A charged particle is moving with speed v perpendicular to a uniform magnetic field. A second identical charged particle is moving with speed 2v perpendicular to the same magnetic field. If the frequency of revolution of the first particle is f, the frequency of revolution of the second particle is

Answers

Answer 1

Answer:

the frequency of revolution of the second particle is f

Explanation:

centripetal force is balanced by the magnetic force for object under magnetic field is given as

Mv²/r= qvB

But v= omega x r

Omega= 2pi x f

f= qB/2pi x M

So since frequency does not depend on the velocity.therefore the frequency of revolution of the second particle remains the same and its equal to f


Related Questions

In a shipping yard, a crane operator attaches a cable to a 1,390 kg shipping container and then uses the crane to lift the container vertically at a constant velocity for a distance of 33 m. Determine the amount of work done (in J) by each of the following.
a) the tension in the cable.
b) the force of gravity.

Answers

Answer:

a)  A = 449526  J,  b) 449526 J

Explanation:

In this exercise they do not ask for the work of different elements.

Note that as the box rises at constant speed, the sum of forces is chorus, therefore

           T-W = 0

           T = W

           T = m g

           T = 1,390 9.8

           T = 13622 N

Now that we have the strength we can use the definition of work

           W = F .d

            W = f d cos tea

       

a) In this case the tension is vertical and the movement is vertical, so the tension and displacement are parallel

              A = A  x

              A = 13622  33

               A = 449526  J

b) The work of the force of gravity, as the force acts in the opposite direction, the angle tea = 180

               W = T x cos 180

               W = - 13622 33

               W = - 449526 J

Tuning a guitar string, you play a pure 330 Hz note using a tuning device, and pluck the string. The combined notes produce a beat frequency of 5 Hz. You then play a pure 350 Hz note and pluck the string, finding a beat frequency of 25 Hz. What is the frequency of the string note?

Answers

Answer:

The  frequency is  [tex]F = 325 Hz[/tex]

Explanation:

From the question we are told that

    The frequency for the first note is  [tex]F_1 = 330 Hz[/tex]

     The  beat frequency of the first note is  [tex]f_b = 5 \ Hz[/tex]

     The  frequency for the second note is  [tex]F_2 = 350 \ H_z[/tex]

      The  beat frequency of the first note is [tex]f_a = 25 \ Hz[/tex]

Generally beat frequency is mathematically represented as

        [tex]F_{beat} = | F_a - F_b |[/tex]

Where [tex]F_a \ and \ F_b[/tex] are frequencies of two sound source

  Now in the case of this question

For the first note

     [tex]f_b = F_1 - F \ \ \ \ \ ...(1)[/tex]

Where  F is the frequency of the string note

For the second note  

      [tex]f_a = F_2 - F \ \ \ \ \ ...(2)[/tex]

Adding  equation 1 from 2

      [tex]f_b + f_a = F_1 + F_2 + ( - F) + (-F) )[/tex]

      [tex]f_b + f_a = F_1 + F_2 -2F[/tex]

substituting values

       [tex]5 +25 = 330 + 350 -2F[/tex]

=>     [tex]F = 325 Hz[/tex]

       

At the first minimum adjacent to the central maximum of a single-slit diffraction pattern the phase difference between the Huygens wavelet from the top of the slit and the wavelet from the midpoint of the slit is:

Answers

Answer:

Explanation:

The whole wave front may be divided into two halves , the upper half and the lower half . Waves coming from top of the slit or top of upper half and top of lower half or from the mid point of slit can form minima at given point only when there is phase difference of π radian or path difference of λ or one wavelength. Every other point in upper half and corresponding point in lower half will interfere destructively at that point and will form dark spot at the given point . In this way minima will be formed at that point

Hence the phase difference between the Huygens wavelet from the top of the slit and the wavelet from the midpoint of the slit at first minima  is π radian .

•• A metal sphere carrying an evenly distributed charge will have spherical equipotential surfaces surrounding it. Suppose the sphere’s radius is 50.0 cm and it carries a total charge of (a) Calculate the potential of the sphere’s surface. (b)You want to draw equipotential surfaces at intervals of 500 V outside the sphere’s surface. Calculate the distance between the first and the second equipotential surfaces, and between the 20th and 21st equipotential surfaces. (c) What does the changing spacing of the surfaces tell you about the electric field?

Answers

Answer:

Explanation:

For this exercise we will use that the potential is created by the charge inside the equinoctial surface and just like in Gauss's law we can consider all the charge concentrated in the center.

Therefore the potential on the ferric surface is

        V = k Q / r

where k is the Coulomb constant, Q the charge of the sphere and r the distance from the center to the point of interest

a) On the surface the potential

        V = 9 10⁹ Q / 0.5

        V = 18 10⁹ Q

Unfortunately you did not write the value of the load, suppose a value to complete the calculations Q = 1 10⁻⁷ C, with this value the potential on the surfaces V = 1800 V

b) The equipotential surfaces are concentric spheres, let's look for the radii for some potentials

for V = 1300V let's find the radius

             r = k Q / V

             r = 9 109 1 10-7 / 1300

             r = 0.69 m

other values ​​are shown in the following table

V (V)      r (m)

1800     0.5

1300     0.69

 800      1,125

 300     3.0

In other words, we draw concentric spheres with these radii and each one has a potential difference of 500V

C) The spacing of the spheres corresponds to lines of radii of the electric field that have the shape

         E = k Q / r²

A brick of mass M has been placed on a rubber cushion of mass m. Together they are sliding to the right at constant velocity on an ice-covered parking lot. (a) Draw a free-body diagram of the brick and identify each force acting on it. (b) Draw a free-body diagram of the cushion and identify each force acting on it. (c) Identify all of the action–reaction pairs of forces in the brick–cushion–planet system.

Answers

A) The free-body diagram of the forces acting on the brick is attached.

B) The free-body diagram of the forces acting on the rubber cushion is attached.

C) The action and reaction forces of the entire brick–cushion–planet system has been enumerated below.

A) The brick has a Mass M placed on top of a rubber cushion of mass m.

This means that there will be a normal force acting acting upwards on the brick and also a gravitational force acting downward. These forces are denoted as;

Normal force of rubber cushion acting on brick = [tex]n_{cb}[/tex]

Gravitational force acting on brick = Mg

Find attached the free body diagram.

B) The forces acting on the cushion will be;

Normal force of parking lot pavement on rubber cushion  = [tex]n_{pc}[/tex]

Gravitational force of earth acting on cushion = mg

Force of brick acting on the rubber cushion = [tex]F_{bc}[/tex]

C)  The action pairs of forces are;

i) Force; Normal force of rubber cushion acting on brick  = [tex]n_{cb}[/tex]

Reaction Force; Force of brick acting on the rubber cushion = [tex]F_{bc}[/tex]

ii) Action Force; Gravitational force acting on brick = Mg

Reaction; Gravitational force of brick acting on the earth

iii) Action Force; Normal force of parking lot pavement on rubber cushion = [tex]n_{pc}[/tex]

Reaction; Force of rubber cushion on parking lot pavement

iv) Action Force; Gravitational force of earth acting on rubber cushion = mg

Reaction Force; Gravitational force of rubber cushion on the earth.

Read more at; https://brainly.com/question/17747931

Three resistors, 6.0-W, 9.0-W, 15-W, are connected in parallel in a circuit. What is the equivalent resistance of this combination of resistors?

Answers

Answer:

2.9Ω

Explanation:

Resistors are said to be in parallel when they are arranged side by side such that their corresponding ends are joined together at two common junctions. The combined resistance in such arrangement of resistors is given by;

1/Req= 1/R1 + 1/R2 + 1/R3 .........+ 1/Rn

Where;

Req refers to the equivalent resistance and R1, R2, R3 .......Rn refers to resistance of individual resistors connected in parallel.

Note that;

R1= 6.0Ω

R2 = 9.0Ω

R3= 15.0 Ω

Therefore;

1/Req = 1/6 + 1/9 + 1/15

1/Req= 0.167 + 0.11 + 0.067

1/Req= 0.344

Req= (0.344)^-1

Req= 2.9Ω

The equivalent resistance of this combination of resistors is 2.9Ω.

Calculation of the equivalent resistance:

The combined resistance in such arrangement of resistors is provided by;

1/Req= 1/R1 + 1/R2 + 1/R3 .........+ 1/Rn

here.

Req means  the equivalent resistance and R1, R2, R3

.Rn means the resistance of individual resistors interlinked in parallel.

Also,

R1= 6.0Ω

R2 = 9.0Ω

R3= 15.0 Ω

So,

1/Req = 1/6 + 1/9 + 1/15

1/Req= 0.167 + 0.11 + 0.067

1/Req= 0.344

Req= (0.344)^-1

Req= 2.9Ω

learn more about resistance here: https://brainly.com/question/15047345

Jane is collecting data for a ball rolling down a hill. she measure out a set of different distances and then proceeds to use a stopwatch to find the time it takes the ball to roll each distance

Answers

Answer:

The Independent variable in this experiment is the time taken by the ball to roll down each distance.

The dependent variable is the distance  through which the ball rolls

The control variables are: slope of hill, weight, of the ball, size of ball, wind speed, surface characteristics of the ball.

Explanation:

The complete question is

Jane is collecting data for a ball rolling down a hill. She measures out a set of different distances and then proceeds to use a stop watch to find the time it takes the ball to roll. What are the independent, dependent, and control variables in this experiment?

Independent variable have their values not dependent on any other variable in the scope of the experiment. The time for the ball to roll down the hill is not dependent on any other variable in the experiment. Naturally, some common independent variables are time, space, density, mass, fluid flow rate.

A dependent variable has its value dependent on the independent variable in the experiment. The value of the distance the ball rolls depends on the time it takes to roll down the hill.

The relationship between the dependent and independent variables in an experiment is given as

y = f(x)

where y is the output or the dependent variable,

and x is the independent variable.

Control variables are those variable that if not held constant could greatly affect the results of an experiment. For an experiment to be more accurate, control variables should be confined to a given set of value throughout the experiment.

Astronauts increased in height by an average of approximately 40 mm (about an inch and a half) during the Apollo-Soyuz missions, due to the absence of gravity compressing their spines during their time in space. Does something similar happen here on Earth

Answers

Answer:

Yes. Something similar occurs here on Earth.

Explanation:

Gravity tends to pull objects perpendicularly to the ground. In space, the absence of this force means there is no compression on the spine due to gravity trying to pull it down. This means that astronauts undergo an increase in height in space.

Here on Earth, we experience gravity pull on our spine during the day. At night when we sleep, we lie down with our spine parallel to the ground, which means that our spine is no longer under compression from gravity force. The result is that we are a few centimetres taller in the morning when we wake up, than we are before going to bed at night. The increase is not much pronounced here on Earth because there is a repeated cycle of compression and decompression of our spine due to gravity, unlike when compared to that of astronauts that spend long duration in space, all the while without gravity forces on their spine

A square coil of wire with side 8.0 cm and 50 turns sits in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is pulled quickly out of the magnetic field in 0.2 s. If the resistance of the coil is 15 ohm and a current of 12 mA is induced in the coil, calculate the value of the magnetic field.

Answers

Answer:

Explanation:

area of the coil  A = .08 x .08 = 64 x 10⁻⁴ m ²

flux through the coil Φ = area of coil x no of turns x magnetic field

= 64 x 10⁻⁴ x 50 x B where B is magnetic field

emf induced = dΦ / dt = ( 64 x 10⁻⁴ x 50 x B - 0 ) / .2

= 1.6 B

current induced = emf induced / resistance

12 x 10⁻³ = 1.6 B / 15

B = 112.5 x 10⁻³ T .

A particle moves in a velocity field V(x, y) = x2, x + y2 . If it is at position (x, y) = (7, 2) at time t = 3, estimate its location at time t = 3.01.

Answers

Answer:

New location at time 3.01 is given by: (7.49, 2.11)

Explanation:

Let's start by understanding what is the particle's velocity (in component form) in that velocity field at time 3:

[tex]V_x=x^2=7^2=49\\V_y=x+y^2=7+2^2=11[/tex]

With such velocities in the x direction and in the y-direction respectively, we can find the displacement in x and y at a time 0.01 units later by using the formula:

[tex]distance=v\,*\, t[/tex]

[tex]distance_x=49\,(0.01)=0.49\\distance_y=11\,(0.01)=0.11[/tex]

Therefore, adding these displacements in component form to the original particle's position, we get:

New position: (7 + 0.49, 2 + 0.11) = (7.49, 2.11)

Two large non-conducting plates of surface area A = 0.25 m 2 carry equal but opposite charges What is the energy density of the electric field between the two plates?

Answers

Answer:

5.1*10^3 J/m^3

Explanation:

Using E = q/A*eo

And

q =75*10^-6 C

A = 0.25

eo = 8.85*10^-12

Energy density = 1/2*eo*(E^2) = 1/2*eo*(q/A*eo)^2 = [q^2] / [2*(A^2)*eo]

= [(75*10^-6)^2] / [2*(0.25)^2*8.85*10^-12]

= 5.1*10^3 J/m^3

Need help understanding this. If anyone help, that would be greatly appreciated!

Answers

Answer:

8.33` m/s^2 and 8333.3 N

Explanation:

a) acceleration:

ā=v^2/r

ā=(15m/s)^2/27m

ā=225/27 m/s^2

ā=8.333 m/s^2

force:

F=mā. where the is equal to v^2/r

F=1000kg*8.3 m/s^2

F=8333.3 N

Answer:

8.33` m/s^2 and 8333.3 N

Explanation:

Suppose Young's double-slit experiment is performed in air using red light and then the apparatus is immersed in water. What happens to the interference pattern on the screen?

Answers

Answer:

The bright fringes will appear much closer together

Explanation:

Because λn = λ/n ,

And the wavelength of light in water is smaller than the wavelength of light in air. Given that the distance between bright fringes is proportional to the wavelength

Describe the orientation of magnetic field lines by drawing a bar magnet, labeling the poles, and drawing several lines indicating the direction of the forces.

Answers

Answer:

A field is a way of mapping forces surrounding any object that can act on another object at a distance without apparent physical connection. The field represents the object generating it. Gravitational fields map gravitational forces, electric fields map electrical forces, and magnetic fields map magnetic forces.

Explanation:

Your ear is capable of differentiating sounds that arrive at each ear just 0.34 ms apart, which is useful in determining where low-frequency sound is originating from.
(a) Suppose a low-frequency sound source is placed to the right of a person, whose ears are approximately 20 cm apart, and the speed of sound generated is 340 m/s. How long (in s) is the interval between when the sound arrives at the right ear and the sound arrives at the left ear?
(b) Assume the same person was scuba diving and a low-frequency sound source was to the right of the scuba diver. How long (in ) is the interval between when the sound arrives at the right ear and the sound arrives at the left ear if the speed of sound in water is 1,530 m/s? S
(c) What is significant about the time interval of the two situations?

Answers

Answer:

(a) 0.59 ms

(b) 0.15 ms

(c) The significance is that the speed of sound in different media determines the time interval of perception by the ears, which are at constant distance apart.

Explanation:

(a) distance between ears = 20 cm = 0.2 m

speed of sound generated = 340 m/s

time = ?

speed = [tex]\frac{distance covered}{time taken}[/tex]

⇒ time taken, t = [tex]\frac{distance covered}{speed}[/tex]

                        = [tex]\frac{0.2}{340}[/tex]

                        = 5.8824 × [tex]10^{-4}[/tex]

                        = 0.59 ms

The time interval of the arrival of the sound at the right ear to the left ear is 0.59 ms.

(b) distance between ears = 20 cm = 0.2 m

speed of sound in water = 1530 m/s

time = ?

speed = [tex]\frac{distance covered}{time taken}[/tex]

⇒ time taken, t = [tex]\frac{distance covered}{speed}[/tex]

                         = [tex]\frac{0.2}{1530}[/tex]

                         = 1.4815 × [tex]10^{-4}[/tex]

                         = 0.15 ms

The sound heard by the right ear of the diver would arrive at the left 0.15 ms latter.

(c) The significance is that the speed of sound in different media, determines the time interval of perception by the ears, which are at constant distance apart.

A) The time interval between when the sound arrives at the right ear and the sound arrives at the left ear is; t = 0.588 × 10⁻³ seconds

B) The time interval between when the sound arrives at the right ear and the sound arrives at the left ear if the speed of sound in water is 1,530 m/s is; t = 0.131 × 10⁻⁵ seconds

C) The significance about the time interval of the two situations is that;

Transmission of sound varies with different mediums.

A) We are given;

Distance between the two ears; d = 20 cm = 0.2 m

Speed of sound; v = 340 m/s

Since the sound source is placed at the right ear, the time interval for it to get to the left ear is;

t = d/v

t = 0.2/340

t = 0.588 × 10⁻³ seconds

B) We are now told that the speed of sound in water is 1530 m/s. Thus;

t = 0.2/1530

t = 0.131 × 10⁻⁵ seconds

C) We can see that in answer A and B, the time interval is different even when the distance remained the same. This means that, the time interval of hearing a sound changes with respect to the medium of transmission.

Read more at; https://brainly.com/question/18451537

Ohm’s Law
pls answer this photos​

Answers

Answer:

Trial 1: 2 Volts, 0 %

Trial 2: 2.8 Volts, 0%

Trial 3: 4 Volts, 0 %

Explanation:

Th experimental values are given in the table, while the theoretical value can be found by using Ohm/s Law:

V = IR

TRIAL 1:

V = IR

V = (0.1 A)(20 Ω)

V = 2 volts

% Difference = [tex]|\frac{Theoretical Value - Exprimental Value}{Theoretical Value}|[/tex] x 100%

% Difference = |(2 - 2)/2| x 100%

% Difference = 0 %

TRIAL 2:

V = IR

V = (0.14 A)(20 Ω)

V = 2.8 volts

% Difference = [tex]|\frac{Theoretical Value - Exprimental Value}{Theoretical Value}|[/tex] x 100%

% Difference = |(2.8 - 2.8)/2.8| x 100%

% Difference = 0 %

TRIAL 3:

V = IR

V = (0.2 A)(20 Ω)

V = 4 volts

% Difference = [tex]|\frac{Theoretical Value - Exprimental Value}{Theoretical Value}|[/tex] x 100%

% Difference = |(4 - 4)/4| x 100%

% Difference = 0 %

The radius of curvature of the path of a charged particle in a uniform magnetic field is directly proportional toA) the particle's charge.B) the particle's momentum.C) the particle's energy.D) the flux density of the field.E)All of these are correct

Answers

Answer:

B) the particle's momentum.

Explanation:

We know that

The centripetal force  on the particle when its moving in the radius R and velocity V

[tex]F_c=\dfrac{m\times V^2}{R}[/tex]

The magnetic force on the particle when the its moving with velocity V in the magnetic filed B and having charge q

[tex]F_m=q\times V\times B[/tex]

At the equilibrium condition

[tex]F_m=F_c[/tex]

[tex]q\times V\times B=\dfrac{m\times V^2}{R}[/tex]

[tex]R=\dfrac{m\times V}{q\times B}[/tex]

Momentum = m V

Therefore we can say that the radius of curvature is directly proportional to the particle momentum.

B) the particle's momentum.

Consider an electromagnetic wave where the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis.

Required:
In what directions is it possible that the wave is traveling?

Answers

Answer:

The wave is traveling in the y axis direction

Explanation:

Because the wave will always travel in a direction 90° to the magnetic and electric components

2. A solid plastic cube of side 0.2 m is submerged in a liquid of density 0.8 hgm calculate the
upthrust of the liquid on the cube.​

Answers

Answer:

vpg = 0.064 N

Explanation:

Upthrust = Volume of fluid displaced

upthrust liquid on the cube g=10ms−2

vpg =0.2 x 0.2 x 0.2 x0.8 x 10= 0.064N

vpg = 0.064 N

hope it helps.

A 2 m tall, 0.5 m inside diameter tank is filled with water. A 10 cm hole is opened 0.75 m from the bottom of the tank. What is the velocity of the exiting water? Ignore all orificelosses.

Answers

Answer:

4.75 m/s

Explanation:

The computation of the velocity of the existing water is shown below:

Data provided in the question

Tall = 2 m

Inside diameter tank = 2m

Hole opened = 10 cm

Bottom of the tank = 0.75 m

Based on the above information, first we have to determine the height which is

= 2 - 0.75 - 0.10

= 2 - 0.85

= 1.15 m

We assume the following things

1. Compressible flow

2. Stream line followed

Now applied the Bernoulli equation to section 1 and 2

So we get

[tex]\frac{P_1}{p_g} + \frac{v_1^2}{2g} + z_1 = \frac{P_2}{p_g} + \frac{v_2^2}{2g} + z_2[/tex]

where,

P_1 = P_2 = hydrostatic

z_1 = 0

z_2 = h

Now

[tex]\frac{v_1^2}{2g} + 0 = \frac{v_2^2}{2g} + h\\\\V_2 < < V_1 or V_2 = 0\\\\Therefore\ \frac{v_1^2}{2g} = h\\\\v_1^2 = 2gh\\\\ v_1 = \sqrt{2gh} \\\\v_1 = \sqrt{2\times 9.8\times 1.15}[/tex]

= 4.7476 m/sec

= 4.75 m/s

If the speed of a "cheetah" is 150 m / s. How long does it take to cover 800 m?

Answers

Answer:

5.33333... seconds

Explanation:

800 divided by 150 is equal to 5.33333... because it is per second that the cheetah moves at 150miles, the answer is 5.3333.....

At what frequency f, in hertz, would you have to move the comb up and down to produce red light, of wavelength 600 nm

Answers

Answer:

f = 500 x 10^12Hz

Explanation:

E=hc/wavelength

E=hf

hc/wavelength =hf

c/wavelength =f

f = 3 x 10^8 / 600 x 10^-9 = 500 x 10^12Hz

Consider a long rod of mass, m, and length, l, which is thin enough that its width can be ignored compared to its length. The rod is connected at its end to frictionless pivot.
a) Find the angular frequency of small oscillations, w, for this physical pendulum.
b) Suppose at t=0 it pointing down (0 = 0) and has an angular velocity of 120 (that is '(t = 0) = 20) Note that 20 and w both have dimensions of time-1. Find an expression for maximum angular displacement for the pendulum during its oscillation (i.e. the amplitude of the oscillation) in terms of 20 and w assuming that the angular displacement is small.

Answers

Answer:

Explanation:

The rod will act as pendulum for small oscillation .

Time period of oscillation

[tex]T=2\pi\sqrt{\frac{l}{g} }[/tex]

angular frequency ω = 2π / T

= [tex]\omega=\sqrt{\frac{g}{l} }[/tex]

b )

ω = 20( given )

velocity = ω r = ω l

Let the maximum angular displacement in terms of degree be θ .

1/2 m v ² = mgl ( 1 - cosθ ) ,

[ l-lcosθ is loss of height . we have applied law of conservation of mechanical energy .]

.5 (  ω l )² = gl( 1 - cos θ )

.5 ω² l = g ( 1 - cosθ )

1 - cosθ  = .5 ω² l /g

cosθ = 1 - .5 ω² l /g

θ can be calculated , if value of l is given .

Estimate the distance (in cm) between the central bright region and the third dark fringe on a screen 6.3 m from two double slits 0.49 mm apart illuminated by 739-nm light. (give answer in millimeters)

Answers

Answer:

Explanation:

distance of third dark fringe

= 2.5 x λ D / d

where λ is wavelength of light , D is screen distance and d is slit separation

putting the given values

required distance = 2.5  x 739 x 10⁻⁹  x 6.3 / .49 x 10⁻³

= 23753.57 x 10⁻⁶

= 23.754 x 10⁻³ m

= 23.754 mm .

Exercise 1 - Questions 1. Hold the grating several inches from your face, at an angle. Look at the grating that you will be using. Record what details you see at the grating surface. 0 Words 2. Hold the diffraction grating up to your eye and look through it. Record what you see. Be specific. 0 Words 3. Before mounting the diffraction grating, look through the opening that you made for your grating. Record what you see across the back of your spectroscope.

Answers

Answer:

1) on the surface you can see the slits with equal spacing, on the one hand and on the other hand it is smooth.

2)If the angle is zero we see a bright light called undispersed light

For different angles we see the colors of the spectrum

3) must be able to see the well-collimated light emission source

Explanation:

1) A diffraction grating (diffraction grating) is a surface on which a series of indentations are drawn evenly spaced.

These crevices or lines are formed by copying a standard metal net when the plastic is melted and after hardening is carefully removed, or if the nets used are a copy of the master net.

The network can be of two types of transmission or reflection, in teaching work the most common is the transmission network, on the surface you can see the slits with equal spacing, on the one hand and on the other hand it is smooth.

The number of lines per linear mm determines which range of the spectrum a common value can be observed to observe the range of viable light is 600 and 1200 lines per mm.

2) when looking through the diffraction grating what we can observe depends on the relative angle between the eye and the normal to the network.

If the angle is zero we see a bright light called undispersed light

For different angles we see the colors of the spectrum, if it is an incandescent lamp we see a continuum with all the colors in the visible range and if it is a gas lamp we see the characteristic emission lines of the gas.

3) Before mounting the grid on the spectrometer, we must be able to see the well-collimated light emission source, this means that it is clearly observed.

The spectrometers have several screws to be able to see the lamp clearly, this is of fundamental importance in optical experiments.

Following a collision between a large spacecraft and an asteroid, a copper disk of radius 28.0 m and thickness 1.20 m, at a temperature of 850°C, is floating in space, rotating about its axis with an angular speed of 20.0 rad/s. As the disk radiates infrared light, its temperature falls to 20.0°C. No external torque acts on the disk.
A) Find the change in kinetic energy of the disk.
B) Find the change in internal energy of the disk.
C) Find the amount of energy it radiates.

Answers

Answer:

A. 9.31 x10^10J

B. -8.47x10 ^ 12J

C. 8.38x 10^12J

Explanation:

See attached file pls

Based on the graph below, what prediction can we make about the acceleration when the force is 0 newtons? A. It will be 0 meters per second per second. B. It will be 5 meters per second per second. C. It will be 10 meters per second per second. D. It will be 15 meters per second per second.
PLZ HURRY WILL MARK BRAINLIEST IF CORRECT

Answers

Answer:

Option A

Explanation:

Acceleration will be obviously zero when Force = 0

That is how:

Force = Mass * Acceleration

So, If force = 0

0 = Mass * Acceleration.

Dividing both sides by Mass

Acceleration = 0/Mass

Acceleration = 0 m/s²

Answer:

[tex]\boxed{\mathrm{A. \: It \: will \: be \: 0 \: meters \: per \: second \: per \: second. }}[/tex]

Explanation:

[tex]\mathrm{force=mass \times acceleration}[/tex]

The force is given 0 newtons.

[tex]\mathrm{force=0 \: N}[/tex]

Plug force as 0.

[tex]\mathrm{0=mass \times acceleration}[/tex]

Divide both sides by mass.

[tex]\mathrm{\frac{0}{mass} =acceleration}[/tex]

[tex]\mathrm{0 =acceleration}[/tex]

[tex]\mathrm{acceleration= 0\: m/s/s}[/tex]

A proton that is initially at rest is accelerated through an electric potential difference of magnitude 500 V. What speed does the proton gain? (e = 1.60 × 10-19 C , mproton = 1.67 × 10-27 kg)

Answers

Answer:

[tex]3.1\times 10^{5}m/s[/tex]

Explanation:

The computation of the speed does the proton gain is shown below:

The potential difference is the difference that reflects the work done as per the unit charged

So, the work done should be

= Potential difference × Charge

Given that

Charge on a proton is

= 1.6 × 10^-19 C

Potential difference = 500 V

[tex]v= \sqrt{\frac{2.q.\Delta V}{m_{p}}} \\\\\\= \sqrt{\frac{2\times 1.6\times 10^{-19}\times 5\times 10^{2}}{1.67\times 10^{-27}}}[/tex]

[tex]v= \sqrt{9.58\times 10^{10}}m/s \\\\= 3.095\times 10^{5}m/s\\\\\approx 3.1\times 10^{5}m/s[/tex]

Simply we applied the above formulas

Two buses are moving in opposite directions with velocities of 36 km/hr and 108
km/hr. Find the distance between them after 20 minutes.

Answers

Explanation:

It is given that,

Speed of bus 1 is 36 km/h and speed of bus 2 is 108 km/h. We need to find the distance between bus 1 and 2 after 20 minutes.

Time = 20 minutes = [tex]\dfrac{20}{60}\ h=\dfrac{1}{3}\ h[/tex]

As the buses are moving in opposite direction, then the concept of relative velocity is used. So,

Distance, [tex]d=v\times t[/tex]

v is relative velocity, v = 108 + 36 = 144 km/h

So,

[tex]d=144\ km/h \times \dfrac{1}{3}\ h\\\\d=48\ km[/tex]

So, the distance between them is 48 km after 20 minutes.

a car brakes and stops at 10 [m]. While stopping, the friction force of the wheels on the pavement is 400 [N]. Calculate the work done.

Answers

Explanation:

Work = force × distance

W = (400 N) (10 m)

W = 4000 J

Other Questions
What is the volume of a cylindrical garbage pail with a radius of 10 centimeters and a height of 50 centimeters? In this speech, Truman is:telling Americans why they should re-elect him.explaining the failures of the Democratic party.praising the efforts of the Republican party.None of these choices are correc If Treasury bills are currently paying 6.5 percent and the inflation rate is 1.3 percent, what is the approximate and the exact real rate of interest Find the area of this shape.4 cm2 cm4 cm4 cm-15.75 cm11The area of the shape is __square centimeters. The probability density of a random variable X is given in the figure below.From this density, the probability that X is between 0.68 and 1.44 is:Find the probability that X is between 0.68 and 1.44. The "function of committees in the legislative process" is to prevent public hearings on legislation that has been introduced. make the process easier for bill passage. allow standing committees to consider a bill in any legislative area of the committee's choosing. reduce legislative work to manageable proportions by providing for a division of labor among legislators. Shane has a bag of marbles with 4 blue marbles, 3 white marbles, and 1 red marbles. Find the following probabilities of Shane drawing the given marbles from the bag if the first marble(s) is(are) not returned to the bag after they are drawn. (Give your answer as a fraction) WILL GIVE BRAINLIESTWhich of the following are effective nonverbal strategies for a presentation? Check all that apply.o standing in one placeo reading from noteso standing up straighto making eye contacto moving around when possibleo using natural gestures This is actually economics Previous problem : From Andy's house to Billy's hometown you can travel by 3 roads. And to get from Billy's hometown to Willie's house you can travel by 5 roads. How many possible ways are there to travel from Andy's house to Willie's house? From Dan's ranch one road is built to get to Andy's house and two roads are built to get to Willie's house (see previous problem). How many way are there now to get from Andy's house to Willie's house? NEED HELP ASAP I DONT GET THIS hi can you please help me and explain step by step if possible thank you For the presentation assessment, you will record an audio of yourself speaking in Spanish in response to the following scenario: You just started volunteering in your community and want to tell your friends all about it. You also want to give directions to the location in case they want to volunteer. Use the table below to help you create your oral presentation. Where you volunteer You can check out your note guide for the right vocabulary word or expression. The tasks you perform when volunteering Between the vocab from the lesson and the right verbs, you can get this job done. An example of what you give while you volunteer If you want to show you give food, clothing, or even love, dar will give you what you need. Pronouns to replace the names of people or things Dont object! Just use a direct object pronoun and an indirect object pronoun. Directions to the location where you volunteer Directional verbs and estar + preposition are the right way to go. P.S. If you dont know the exact location, you can use your imagination. You just need to show you can give directions. Where art thou, Muse, that thou forget'st so long To speak of that which gives thee all thy might? Spend'st thou thy fury on some worthless song, Darkening thy power to lend base subjects light? Return, forgetful Muse, and straight redeem In gentle numbers time so idly spent; Sing to the ear that doth thy lays esteem And gives thy pen both skill and argument. Rise, restive Muse, my love's sweet face survey, If Time have any wrinkle graven there; If any, be a satire to decay, And make Time's spoils despised every where. Give my love fame faster than Time wastes life; So thou prevent'st his scythe and crooked knife. Sonnet 100, William Shakespeare What is the primary purpose of the couplet in this sonnet? The purpose is to show the poets belief in a grim reaper who wields a scythe. The purpose is to complete the 14 lines required to make the poem a sonnet. The purpose is to add a twist to the ideas about time described in the three quatrains. The purpose is to inspire a poem that will help the speakers beloved become famous and live forever. What should you include in a persuasive letter to a local mayor? Check all that apply.* a description of the town and its population*a clear claim stating the purpose of the letter*a description of my extended family who also lives in town*a reason why some people may disagree with my view*evidence to support my claim from a specialist in the field I am writing about Prokaryotes, like most living organisms, need movement to locate food and to survive. A 1000-turn toroid has a central radius of 4.2 cm and is carrying a current of 1.7 A. The magnitude of the magnetic field along the central radius is NEED HELP!!!!!!WILL GIVE BRAINLYIEST!!!!!Read and then choose the option that best answers the question. What formal command would you use with your boss for the verb estornudar? Estornuda Estornude Estornuden Estornudes Find m A flapper was a A. Modern dancer B. Supporter of the League of Nations C. Woman who disregarded traditional values D. Radical supporter of the Russian socialist revolution