf(a) - 8(a) - 6 = 8(a) - 6 - 8(a) - 6 = -6
In all cases, the expression f(x) - 8x - 6 evaluates to -6. This is because the function f(x) = 8x - 6, and subtracting 8x and 6 from both sides of the equation leaves us with -6.
To learn more about expression here:
https://brainly.com/question/28170201
#SPJ4
Use the following sample of numbers for the next 4 questions: a. What is the range? (1 point) b. What is the inter-quartile range? (2 points) c. What is the variance for the sample? (3 points) Show Your Work! d. What is the standard deviation for the sample? (1 point)
x
3
5
5
6
10
Range = 7, Interquartile range = 4, Variance = 6.9, and Standard deviation = approximately 2.63.
What is the range? The range is the difference between the largest and smallest value in a data set. The largest value in this sample is 10, while the smallest value is 3. The range is therefore 10 - 3 = 7. The range is 7.b. What is the inter-quartile range? The interquartile range is the range of the middle 50% of the data. It is calculated by subtracting the first quartile from the third quartile. To find the quartiles, we first need to order the data set: 3, 5, 5, 6, 10. Then, we find the median, which is 5. Then, we divide the remaining data set into two halves. The lower half is 3 and 5, while the upper half is 6 and 10. The median of the lower half is 4, and the median of the upper half is 8. The first quartile (Q1) is 4, and the third quartile (Q3) is 8. Therefore, the interquartile range is 8 - 4 = 4.
The interquartile range is 4.c. What is the variance for the sample? To find the variance for the sample, we first need to find the mean. The mean is calculated by adding up all of the numbers in the sample and then dividing by the number of values in the sample: (3 + 5 + 5 + 6 + 10)/5 = 29/5 = 5.8. Then, we find the difference between each value and the mean: -2.8, -0.8, -0.8, 0.2, 4.2.
We square each of these values: 7.84, 0.64, 0.64, 0.04, 17.64. We add up these squared values: 27.6. We divide this sum by the number of values in the sample minus one: 27.6/4 = 6.9. The variance for the sample is 6.9.d. What is the standard deviation for the sample? To find the standard deviation for the sample, we take the square root of the variance: sqrt (6.9) ≈ 2.63. The standard deviation for the sample is approximately 2.63.
Range = 7, Interquartile range = 4, Variance = 6.9, and Standard deviation = approximately 2.63.
To know more about Variance visit:
brainly.com/question/14116780
#SPJ11
It takes 120ft−lb. of work to compress a spring from a natural length of 3ft. to a length of 2ft,, 6 in. How much work is required to compress the spring to a length of 2ft.?
Given that it takes 120ft-lb of work to compress a spring from a natural length of 3ft to a length of 2ft 6in. Now we need to find the work required to compress the spring to a length of 2ft.
Now the work required to compress the spring from a natural length of 3ft to a length of 2ft is 40 ft-lb.
So we can find the force that is required to compress the spring from the natural length to the given length.To find the force F needed to compress the spring we use the following formula,F = k(x − x₀)Here,k is the spring constant x is the displacement of the spring from its natural length x₀ is the natural length of the spring. We can say that the spring has been compressed by a distance of 0.5ft.
Now, k can be found as,F = k(x − x₀)
F = 120ft-lb
x = 0.5ft
x₀ = 3ft
k = F/(x − x₀)
k = 120/(0.5 − 3)
k = -40ft-lb/ft
Now we can find the force needed to compress the spring to a length of 2ft. Since the natural length of the spring is 3ft and we need to compress it to 2ft. So the displacement of the spring is 1ft. Now we can find the force using the formula F = k(x − x₀)
F = k(x − x₀)
F = -40(2 − 3)
F = 40ft-lb
To know more about displacement visit:
https://brainly.com/question/11934397
#SPJ11
Use a linear approximation to approximate 3.001^5 as follows: The linearization L(x) to f(x)=x^5 at a=3 can be written in the form L(x)=mx+b where m is: and where b is: Using this, the approximation for 3.001^5 is The edge of a cube was found to be 20 cm with a possible error of 0.4 cm. Use differentials to estimate: (a) the maximum possible error in the volume of the cube (b) the relative error in the volume of the cube
(c) the percentage error in the volume of the cube
The percentage error in the volume of the cube is 2%.
Given,The function is f(x) = x⁵ and we are to use a linear approximation to approximate 3.001⁵ as follows:
The linearization L(x) to f(x)=x⁵ at a=3 can be written in the form L(x)=mx+b where m is: and where b is:
Linearizing a function using the formula L(x) = f(a) + f'(a)(x-a) and finding the values of m and b.
L(x) = f(a) + f'(a)(x-a)
Let a = 3,
then f(3) = 3⁵
= 243.L(x)
= 243 + 15(x - 3)
The value of m is 15 and the value of b is 243.
Using this, the approximation for 3.001⁵ is,
L(3.001) = 243 + 15(3.001 - 3)
L(3.001) = 244.505001
The value of 3.001⁵ is approximately 244.505001 when using a linear approximation.
The volume of a cube with an edge length of 20 cm can be calculated by,
V = s³
Where, s = 20 cm.
We are given that there is a possible error of 0.4 cm in the edge length.
Using differentials, we can estimate the maximum possible error in the volume of the cube.
dV/ds = 3s²
Therefore, dV = 3s² × ds
Where, ds = 0.4 cm.
Substituting the values, we get,
dV = 3(20)² × 0.4
dV = 480 cm³
The maximum possible error in the volume of the cube is 480 cm³.
Using the formula for relative error, we get,
Relative Error = Error / Actual Value
Where, Error = 0.4 cm
Actual Value = 20 cm
Therefore,
Relative Error = 0.4 / 20
Relative Error = 0.02
The relative error in the volume of the cube is 0.02.
The percentage error in the volume of the cube can be calculated using the formula,
Percentage Error = Relative Error x 100
Therefore, Percentage Error = 0.02 x 100
Percentage Error = 2%
Thus, we have calculated the maximum possible error in the volume of the cube, the relative error in the volume of the cube, and the percentage error in the volume of the cube.
To know more about cube visit:
https://brainly.com/question/28134860
#SPJ11
A construction company employs three sales engineers. Engineers 1,2 , and 3 estimate the costs of 30%,20%, and 50%, respectively, of all jobs bid by the company. For i=1,2,3, define E l
to be the event that a job is estimated by engineer i. The following probabilities describe the rates at which the engineers make serious errors in estimating costs: P( error E 1
)=01, P( crror E 2
)=.03. and P(error(E 3
)=,02 a. If a particular bid results in a serious error in estimating job cost, what is the probability that the error was made by engineer 1 ? b. If a particular bid results in a serious error in estimating job cost, what is the probability that the error was made by engineer 2 ? c. If a particular bid results in a serious error in estimating job cost, what is the probability that the error was made by engineer 3 ? d. Based on the probabilities, parts a-c, which engineer is most likely responsible for making the serious crror?
If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 1 is 0.042. If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 2 is 0.059.
Let F denote the event of making a serious error. By the Bayes’ theorem, we know that the probability of event F, given that event E1 has occurred, is equal to the product of P (E1 | F) and P (F), divided by the sum of the products of the conditional probabilities and the marginal probabilities of all events which lead to the occurrence of F.
We know that P(F) + P (E1 | F') P(F')].
From the problem,
we have P (F | E1) = 0.1 and P (E1 | F') = 1 – P (E1|F) = 0.9.
Also (0.1) (0.3) + (0.03) (0.2) + (0.02) (0.5) = 0.032.
Hence P (F | E1) = (0.1) (0.3) / [(0.1) (0.3) + (0.9) (0.7) (0.02)] = 0.042.
(0.1) (0.3) + (0.03) (0.2) + (0.02) (0.5) = 0.032.
Hence P (F | E2) = (0.03) (0.2) / [(0.9) (0.7) (0.02) + (0.03) (0.2)] = 0.059.
Hence P (F | E3) = (0.02) (0.5) / [(0.9) (0.7) (0.02) + (0.03) (0.2) + (0.02) (0.5)] = 0.139.
Since P(F|E3) > P(F|E1) > P(F|E2), it follows that Engineer 3 is most likely responsible for making the serious error.
If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 1 is 0.042.
If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 2 is 0.059.
If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 3 is 0.139.
Based on the probabilities, parts a-c, Engineer 3 is most likely responsible for making the serious error.
To know more about probability visit:
brainly.com/question/31828911
#SPJ11
ayudaaaaaaa porfavorrrrr
The mean in 8voA is 7, the mode in 8voC is 7, the median in 8voB is 8, the absolute deviation in 8voC is 1.04, the mode in 8voA is 7, the mean is 8.13 and the total absolute deviation is 0.86.
How to calculate the mean, mode, median and absolute deviation?
Mean in 8voA: To calculate the mean only add the values and divide by the number of values.
7+8+7+9+7= 38/ 5 = 7.6
Mode in 8voC: Look for the value that is repeated the most.
Mode=7
Median in 8voB: Organize the data en identify the number that lies in the middle:
8 8 8 9 10 = The median is 8
Absolute deviation in 8voC: First calculate the mean and then the deviation from this:
Mean: 8.2
|8 - 8.2| = 0.2
|9 - 8.2| = 0.8
|10 - 8.2| = 1.8
|7 - 8.2| = 1.2
|7 - 8.2| = 1.2
Calculate the mean of these values: 0.2+0.8+1.8+1.2+1.2 = 5.2= 1.04
The mode in 8voA: The value that is repeated the most is 7.
Mean for all the students:
7+8+7+9+7+8+8+9+8+10+8+9+10+7+7 = 122/15 = 8.13
Absolute deviation:
|7 - 8.133| = 1.133
|8 - 8.133| = 0.133
|7 - 8.133| = 1.133
|9 - 8.133| = 0.867
|7 - 8.133| = 1.133
|8 - 8.133| = 0.133
...
Add the values to find the mean:
1.133 + 0.133 + 1.133 + 0.867 + 1.133 + 0.133 + 0.133 + 0.867 + 0.133 + 1.867 + 0.133 + 0.867 + 1.867 + 1.133 + 1.133 = 13/ 15 =0.86
Note: This question is in Spanish; here is the question in English.
What is the mean in 8voA?What is the mode in 8voC?What is the median in 8voB?What is the absolute deviation in 8voC?What is the mode in 8voA?What is the mean for all the students?What is the absolute deviation for all the students?Learn more about the mean in https://brainly.com/question/31101410
#SPJ1
f(x,y,z)=Σ(2,3,5,7) Make a circuit for f using only NAND or NOT gates. Draw a truth table.
As we can see from the above truth table, the output of the function f(x,y,z) is 0 for all the input combinations except (0,0,0) for which the output is 1.
Hence, the circuit represented by NAND gates only can be used to implement the given function f(x,y,z).
The given function is f(x,y,z)= Σ(2,3,5,7). We can represent this function using NAND gates only.
NAND gates are universal gates which means that we can make any logic circuit using only NAND gates.Let us represent the given function using NAND gates as shown below:In the above circuit, NAND gate 1 takes the inputs x, y, and z.
The output of gate 1 is connected as an input to NAND gate 2 along with another input z. The output of NAND gate 2 is connected as an input to NAND gate 3 along with another input y.
Finally, the output of gate 3 is connected as an input to NAND gate 4 along with another input x.
The output of NAND gate 4 is the output of the circuit which represents the function f(x,y,z).Now, let's draw the truth table for the given function f(x,y,z). We have three variables x, y, and z.
To know more about represent visit:
https://brainly.com/question/31291728
#SPJ11
Which one is the correct one? Choose all applied.
a.Both F and Chi square distribution have longer tail on the left.
b.Both F and Chi square distribution have longer tail on the right.
c.Mean of a t distribution is always 0.
d.Mean of Z distribution is always 0.
e.Mean of a normal distribution is always 0.
F and Chi square distributions have a longer tail on the right, while t-distribution and normal distributions have a 0 mean. Z-distribution is symmetric around zero, so the statement (d) Mean of Z distribution is always 0 is correct.
Both F and Chi square distribution have longer tail on the right are the correct statements. Option (b) Both F and Chi square distribution have longer tail on the right is the correct statement. Both F and chi-square distributions are skewed to the right.
This indicates that the majority of the observations are on the left side of the distribution, and there are a few observations on the right side that contribute to the long right tail. The mean of the t-distribution and the normal distribution is 0.
However, the mean of a Z-distribution is not always 0. A normal distribution's mean is zero. When the distribution is symmetric around zero, the mean equals zero. Because the t-distribution is also symmetrical around zero, the mean is zero. The Z-distribution is a standard normal distribution, which has a mean of 0 and a standard deviation of 1.
As a result, the mean of a Z-distribution is always zero. Thus, the statement in option (d) Mean of Z distribution is always 0 is also a correct statement. the details and reasoning to support the correct statements makes the answer complete.
To know more about symmetric Visit:
https://brainly.com/question/31184447
#SPJ11
a drug test has a sensitivity of 0.6 and a specificity of 0.91. in reality, 5 percent of the adult population uses the drug. if a randomly-chosen adult person tests positive, what is the probability they are using the drug?
Therefore, the probability that a randomly-chosen adult person who tests positive is using the drug is approximately 0.397, or 39.7%.
The probability that a randomly-chosen adult person who tests positive is using the drug can be determined using Bayes' theorem.
Let's break down the information given in the question:
- The sensitivity of the drug test is 0.6, meaning that it correctly identifies 60% of the people who are actually using the drug.
- The specificity of the drug test is 0.91, indicating that it correctly identifies 91% of the people who are not using the drug.
- The prevalence of drug use in the adult population is 5%.
To calculate the probability that a person who tests positive is actually using the drug, we need to use Bayes' theorem.
The formula for Bayes' theorem is as follows:
Probability of using the drug given a positive test result = (Probability of a positive test result given drug use * Prevalence of drug use) / (Probability of a positive test result given drug use * Prevalence of drug use + Probability of a positive test result given no drug use * Complement of prevalence of drug use)
Substituting the values into the formula:
Probability of using the drug given a positive test result = (0.6 * 0.05) / (0.6 * 0.05 + (1 - 0.91) * (1 - 0.05))
Simplifying the equation:
Probability of using the drug given a positive test result = 0.03 / (0.03 + 0.0455)
Calculating the final probability:
Probability of using the drug given a positive test result ≈ 0.397
Learn more about: drug
https://brainly.in/question/54923976
#SPJ11
( 8 points ) (a) Find the first 3 terms, in ascending powers of x , of the binomial expansion of (3-2 x)^{5} , giving each term in its simplest form. (b) Find the term containing x^
The first three terms, in ascending powers of x, of the binomial expansion of (3 - 2x)^5 are 243, -810x, and 1080x^2.
To expand (3 - 2x)^5 using the binomial theorem, we use the formula:
(x + y)^n = C(n, 0)x^n y^0 + C(n, 1)x^(n-1) y^1 + C(n, 2)x^(n-2) y^2 + ... + C(n, r)x^(n-r) y^r + ... + C(n, n)x^0 y^n
Where C(n, r) represents the binomial coefficient, given by C(n, r) = n! / (r! * (n - r)!).
For (3 - 2x)^5, x = -2x and y = 3. We substitute these values into the formula and simplify each term:
1. C(5, 0)(-2x)^5 3^0 = 1 * 243 = 243
2. C(5, 1)(-2x)^4 3^1 = 5 * 16x^4 * 3 = -810x
3. C(5, 2)(-2x)^3 3^2 = 10 * 8x^3 * 9 = 1080x^2
The first three terms, in ascending powers of x, of the binomial expansion (3 - 2x)^5 are 243, -810x, and 1080x^2.
To know more about binomial expansion , visit:- brainly.com/question/32370598
#SPJ11