a centrifuge rotor rotating at 8500 rpm is shut off and eventually brought uniformly to rest by a frictionless torque of 1.10 mn. if the mass of the rotor is 2.90 kg and it can be approximated as a solid cylinder of radius 0.0680 m, through how many revolutions will the rotor turn before coming to rest?

Answers

Answer 1

The rotor will not make any complete revolutions before stopping.



The angular momentum of an object is the product of its moment of inertia and its angular velocity. Initially, the angular momentum of the rotor is given by L_initial = I * ω_initial, where I is the moment of inertia and ω_initial is the initial angular velocity.

When the rotor is brought to rest, its final angular velocity is zero. The final angular momentum, L_final, is given by L_final = I * ω_final, where ω_final is the final angular velocity.

According to the principle of conservation of angular momentum, L_initial = L_final. Therefore, I * ω_initial = I * ω_final.

The moment of inertia of a solid cylinder rotating about its central axis is given by the formula I = (1/2) * m * r^2, where m is the mass of the rotor and r is the radius of the cylinder.

Substituting the given values, we have I = (1/2) * 2.90 kg * (0.0680 m)^2.

To find ω_final, we rearrange the equation to get ω_final = ω_initial = (I * ω_initial) / I.

Now, we can substitute the values into the equation to find ω_final.

Since the rotor is rotating at 8500 rpm initially, we convert this to radians per second by multiplying by 2π/60.

ω_initial = 8500 rpm * (2π/60) = 890.42 rad/s.

Substituting the values into the equation, we get ω_final = (I * ω_initial) / I = (0.5 * 2.90 kg * (0.0680 m)^2 * 890.42 rad/s) / (0.5 * 2.90 kg * (0.0680 m)^2).

Simplifying the equation, we find ω_final = 0 rad/s.

Therefore, the rotor will not make any complete revolutions before stopping.

To know more about radius visit:

https://brainly.com/question/13449316
#SPJ11


Related Questions

_________________ was the first astronomer to make telescopic observations which demonstrated that the ancient Greek geocentric model was false.

Answers

Galileo Galilei was the first astronomer to make telescopic observations that demonstrated that the ancient Greek geocentric model was false. He was a renowned Italian astronomer, mathematician, and physicist of the seventeenth century.

He was a key figure in the Scientific Revolution, advocating for a scientific method that emphasized experimentation and observation, which differed from the traditional Aristotelianism that had dominated scientific thinking for centuries.Galileo made important contributions to the fields of astronomy and physics. He invented an improved telescope that enabled him to observe the sky more clearly than any astronomer had before him.

Through his telescope, Galileo observed the phases of Venus, the four largest moons of Jupiter, the rings of Saturn, and sunspots, among other things. These discoveries provided evidence for the heliocentric model of the solar system, which proposed that the Earth and other planets revolve around the sun, rather than the Earth being the center of the universe, as had been previously believed.

Galileo’s ideas and observations were met with significant opposition, particularly from the Catholic Church, which viewed his work as a threat to the church’s traditional teachings. In 1633, Galileo was tried by the Inquisition, found guilty of heresy, and placed under house arrest for the remainder of his life. Despite the persecution he faced, Galileo’s work laid the foundation for the modern scientific method and revolutionized our understanding of the universe.

To know more about astronomer visit:

https://brainly.com/question/1764951

#SPJ11

Q|C The speed of a one-dimensional compressional wave traveling along a thin copper rod is 3.56 km/s . The rod is given a sharp hammer blow at one end. A listener at the far end of the rod hears the sound twice, transmitted through the metal and through air, with a time interval Δt between the two pulses.(c) Find the length of the rod if Δt = 127ms .

Answers

The length of the copper rod is approximately 452 meters. To find the length of the rod, we can use the equation for the speed of a wave:

v = λ * f

Where v is the velocity (speed) of the wave, λ is the wavelength, and f is the frequency.

In this case, the speed of the compressional wave traveling along the rod is given as 3.56 km/s, which is equivalent to 3560 m/s.

Since the sound wave travels through the metal and air, we can consider it as two separate mediums. The time interval Δt between the two pulses corresponds to the time taken for the wave to travel through the rod and then through the air.

The total distance traveled by the wave is twice the length of the rod:

Distance = 2 * Length

Using the equation Distance = Speed * Time, we can express the distance in terms of speed and time:

2 * Length = 3560 m/s * 127 ms

Simplifying the equation:

2 * Length = 452.12 meters

Dividing both sides by 2:

Length ≈ 452 meters

Therefore, the length of the copper rod is approximately 452 meters.

In this scenario, a compressional wave travels along a thin copper rod after a sharp hammer blow is applied at one end. The wave is transmitted through the rod and eventually reaches a listener at the far end. However, the sound is heard twice due to the wave transmitting through the metal and air separately. The time interval Δt between the two pulses represents the time taken for the wave to travel through the rod and air.

By utilizing the equation for wave speed and the relationship between distance, speed, and time, we can solve for the length of the rod. The given speed of the wave allows us to calculate the total distance traveled by the wave, which is twice the length of the rod. By rearranging the equation and substituting the values for speed and time interval, we can determine the length of the rod.

In this case, the length of the rod is found to be approximately 452 meters. This length represents the total distance the wave traveled through the rod and air to reach the listener at the far end.

Learn more about wave here: brainly.com/question/25954805

#SPJ11

The position of a particle is given by the expression x = 4.00cos (3.00πt + π) , where x is in meters and \text{t} is in seconds. Determine (b) period of the motion.

Answers

(a) The frequency of the motion is 3.00 Hz. (b) The period of the motion is 0.333 seconds. (c) The amplitude of the motion is 4.00 meters. (d) The phase constant is [tex]\pi[/tex] radians. (e) At t=0.250 seconds, the position of the particle is x=-4.00 meters.

The given expression for the position of the particle is x=[tex]4.00cos(3.00\pi t+\pi )[/tex], where x is in meters and t is in seconds.

(a) To determine the frequency of the motion, we look at the coefficient of t in the argument of the cosine function. In this case, it is 3.00[tex]\pi[/tex], indicating that the frequency is 3.00 Hz.

(b) The period of the motion is the reciprocal of the frequency, so it is 1/3.00 seconds, which simplifies to approximately 0.333 seconds.

(c) The amplitude of the motion is the coefficient of the cosine function, which is 4.00 meters.

(d) The phase constant is the constant term in the argument of the cosine function, which is [tex]\pi[/tex] radians.

(e) To find the position of the particle at t=0.250 seconds, we substitute t=0.250 into the expression for x and calculate its value. x=[tex]4.00cos(3.00\pi (0.250)+\pi )[/tex] simplifies to x=-4.00 meters.

Therefore, the particle is located at x=-4.00 meters when t=0.250 seconds in this particular motion.

Know more about Frequency here: brainly.com/question/30783512

#SPJ11

The complete question is: The position of a particle is given by the expression  x=4.00cos(3.00πt+π), where x is in meters and t is in seconds. Determine (a) the frequency and (b) period of the motion, (c) the amplitude of the motion, (d) the phase constant, and (e) the position of the particle at t=0.250 s.

Two narrow, parallel slits separated by 0.850mm are illuminated by 600 -nm light, and the viewing screen is 2.80m away from the slits. (b) What is the ratio of the intensity at this point to the intensity at the center of a bright fringe?

Answers

The ratio of the intensity at the given point to the intensity at the center of a bright fringe is approximately 0.179.

When light passes through two narrow, parallel slits, it undergoes a phenomenon known as interference, resulting in an interference pattern on a viewing screen. The intensity of the light at different points on the screen depends on the constructive and destructive interference of the light waves.

To determine the ratio of the intensity at a specific point to the intensity at the center of a bright fringe, we can consider the formula for the intensity of the interference pattern:

I = I₀ * cos²(θ)

Where I is the intensity at a given point, I₀ is the intensity at the center of a bright fringe, and θ is the angle of the point with respect to the central maximum.

In this case, we are interested in the point on the viewing screen that is 2.80m away from the slits. To calculate the angle θ, we can use the small-angle approximation:

θ ≈ y / D

Where y is the distance of the point from the central maximum and D is the distance between the slits and the viewing screen.

Plugging in the values, we have:

θ ≈ (2.80m) / (0.850mm) = 3294.12 radians

Substituting this value of θ into the intensity formula, we get:

I / I₀ = cos²(3294.12)

Calculating this ratio, we find that it is approximately 0.179.

Learn more about Intensity

brainly.com/question/17583145

#SPJ11

For an enzyme that displays michaelis-menten kinetics what is the reaction velocity?

Answers

The reaction velocity, or the rate at which a reaction occurs, in an enzyme that displays Michaelis-Menten kinetics can be determined using the Michaelis-Menten equation.

This equation describes the relationship between the substrate concentration ([S]), the maximum reaction velocity (Vmax), and the Michaelis constant (Km).

The Michaelis-Menten equation is given by:
V = (Vmax * [S]) / (Km + [S])

Where:
V is the reaction velocity,
Vmax is the maximum reaction velocity,
[S] is the substrate concentration, and
Km is the Michaelis constant.

To calculate the reaction velocity, you need to know the substrate concentration and the values for Vmax and Km specific to the enzyme you are studying.

Here's an example to illustrate the calculation:
Let's say we have an enzyme with a Vmax of 10 units and a Km of 5 units. If the substrate concentration is 2 units, we can plug these values into the Michaelis-Menten equation to find the reaction velocity:
V = (10 * 2) / (5 + 2)
V = 20 / 7
V ≈ 2.86 units

Therefore, the reaction velocity for this enzyme at a substrate concentration of 2 units is approximately 2.86 units.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

A flow calorimeter is an apparatus used to measure the specific heat of a liquid. The technique of flow calorimetry involves measuring the temperature difference between the input and output points of a flowing stream of the liquid while energy is added by heat at a known rate. A liquid of density 900 kg/m³ flows through the calorimeter with volume flow rate of 2.00 L/min . At steady state, a temperature difference 3.50°C is established between the input and output points when energy is supplied at the rate of 200W. What is the specific heat of the liquid?

Answers

The specific heat of the liquid flowing through the calorimeter is approximately 4,444 J/(kg·°C).

To determine the specific heat of the liquid, we can use the equation:

Q = m * c * ΔT

Where Q is the heat energy supplied per unit time (in this case, 200W), m is the mass flow rate of the liquid, c is the specific heat capacity of the liquid, and ΔT is the temperature difference between the input and output points of the liquid.

First, let's calculate the mass flow rate of the liquid:

Volume flow rate = (Density) * (Volume)

2.00 L/min = (900 kg/m³) * (2.00 × 10⁻³ m³/min)

2.00 L/min = 1.8 kg/min

Now, let's convert the mass flow rate to kg/s:

1.8 kg/min = (1.8 kg/min) / (60 s/min) ≈ 0.03 kg/s

Substituting the given values into the equation:

200W = (0.03 kg/s) * c * 3.50°C

c = 200W / (0.03 kg/s * 3.50°C)

c ≈ 4,444 J/(kg·°C)

Therefore, the specific heat of the liquid flowing through the calorimeter is approximately 4,444 J/(kg·°C).

Flow calorimetry is a technique used to measure the specific heat of a liquid. The principle involves monitoring the temperature difference between the input and output points of the flowing liquid while heat energy is added at a known rate. By applying the heat energy equation, Q = m * c * ΔT, where Q is the supplied heat energy, m is the mass flow rate, c is the specific heat capacity, and ΔT is the temperature difference, we can solve for the specific heat capacity of the liquid.

In this scenario, we are given the volume flow rate of the liquid and the temperature difference established between the input and output points. The heat energy supplied per unit time is also provided. By converting the volume flow rate to mass flow rate and substituting the given values into the equation, we can calculate the specific heat of the liquid flowing through the calorimeter. The specific heat value obtained represents the amount of heat energy required to raise the temperature of one kilogram of the liquid by one degree Celsius.

Learn more about specific heat here: brainly.com/question/31608647

#SPJ11

a person walks first at a constant speed of 5.40 m/s along a straight line from point circled a to point circled b and then back along the line from circled b to circled a at a constant speed of 3.20 m/s.

Answers

The person covers a total distance of 2d and the total time taken is the sum of the time taken to travel from A to B and the time taken to travel from B to A.

When a person walks from point A to point B and then back to point A, they are covering the same distance twice. The person walks at a constant speed of 5.40 m/s from point A to point B, and then at a constant speed of 3.20 m/s from point B back to point A.

To calculate the total distance covered, we need to consider the distance from A to B and the distance from B to A. Since the person covers the same distance twice, we can simply add these two distances together.

The time taken to travel from A to B can be calculated by dividing the distance (d) by the speed (5.40 m/s). Similarly, the time taken to travel from B to A can be calculated by dividing the distance (d) by the speed (3.20 m/s).

The total time taken is the sum of the time taken to travel from A to B and the time taken to travel from B to A. Let's assume the distance from A to B is d. Therefore, the distance from B to A will also be d. Adding these two distances gives us a total distance of 2d.

You can learn more about the distance at: brainly.com/question/31713805

#SPJ11

S A seaplane of total mass m lands on a lake with initial speed vi i^ . The only horizontal force on it is a resistive force on its pontoons from the water. The resistive force is proportional to the velocity of the seaplane: →R = -b →v . Newton's second law applied to the plane is -b vi^ = m(dv / d t) i^. From the fundamental theorem of calculus, this differential equation implies that the speed changes according to

∫^v _vi dv/v = -b/m ∫^t ₀ dt (d) Does the seaplane travel a finite distance in stopping

Answers

Based on the given differential equation, the seaplane does not travel a finite distance in stopping.

According to the given differential equation, the speed of the seaplane changes as ∫^v _vi dv/v = -b/m ∫^t ₀ dt, where ∫^v _vi dv/v represents the integral of the reciprocal of speed with respect to speed and ∫^t ₀ dt represents the integral of time. By analyzing the equation, we can determine whether the seaplane travels a finite distance in stopping.

To determine if the seaplane travels a finite distance in stopping, we need to examine the integral of the reciprocal of speed (∫^v _vi dv/v) on the left side of the equation. This integral represents the natural logarithm of the absolute value of speed.

When the seaplane comes to a stop (v = 0), the integral becomes ln(0) which is undefined. This suggests that the seaplane does not reach a complete stop and does not travel a finite distance.

The equation implies that the seaplane experiences a continuous decrease in speed over time, but it never reaches zero speed or comes to a complete stop. Instead, the speed approaches zero asymptotically as time progresses.

Therefore, based on the given differential equation, the seaplane does not travel a finite distance in stopping.

Learn more about differential equation here:

brainly.com/question/32645495

#SPJ11

The amount of light the lens receives comes from, in part:_________.

a. type of transmission

b. light source brightness

c. monitor setting

d. scene reflectivity

Answers

The amount of light the lens receives comes from, in part: scene reflectivity. Scene reflectivity refers to how much light is reflected off the objects and surfaces in the scene being photographed. It determines the overall brightness of the scene and affects the exposure of the image.

For example, if you are taking a picture of a sunny beach, the sand and water will reflect a lot of light, resulting in a bright scene. On the other hand, if you are photographing a dimly lit room, the walls and objects in the room will reflect less light, resulting in a darker scene.

The other options, type of transmission, light source brightness, and monitor setting, do not directly affect the amount of light the lens receives. Type of transmission refers to how the light travels through the lens, but it does not determine the amount of light reaching the lens. Light source brightness and monitor setting are factors that may affect the perception of brightness but do not impact the actual amount of light entering the lens.

To know more about Scene reflectivity visit:

https://brainly.com/question/29902189

#SPJ11

An ideal gas in a balloon is kept in thermal equilibrium with its constant-temperature surroundings. How much work is done by the gas if the outside pressure is slowly reduced, allowing the balloon to expand to 6.0 times its original size

Answers

The work done by the gas if the outside pressure is slowly reduced and allowing the balloon to expand to 6.0 times its original size is 3.7 J. Work done is the energy transferred to or from an object via a force acting on the object, and displacement occurs in the same direction as the force.

An ideal gas in a balloon is kept in thermal equilibrium with its constant-temperature surroundings; thus, it obeys the gas law equation: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the universal gas constant, and T is the temperature. It can be written asP1V1 = P2V2...Equation 1,Where P1 and V1 are the initial pressure and volume, respectively, while P2 and V2 are the final pressure and volume, respectively. The work done by an ideal gas that expands against an external pressure can be calculated using the equation:W = nRT ln (V2/V1) .

Thus  we can find the work done by the gas if the outside pressure is slowly reduced and allowing the balloon to expand to 6.0 times its original size using equations 1 and 2. We'll get:V2 = 6V1Substituting this value in equation 1,P1V1 = P2V2...Equation 1P2 = P1(1/6)Substituting this value in equation 2:W = nRT ln (V2/V1)W = nRT ln (6)V1/V1W = nRT ln (6)W = nRT (1.792)Joules Therefore, the work done by the gas if the outside pressure is slowly reduced and allowing the balloon to expand to 6.0 times its original size is 3.7 J.

To know more about force visit :

https://brainly.com/question/30507236

#SPJ11

Even though the equipment you have available to you is limited, your boss assures you of its high quality: The ammeter has very small resistance, and the voltmeter has very large resistance.

Answers

The resistance of 1 meter of wire can be estimated by taking the average of the two resistance values obtained as 2.28 ohms.

Ohm's law, which states that resistance (R) is equal to the voltage (V) divided by current (I), can be used to calculate the resistance of a wire. The resistance of the 20.0-meter wire in the first configuration, when the voltmeter reads 12.1 volts and the ammeter registers 6.50 amps, can be computed by dividing 12.1 volts by 6.50 amps, giving the wire resistance of roughly 1.86 ohms.

When the voltmeter and ammeter in the second setup both read 4.50 amps, it is possible to determine the resistance of the 40.0-meter wire by dividing 12.1 volts by 4.50 amps, which results in a resistance of roughly 2.69 ohms for the wire.

The resistance increases as the wire's length increases, which can be seen by comparing the two resistance readings. As a result, it is possible to calculate the resistance of 1 metre of wire by averaging the two resistance values that were obtained: (1.86 ohms + 2.69 ohms) / 2 = 2.28 ohms for 1 metre of wire.

Learn more about resistance here:

https://brainly.com/question/33728800

#SPJ11

The complete question is:

On your first day at work as an electrical technician, you are asked to determine the resistance per meter of a long piece of wire. The company you work for is poorly equipped. You find a battery, a voltmeter, and an ammeter, but no meter for directly measuring resistance (an ohmmeter). You put the leads from the voltmeter across the terminals of the battery, and the meter reads 12.1. You cut off a 20.0- length of wire and connect it to the battery, with an ammeter in series with it to measure the current in the wire. The ammeter reads 6.50. You then cut off a 40.0- length of wire and connect it to the battery, again with the ammeter in series to measure the current. The ammeter reads 4.50. Even though the equipment you have available to you is limited, your boss assures you of its high quality: The ammeter has a very small resistance, and the voltmeter has a very large resistance.

What is the resistance of 1 meter of wire?

A football is punted straight up into the air; it hits the ground 5.2 s later. what was the greatest height reached by the ball? what was its initial velocity?

Answers

the initial velocity of the ball is approximately 25.48 m/s.

To determine the greatest height reached by the ball and its initial velocity, we can use the kinematic equations of motion.

Given:

Time taken for the ball to hit the ground (time of flight) = 5.2 s

1. Determining the greatest height reached (maximum height):

Since the ball is punted straight up into the air, we can assume symmetrical motion. This means that the time taken to reach the highest point is half of the total time of flight.

Time taken to reach the highest point = 5.2 s / 2 = 2.6 s

Using the equation for vertical displacement:

h = (1/2)gt^2

where h is the height, g is the acceleration due to gravity, and t is the time.

Substituting the values:

h = (1/2)(9.8 m/s^2)(2.6 s)^2

h = 33.788 m

Therefore, the greatest height reached by the ball is approximately 33.788 meters.

2. Determining the initial velocity:

Using the equation for vertical motion:

v = gt

where v is the vertical velocity and g is the acceleration due to gravity.

Substituting the values:

v = (9.8 m/s^2)(2.6 s)

v = 25.48 m/s

To know more about velocity visit:

brainly.com/question/30559316

#SPJ11

(True or False) A small force exerted over a large time interval can create the same change in momentum as a large force exerted over a small time interval. *

Answers

A small force exerted over a large time interval can indeed create the same change in momentum as a large force exerted over a small time interval. The statement is True.

The concept that relates force, time, and momentum is known as impulse. Impulse is the product of force and time, and it is equal to the change in momentum experienced by an object.

Impulse = Force × Time

By rearranging this equation, we can see that for a given change in momentum, if the force acting on an object is smaller, the time over which the force is applied will be longer, and vice versa. This demonstrates the principle of conservation of momentum.

As long as the product of force and time remains the same, the change in momentum will be equivalent.

Therefore, a small force exerted over a large time interval can indeed produce the same change in momentum as a large force exerted over a small time interval.

To know more about momentum, refer here:

https://brainly.com/question/30677308#

#SPJ11

When an aluminum bar is connected between a hot reservoir at 725K and a cold reservoir at 310K, 2.50kj of energy is transferred by heat from the hot reservoir to the cold reservoir. In this irreversible process, calculate the change in entropy of(b) the cold ready

Answers

The change in entropy (ΔS) of a system can be calculated using the equation ΔS = Q/T ,and the change in entropy is found to be 0.0124 kJ/K.

The change in entropy (ΔS) of a system can be calculated using the equation ΔS = Q/T, where Q is the heat transferred and T is the temperature. In this case, the heat transferred is given as 2.50 kJ and the temperature of the cold reservoir is 310 K.

Plugging the values into the equation, we have ΔS = 2.50 kJ / 310 K. Evaluating this expression, we find that the change in entropy of the cold reservoir is approximately 0.0124 kJ/K.

This positive change in entropy indicates that the disorder or randomness of the cold reservoir increases as heat is transferred to it. Since the process is irreversible, some energy is lost as waste heat, which contributes to the overall increase in entropy.

Overall, the irreversible transfer of 2.50 kJ of energy from a hot reservoir at 725 K to a cold reservoir at 310 K results in a change in entropy of approximately 0.0124 kJ/K for the cold reservoir.

Learn more about heat here:

https://brainly.com/question/30603212

#SPJ11

how large must be the coefficient of static friction be between the tires and the road if a car is to round a level curve of radius 85 m at a speed of 95 km/h?

Answers

To determine the coefficient of static friction needed between the tires and the road for a car to round a level curve, we can use the centripetal force equation:

[tex]F = (mv^2) / r[/tex]

where F is the net force acting towards the center of the curve, m is the mass of the car, v is the velocity, and r is the radius of the curve.

First, let's convert the speed of the car from km/h to m/s. Since 1 km/h is equal to 0.278 m/s, the speed of the car is:

95 km/h * 0.278 m/s = 26.81 m/s

Next, let's calculate the centripetal force required to round the curve. We need to find the net force acting towards the center of the curve, which can be determined by subtracting the force due to gravity from the force provided by static friction.

The force due to gravity can be calculated as:

Fg = mg

where g is the acceleration due to gravity (approximately 9.8 m/s^2).

To find the net force, we subtract the force due to gravity from the centripetal force:

[tex]F - Fg = mv^2 / r[/tex]
Rearranging the equation, we get:

[tex]F = mv^2 / r + Fg[/tex]

Now, let's calculate the force due to gravity:

Fg = mg = (mass of the car) * (acceleration due to gravity)

The mass of the car is not provided in the question, so we cannot calculate the exact value. However, we can provide a general explanation.

In order for the car to round the curve without slipping, the frictional force (provided by the coefficient of static friction) must be equal to or greater than the net force. This means that the static frictional force must provide enough centripetal force to keep the car on the curve.

If the coefficient of static friction is not large enough, the car will slide off the curve, indicating that the tires have lost traction.

Therefore, the coefficient of static friction required between the tires and the road depends on the mass of the car, the radius of the curve, and the velocity of the car. Without the mass of the car, we cannot determine the exact coefficient of static friction needed.

To know more about coefficient visit:

https://brainly.com/question/1594145

#SPJ11

Order the following distance units from greatest to least.

pls help ​

Answers

The Order the of distance units from greatest to least is  Kilometer, hectometer, decameter, decimeter, and millimeter.

What Is Distance?

Distance is the sum of an object's movements, regardless of direction. Distance can be defined as the amount of space an object has covered, regardless of its starting or ending position.

Displacement is just the distance between an object's starting point and its final location, whereas distance is the length of an object's path. The distance traveled is calculated using the formula distance = speed x time.

Learn more about distance at

https://brainly.com/question/26550516

#SPJ1

missing part;

decameter,  Kilometer, hectometer,  and millimeter, decimeter,

Q/C A 90.0-kg fullback running east with a speed of 5.00m/s is tackled by a 95.0-kg opponent running north with a speed of 3.00m/s . (a) Explain why the successful tackle constitutes a perfectly inelastic collision.

Answers

The successful tackle between the 90.0-kg fullback running east and the 95.0-kg opponent running north constitutes a perfectly inelastic collision. In a perfectly inelastic collision, the two objects stick together after the collision, resulting in a combined mass and velocity.

The tackle meets this criterion because the two players become entangled and move as a single unit after the collision, exhibiting a loss of kinetic energy and a change in direction. The collision is considered perfectly inelastic because the two objects remain in contact and move together after the impact.

In a perfectly inelastic collision, the two colliding objects stick together and move as a single unit after the collision. This occurs because there is a strong interaction or adhesive force between the objects, causing them to become entangled and lose their individual identities.

In the given scenario, when the fullback running east and the opponent running north collide, the two players become intertwined and move together as a combined system. This outcome indicates a loss of kinetic energy during the collision.

The momentum of the system is conserved, but the original kinetic energy is transformed into other forms, such as internal energy or heat.

The successful tackle constitutes a perfectly inelastic collision because the two players remain in contact and continue to move together after the collision. Their masses and velocities combine, resulting in a single entity with a new velocity and direction.

This type of collision is common in contact sports such as football, where players collide and stick together to bring the opposing player to a stop.

Learn more about perfectly inelastic collision here:

brainly.com/question/14517456

#SPJ11

A 70.0-kg log falls from a height of 25.0m into a lake. If the log, the lake, and the air are all at 300K, find the change in entropy of the air during this period

Answers

To find the change in entropy of the air during the log's fall, we can use the formula ΔS = Q/T, where ΔS is the change in entropy, Q is the heat transferred, and T is the temperature. Since the log falls into the lake, it displaces water, causing the air to expand. As a result, the air does work on the surroundings, and no heat is transferred.


The change in entropy, ΔS, can be calculated using the formula ΔS = Q/T, where ΔS represents the change in entropy, Q represents the heat transferred, and T represents the temperature. In this scenario, the log falls from a height of 25.0m into a lake. The log displaces water, which causes the air surrounding it to expand. As a result, the air does work on the surroundings.

However, no heat is transferred from or to the air. The temperature of the log, the lake, and the air is given as 300K. Since Q is zero, we can substitute this value into the formula ΔS = Q/T.

This simplifies to ΔS = 0/T, which further simplifies to ΔS = 0. Therefore, the change in entropy of the air during this period is zero. This means that there is no change in the disorder or randomness of the air molecules during the log's fall into the lake. The process does not contribute to an increase or decrease in the entropy of the air.

To know more about Entropy visit.

https://brainly.com/question/20166134

#SPJ11

The linear density in a rod 5 m long is 8/ x + 4 kg/m, where x is measured in meters from one end of the rod. find the average density ave of the rod. ave = kg/m

Answers

To find the average density (ave) of the rod, we need to integrate the linear density function over the entire length of the rod and then divide by the length of the rod.

Given that the linear density of the rod is given by 8/(x + 4) kg/m, where x is measured in meters from one end of the rod, we can calculate the average density as follows ave = (1/L) * ∫[0 to L] (8/(x + 4)) dx Therefore, the average density (ave) of the rod is approximately 0.1622 kg/m.

To know more about meters visit :

https://brainly.com/question/372485

#SPJ11

A commercial aircraft is at a cruising altitude of roughly 10 kilometers (km), corresponding to an outside air pressure of roughly _____ millibars (mb).

Answers

A commercial aircraft is at a cruising altitude of roughly 10 kilometers (km), corresponding to an outside air pressure of roughly 42.29 millibars (mb).

At a cruising altitude of roughly 10 kilometers (km), the outside air pressure can be estimated using the barometric formula, which relates pressure to altitude. The barometric formula is given by:

P = P0 * exp(-M * g * h / (R * T))

Where:

P is the pressure at altitude h,

P0 is the pressure at sea level (approximately 1013.25 mb),

M is the molar mass of Earth's air (approximately 0.029 kg/mol),

g is the acceleration due to gravity (approximately 9.8 m/s²),

h is the altitude,

R is the ideal gas constant (approximately 8.314 J/(mol·K)),

T is the temperature in Kelvin.

To calculate the pressure at an altitude of 10 km, we need to convert it to meters and use the appropriate values for the constants. Assuming a standard temperature of 288 K (15°C), the calculation becomes:

P = 1013.25 mb * exp(-0.029 kg/mol * 9.8 m/s² * 10000 m / (8.314 J/(mol·K) * 288 K))

Simplifying the equation, we get:

P = 1013.25 mb * exp(-3.1722)

Using a scientific calculator, we find:

P ≈ 1013.25 mb * 0.0418

P ≈ 42.29 mb

Therefore, at a cruising altitude of roughly 10 kilometers, the outside air pressure is approximately 42.29 millibars (mb).

For more such information on: pressure

https://brainly.com/question/28012687

#SPJ8

The force constant of a spring in a lab spring scale is 100 N/m. The spring is compressed by 0.2 m. How much energy has the spring stored? Group of answer choices 1.0 J 2.0 J 3.0 J 4.0 J none of the above

Answers

The spring has stored 2.0 J of energy.

To calculate the energy stored in the spring (Potential energy ), you can use the formula:  E = (1/2) * k * x^2
where E is the energy stored, k is the force constant of the spring, and x is the displacement of the spring. In this case, the force constant is given as 100 N/m and the spring is compressed by 0.2 m.

Plugging these values into the formula:

E = (1/2) * 100 N/m * (0.2 m)^2

E = (1/2) * 100 N/m * 0.04 m^2

E = 2 J

Know more about Potential energy here,

https://brainly.com/question/24284560

#SPJ11

If two tiny identical spheres attract each other with a force of 2. 00 n when they are 22. 0 cm apart, what is the mass of each sph?

Answers

The mass of each sphere can be determined by using Newton's law of universal gravitation and the given force and distance.

Explanation: Newton's law of universal gravitation states that the force of gravitational attraction between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.

In this case, we are given that two identical spheres attract each other with a force of 2.00 N when they are 22.0 cm apart. We can set up the equation as follows:

F = G * (m1 * m2) / [tex]r^2[/tex]

where F is the force of attraction, G is the gravitational constant, m1 and m2 are the masses of the spheres, and r is the distance between their centers.

Given that the force (F) is 2.00 N and the distance (r) is 22.0 cm (which is equivalent to 0.22 m), we can rearrange the equation to solve for the mass of each sphere:

m1 * m2 = (F * [tex]r^2[/tex]) / G

Substituting the given values and the known value of the gravitational constant, we can solve for the product of the masses (m1 * m2). Since the spheres are identical, we can assume that their masses are equal, so each sphere has a mass of the square root of the calculated product.

Learn more about Newton's law here:

https://brainly.com/question/27573481

#SPJ11

A geologist finds that a Moon rock whose mass is 9.28 kg has an apparent mass of 6.19 kg when submerged in water.

Answers

The density of the Moon rock is approximately 2,925 kg/m³, as calculated using the apparent mass of the rock when submerged in water.

To find the density of the Moon rock, we can use Archimedes' principle, which states that the buoyant force experienced by an object submerged in a fluid is equal to the weight of the fluid.

The apparent mass of the Moon rock when submerged in water is 6.19 kg. This apparent mass is equal to the mass of the rock minus the mass of the water displaced by the rock.

The mass of the water displaced can be calculated using the density of water (ρwater = 1,000 kg/m³) and the volume of water displaced, which is equal to the volume of the rock.

Apparent mass = mass of the rock - mass of the water displaced

6.19 kg = 9.28 kg - mass of water

To find the mass of water displaced, we need to determine the volume of the rock.

According to the density formula:

Density = mass / volume

Rearranging the formula to solve for volume:

Volume = mass / density

Volume of the rock = 9.28 kg / density

Substituting the known values into the equation:

Volume of the rock = 9.28 kg / density

Now, we can calculate the mass of the water displaced using the volume of the rock and the density of water:

Mass of water = ρwater * Volume of the rock

Substituting the known values:

Mass of water = 1,000 kg/m³ * (9.28 kg / density)

The apparent mass is equal to the mass of the rock minus the mass of water displaced:

6.19 kg = 9.28 kg - 1,000 kg/m³ * (9.28 kg / density)

Simplifying the equation:

1,000 kg/m³ * (9.28 kg / density) = 9.28 kg - 6.19 kg

(9.28 kg / density) = 3.09 kg

density = 9.28 kg / 3.09 kg

Calculating the density:

density ≈ 2,925 kg/m³

The density of the Moon rock is approximately 2,925 kg/m³, as calculated using the apparent mass of the rock when submerged in water.

To know more about density, visit:

https://brainly.com/question/952755

#SPJ11

What is (a) the wavelength of a 5.50-ev photon and (b) the de broglie wavelength of a 5.50-ev electron?

Answers

The wavelength of a 5.50 eV photon is approximately [tex]2.26*10^{-7}[/tex]meters, which corresponds to the ultraviolet region of the electromagnetic spectrum. (b) The de Broglie wavelength of a 5.50 eV electron is approximately [tex]3.69*10^{-10}[/tex] meters.

In quantum mechanics, the energy of a photon is related to its wavelength through the equation E = hc/λ, where E is the energy, h is Planck's constant [tex](6.626*10^{-34} )[/tex]J s, c is the speed of light ([tex]3.00 *10^{8} m/s[/tex]), and λ is the wavelength. Rearranging the equation, we find that λ = hc/E. By substituting the given energy of 5.50 eV (converted to joules using the conversion factor [tex]1 eV = 1.602* 10^{-19}[/tex]J), we can calculate the corresponding wavelength.

For an electron, the de Broglie wavelength is given by the equation λ = h/p, where λ is the wavelength, h is Planck's constant, and p is the momentum of the electron. The momentum of an electron can be determined using its energy and the equation [tex]p = \sqrt{2mE}[/tex], where m is the mass of the electron. By substituting the mass of an electron [tex](9.11*10^{-31} kg)[/tex] and the given energy of 5.50 eV (converted to joules), we can calculate the de Broglie wavelength of the electron.

Learn more about wavelength here:

https://brainly.com/question/32900586

#SPJ11

A refrigerator uses 200 j of energy per hour and takes 1200 j to get started. write an equation which expresses the amount of energy the refrigerator has used as a function of time. assume that the time is given in hours.

Answers

The equation that expresses the amount of energy the refrigerator has used as a function of time can be derived by considering two components: the energy used per hour and the initial energy required to start the refrigerator.

Let's denote the energy used per hour as E_hour and the initial energy required to start the refrigerator as E_start.

The total energy used by the refrigerator, E_total, can be calculated by multiplying the energy used per hour by the time in hours, t, and adding the initial energy required:

E_total = E_hour * t + E_start

In this case, the energy used per hour is given as 200 j, and the initial energy required is given as 1200 j. Therefore, the equation becomes:

E_total = 200t + 1200

This equation expresses the amount of energy the refrigerator has used as a function of time, where time is given in hours.

To calculate the energy used by the refrigerator at a specific time, substitute the desired value for t into the equation and solve for E_total.

For example, if you want to calculate the energy used after 3 hours:

E_total = 200 * 3 + 1200
        = 600 + 1200
        = 1800 j

So, after 3 hours, the refrigerator will have used 1800 joules of energy.

To know more about energy visit:

https://brainly.com/question/1932868

#SPJ11

A 8. 00-μc charge is situated along the y-axis at y = 0. 400 m. what is the electric potential at the origin because of this charge? group of answer choices

Answers

The electric potential at the origin due to an 8.00-μC charge situated along the y-axis at y = 0.400 m can be calculated using the equation for electric potential is 1.124 × [tex]10^6[/tex] volts.

The electric potential at a point in space due to a charged object is given by the equation V = kQ/r, where V represents the electric potential, k is Coulomb's constant (k = 8.99 × [tex]10^9[/tex] N [tex]m^2[/tex]/[tex]C^2[/tex]), Q is the charge, and r is the distance between the point and the charge.

In this case, the charge is situated along the y-axis at y = 0.400 m, and we want to find the electric potential at the origin, which is located at (0, 0).

The distance between the origin and the charge is given by r = √([tex]x^2[/tex] + [tex]y^2[/tex]), where x and y are the coordinates of the point.

Since the origin has coordinates (0, 0), the distance becomes r = √([tex]0^2[/tex] + [tex]0.400^2[/tex]) = 0.400 m.

Plugging these values into the equation V = kQ/r, we have V = (8.99 × [tex]10^9[/tex] N [tex]m^2[/tex]/[tex]C^2[/tex])(8.00 × [tex]10^{-6}[/tex] C)/(0.400 m) = 1.124 × [tex]10^6[/tex] V.

Learn more about Coulomb's constant here:

https://brainly.com/question/30466261

#SPJ11

an unwary football player collides head-on with a padded goalpost while running at 7.9 m/s and comes to a full stop after compressing the padding and his body by 0.27 m. take the direction of the player’s initial velocity as positive.

Answers

The work done is equivalent to the force of impact times the distance traveled by the football player, i.e.,

W = FdF = W/dF

= - 31.21 J / 0.27 m

= - 115.6 N

A football player, who is not cautious, collides head-on with a padded goalpost while running at 7.9 m/s and comes to a complete halt after compressing the padding and his body by 0.27 m. The direction of the player’s initial velocity is positive. Here, the distance traveled by the football player is 0.27 m. To figure out the force of impact, you need to use the work-energy principle, which is W = ∆K, where W is the work done on the football player, ∆K is the change in kinetic energy and K is the initial kinetic energy. In other words, the force of impact is equivalent to the work done on the football player to bring him to a halt. The formula for kinetic energy is K = (1/2) mv², where m is the mass of the player and v is the velocity.

Therefore, the kinetic energy of the football player before impact is:

K = (1/2) × m × (7.9 m/s)²

= (1/2) × m × 62.41 m²/s²

= 31.21 m²/s²

m is unknown, so the kinetic energy is unknown.

However, because the problem states that the player comes to a complete halt, we can assume that all of his kinetic energy is transformed into work done to stop him, as per the work-energy principle. Therefore, the work done is:W = ∆K = K_f - K_i = - K_i, since K_f is zero.

∆K = W = - K_i = - 31.21 m²/s² = - 31.21 J

The work done is equivalent to the force of impact times the distance traveled by the football player, i.e.,

W = FdF = W/dF

= - 31.21 J / 0.27 m

= - 115.6 N

The negative sign denotes that the direction of the force of impact is opposite to that of the initial velocity of the player.

To know more about kinetic energy visit:

brainly.com/question/999862

#SPJ11

When you push a 1.89-kg book resting on a tabletop, you have to exert a force of 2.11 n to start the book sliding. what is the coefficient of static friction between the book and the tabletop?

Answers

The coefficient of static friction between the book and the tabletop can be determined using the equation:
Coefficient of static friction = Force to start sliding / Normal force.


In this case, the force to start sliding is 2.11 N and the weight of the book can be calculated using the equation:
Weight = mass x acceleration due to gravity.
Given that the mass of the book is 1.89 kg and the acceleration due to gravity is 9.8 m/s^2, the weight of the book is approximately 18.522 N.
Since the book is resting on the tabletop, the normal force acting on it is equal to the weight of the book.
Therefore, the coefficient of static friction can be calculated as:
Coefficient of static friction = 2.11 N / 18.522 N.
This simplifies to approximately 0.114.
Hence, the coefficient of static friction between the book and the tabletop is approximately 0.114.

To know more about Normal force visit.

https://brainly.com/question/13622356

#SPJ11

Why does the existence of a cutoff frequency in the photoelectric effect favor a particle theory for light over a wave theory?

Answers

The existence of a cutoff frequency in the photoelectric effect suggests that light behaves as particles (photons) rather than waves.

The photoelectric effect is the emission of electrons from a material when exposed to light. According to the wave theory of light, increasing the intensity (amplitude) of light should increase the energy transferred to electrons, eventually freeing them regardless of frequency.

However, observations show that below a certain frequency (the cutoff frequency), no electrons are emitted regardless of the light's intensity. This supports the particle theory of light, where light is quantized into discrete packets of energy called photons.

The cutoff frequency represents the minimum energy required to dislodge electrons, indicating that light interacts with matter on a particle level, supporting the particle nature of light.

To learn more about  photoelectric effect

Click here brainly.com/question/33463799

#SPJ11

a light ray in air enters water at an angle of incidence of 40°. water has an index of refraction of 1.33. the angle of refraction in the water is

Answers

A light ray in air enters water at an angle of incidence of 40°. water has an index of refraction of 1.33.  The angle of refraction in water is approximately 36.67°.

To calculate the angle of refraction in water, we can use Snell's law, which relates the angles of incidence and refraction to the indices of refraction of the two mediums involved.

Snell's law states:

n₁ × sin(θ₁) = n₂ ×sin(θ₂),

where:

n₁ = index of refraction of the initial medium (air),

θ₁ = angle of incidence,

n₂ = index of refraction of the second medium (water),

θ₂ = angle of refraction.

In this case, the angle of incidence (θ₁) is 40° and the index of refraction of water (n₂) is 1.33.

Plugging in the values, we get:

1.00 × sin(40°) = 1.33 × sin(θ₂).

To find the angle of refraction (θ₂), we can rearrange the equation:

sin(θ₂) = (1.00 × sin(40°)) / 1.33.

Using a calculator to evaluate the right side of the equation, we find:

sin(θ₂) ≈ 0.602.

To determine the angle of refraction (θ₂), we take the inverse sine (sin⁻¹) of 0.602:

θ₂ ≈ sin⁻¹(0.602).

Evaluating this expression using a calculator, we find:

θ₂ ≈ 36.67°.

Therefore, the angle of refraction in water is approximately 36.67°.

To learn more about Snell's law visit: https://brainly.com/question/28747393

#SPJ1

Other Questions
Explain how a rise in the price level affects aggregate quantity demanded with the:____. Within pure competition there is ___________ societal and individual benefits achieved as envisioned by adam smith in the invisible hand concept.\ Security a has an expected rate of return of 0. 12 and a beta of 1. 2. The market expected rate of return is 0. 10, and the risk-free rate is 0. 3. The alpha of the stock is? An electron that has an energy of approximately 6 eV moves between infinitely high walls 1.00 nm apart. Find(a) the quantum number n for the energy state the electron occupies. Write a function that returns nothing, accepts an array of integers, and a count for the size of the array. In the function, set the value of each element of the array to i in a loop. In main, declare the array and pass it to the function. The institution which coordinates actions of consumers and producers to establish prices for goods and services is known as: In "here be chickens", what does adams mean by the convergent evolution of gift shops ? Jeffersonian creed: From a direct tax, Good Lord deliver us. . . . From a war with the French republic, Good Lord deliver us. From all old Tories; from aristocrats Good Lord deliver us. . . . From the sedition act, and from all other evil acts Good Lord deliver us. to perform surgery with a minimum of pain, a patient may be administered a general anesthetic drug to prevent sensation and consciousness, as well as a skeletal muscle paralytic drug to prevent reflexive muscle contractions. how could a paralytic drug work to prevent muscle contraction? The half-life of a radioactive isotope is 140 days. How many days would it take for the decay rate of a sample of this isotope to fall to one-fourth of its initial value? What is the opportunity cost to supertown of increasing the production of toys from 200 to 300? The weight, in pounds, of a newborn baby tt months after birth can be modeled by the equation w=11+2t.. what is the y-intercept of the equation and what is its interpretation in the context of the problem? What is the difference between a bacteria with id50 of 100, and bacteria with a id50 of 100,000? While a technician is performing an a/c system performance test, it is determined that the low-pressure gauge is reading in the vacuum range. this reading could be caused by:______ 49. The immunoglobulin heavy-chain gene contains ___ segments, whereas the immunoglobulin light-chain genes contain ____ segments A piece of metal was placed on a balance and found to have a mass of 15.93 g. what type of number is this? what the farmer sows in the spring he reaps in the fall. in the spring he sows $8-per- bushel soybeans. therefore, in the fall he will reap $8-per-bushel soybeans. HowardGardnerwouldarguethatasuccessful_______ismostlikelytobehighininterpersonalintelligence. A) ballerina B) astronomer C) painter D) salesperson 1) Giving a turn signalallows the vehicles behind to adjust their speed in time.when you initiate the turnanytime while making a turnat least one mile before want to make a turnjust before you make a turnfrom a minimum of 100 feet before you make a turn Using your handprint to access a safe deposit box is an example of ________ authentication.