Answer:
[tex] \boxed{\sf Final \ velocity = 20 \ m/s} [/tex]
Given:
Initial velocity (u) = 0 m/s
Acceleration (a) = 2 m/s²
Time taken (t) = 10 seconds
To Find:
Final velocity (v)
Explanation:
[tex]\sf From \ equation \ of \ motion: \\ \sf v = u + at \\ \\ \sf v = 0 + 2(10) \\ \\ \sf v = 2 \times 10 \\ \\ \sf v = 20 \ m/s[/tex]
Can someone please help me with this ? Neon gas in a container was heated from 20°C to 120°C. It's new volume is 150ml. What was the original volume ?
Answer:
110 mL
Explanation:
Ideal gas law:
PV = nRT
Assuming the container isn't rigid, and the pressure is constant, then:
V/T = V/T
Plug in values (remember to use absolute temperature).
V / 293 K = 150 mL / 393 K
V = 110 mL
A gas is held at atmospheric pressure, approximately 100kPa, and room temperature, 298K,
in a container closed with a piston. The piston is initially in a fixed position so the container has a volume of 2.0dm3.
The gas is heated to a temperature of 100∘C
What is the pressure in the container?
Answer:
125 KPa
Explanation:
Data obtained from the question include:
Initial pressure (P1) = 100 KPa
Initial temperature (T1) = 298 K
Final temperature (T2) = 100°C = 100°C + 273 = 373 K
Final pressure (P2) =..?
Since the volume of the container is fixed, the final pressure in the container can be obtained as follow:
P1/T1 = P2/T2
100/298 = P2/373
Cross multiply
298 x P2 = 100 x 373
Divide both side by 298
P2 = (100 x 373) / 298
P2 = 125.2 ≈ 125 KPa
Therefore, the final pressure in the container is approximately 125 KPa.
A transformer is used to light a lamp rated 40w, 240v from a 400v A.C supply. Calculate:
A. The ratio of the number of turns of the primary to the secondary coil.
B. Current drawn from the main circuit if the efficiency of the transformer is 90%.
Answer:1.81
(a) Explanation:the turn ratio= input voltage÷output voltage.
400÷220=1.81.
Don't know how to solve b part...
A water pipe tapers down from an initial radius of R1 = 0.2 m to a final radius of R2 = 0.09 m. The water flows at a velocity v1 = 0.87 m/s in the larger section of pipe. What is the volume flow rate of the water?
Answer:
0.109 m/s
Explanation:
The calculation of the volume flow rate of the water is shown below:-
Av = Velocity ([tex]\pi[/tex])(Radius)^2
= 0.87([tex]\pi[/tex])(0.2)^2
= 0.135258 m^3 / sec
= 0.109371429 m/s
or
= 0.109
So, for calculating the volume flow rate of the water we simply applied the above formula i.e by multiplying the velocity with pi and squaring of radius so that the volume could come
what are laws of newton
Answer:
In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction
Explanation:
Answer:
Newton's Law of Motion
1- Every object persists in its state of rest or uniform motion - in a straight line unless it is compelled to change that state by forces impressed on it.
2- Force is equal to the change in momentum per change in time. For a constant mass, force equals mass times acceleration.
3- For every action, there is an equal and opposite reaction.
An electron moving with a velocity of 5 × 104 m s -1 enters into a uniform electric field and acquires a uniform acceleration of 104 m s -2 in the direction of its initial motion. (i) Calculate the time in which the electron would acquire a velocity double of its initial velocity. (ii) How much distance the electron would cover in this tim
Answer:
(i) t = 5s
(ii) x = 3.75*10^5 m
Explanation:
(i) To calculate the time that the electron takes to reach twice the value of its initial velocity, you use the following formula:
[tex]v=v_o+at[/tex] (1)
vo: initial velocity of the electron = 5*10^4 m/s
v: final velocity of the electron = 2vo = 1*10^5 m/s
a: acceleration of the electron = 1*10^4 m/s^2
You solve the equation (1) for t, and replace the values of the parameters:
[tex]t=\frac{v-v_o}{a}=\frac{1*10^5m/s-5*10^4m/s}{1*10^4m/s^2}=5s[/tex]
The electron takes 5s to reach twice its initial velocity.
(ii) The distance traveled by the electron in such a time is:
[tex]x=v_ot+\frac{1}{2}at^2[/tex] (2)
you replace the values of the parameters in the equation (2):
[tex]x=(5*10^4m/s)(5s)+\frac{1}{2}(1*10^4m/s^2)(5s)^2\\\\x=3.75*10^5m[/tex]
The distance traveled by the electron is 3.75*10^3m/s
A drop
of
oil volume 10 m
Spreads out on water to make a
Circular fils of diameter 10
What is that thickness?
Answer:
[tex]27.5\ m[/tex]
Explanation:
As we know that volume of cylinder is
[tex]v=\pi r^{2} *h[/tex]
Where v=volume , h= height or thickness and r= radius
Here,
[tex]v= 10 m ,\ diameter= 10, \ r=\frac{diameter}{2} \ r=\frac{10}{2}\\ r=5[/tex]
Putting these values in the previous equation , we get
[tex]10\ = \frac{22}{7} *5 *5*h\\ 14\ =\ 110*h\\h=\frac{110}{14} \\h=\frac{55}{2} \\\\h=27.5\ m[/tex]
Therefore thickness is 27.5 m
A 28-turn circular coil of radius 4.40 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.20 s.
Answer:
ε = -0.0589V = -58.9mV
Explanation:
In order to calculate the induced emf in the coil, you use the following formula:
[tex]\epsilon=-N\frac{d\Phi_B}{dt}=-N\frac{d(SBcos\alpha)}{dt}[/tex] (1)
ε: induced emf = ?
N: turns of the coil = 28
ФB: magnetic flux trough the coil
S: cross sectional area of the circular coil = π.r^2
r: radius of the cross sectional area of the coil = 4.40cm = 0.044m
B: magnetic field
α: angle between the direction of the magnetic field and the direction of the normal to the cross area of the coil = 0°
You take into account that the area is constant respect to the magnetic field that cross it. Only the magnetic field is changing with time. The magnetic field depends on time as follow:
[tex]B(t)=0.010t+0.040t^2[/tex] (2)
You replace the expression (2) into the equation (1), evaluate the derivative, and replace the values of the other parameters for t =4.20s:
[tex]\epsilon=-NS\frac{dB}{dt}=-NS\frac{d}{dt}[0.010t+0.040t^2]\\\\\epsilon(t)=-NS(0.010+0.080t)\\\\\epsilon(t)=-(28)(\pi(0.044m)^2)(0.010T/s+0.080T/s^2(4.20s))\\\\\epsilon(t)=-0.0589V=-58.9mV[/tex]
The induced emf in the coil is -58.9mV
Find vertical and horizontal displacement. Please help. 10 points. Thank you.
Explanation:
horizontal velocity = 30 x Cos45 = 19.48m/s
to find horizontal displacement
horizontal displacement = horizontal velocity x timehorizontal displacement = 19.48 x 2 = 38.96mvertical velocity = 30 x Cos45 = 22.81m/s
vertical displacement = vertical velocity x time
vertical displacement = 22.81 x 2 = 45.62m
Answer:
Displacement after two seconds
= <Dx,Dy> = <42.426, 1.593> m to three decimal places
Explanation:
Given:
arrow shot at 30m/s and 45 degrees with horizontal.
Hit bull's eye after 2 seconds.
Find horizontal and vertical displacements.
Vx = 30cos(30) m/seconds constant velocity
therefore
Dx = Vx*t = 30cos(30) m/s * 2 s = 60 cos (45) = 42.426 m
Vy = 30 sin(45) m/s
Dy = Vy*t + a(t^2) /2
= 30*sin(45) -9.81(2^2)/2 (g is accelerating downwards, so negative)
= 1.593 m
The net displacement after 2 seconds is
D = <Dx,Dy> = <42.426, 1.593> m to three decimal places
a student pushed a 100 N bicycle over a distance of 15 m in 5 s. calculate the power generated.
The catch in this one is: We don't know how much force the student used to push the bike.
It wasn't necessarily the 100N. That's just the weight of the bike. But you know that you can push a car, a wagon, or a bicycle hard, you can push it not so hard, you can give it a little push, you can give it a big push, you can push it strong, you can push it weak, you can push it medium. The harder you push, the more it'll accelerate, but it's completely up to you how hard you want to push. That's what's so great about wheels ! That's why they were such a great invention ! This is where I made my biggest mistake. This guy came into my store one day and said he's got this great invention, it's definitely going to take off, it'll be a winner for sure, he called it a "wheel". I looked at it, I turned it over and I looked on all sides. I thought it was too simple. I didn't know then it was elegant. I threw him out. I was so dumb. I could have invested money in that guy, today I would have probably more than a hundred dollars.
Anyway, can we figure out how much force the student used to push with ? Stay tuned:
-- The bike covered 15 meters in 5 seconds. Its average speed during the whole push was (15m/5s) = 3 meters/sec.
-- If the bike started out with no speed, and its average speed was 3 m/s, then it must have been moving at 6 m/s at the end of the push.
-- If its speed increased from zero to 6 m/s in 5 seconds, then its acceleration was (6m/s / 5 sec) = 1.2 m/s²
-- The bike's weight is 100N.
(mass) x (gravity) = 100N
Bikemass = (100N) / (9.8 m/s²)
Bikemass = 10.2 kilograms
-- F = m A
Force = (mass) x (acceleration)
Force = (10.2 kg) x (1.2 m/s²)
Force = 12.24 N
-- Work = (force) x (distance)
Work = (12.24 N) x (15 m)
Work = 183.67 Joules
-- Power = (work done) / (time to do the work)
Power = (183.67 joules) / (5 seconds)
Power = 36.73 watts
During the warm-up and your scheduled physical activity, what was the weather like? Did the
temperature or conditions affect how much water you drank? How?
Answer: I did these exercises outdoors. The weather was hot and humid, so I drank about two cups of water during the workout. I also drank a cup of water about an hour before I started. Yes, the weather most definitely affected how much I drank.
Explanation: Edmentum
21. When air is blown into a balloon, it expands equally in all directions. The best explanation for this is (circle the correct answer): A - The gas molecules in the balloon are expanding B - Internal air pressure acts at right angles to the balloon surface. C - As more air is blown in, the temperature increases causing the balloon to expand.
Answer:
C
Explanation:
I would have said B but air pressure acts at ALL angles(directions). C makes sense because the increase in the temperature would cause the molecules to bounce off the walls of the balloon and each other which exerts pressure.
Answer:
C c hagwguawnjaahwbhanwbhsqn2nusbwvwf
how does gravitational pull affect planets with the same mass but different distance from the sun?
Answer:
it just pulls them at the same time
Explanation:
Un automovil circula a 126km/h por una autopista. Su conductor observa que a 150 m delante de el, se encuentra un árbol caído que ocupa toda la calzada. Inmediatamente presiona los frenos con una aceleración de -3,5 m/s². Determinar si logra evitar el choque.
Answer:
El conductor no puede evitar el choque.
Explanation:
Primero, convierta la velocidad del conductor a m / s:
1 km/h = 0.277778 m/s
126 km/h = 126 * 0.277778 = 35 m/s
La velocidad del automóvil es de 35 m / s.
El conductor presiona los frenos con una aceleración de -3.5 m / s² para evitar un choque a 150 m por delante.
Veamos qué distancia se moverá el automóvil después de que comience a desacelerar.
Utilizaremos una de las ecuaciones de movimiento lineal de Newton:
[tex]v^2 = u^2 + 2as[/tex]
donde v = velocidad final = 0 m / s (el automóvil debe detenerse)
u = velocidad inicial = 35 m / s
a = aceleración = -3.5 m / s².
s = distancia recorrida
Por lo tanto:
[tex]0 = 35^2 + (2 * -3.5 * s)\\\\=> 1225 = 7.0s\\\\s = 1225 / 7 = 175 m[/tex]
Esto significa que el automóvil se detendrá a 175 m.
Por lo tanto, a esa velocidad y aceleración, el conductor chocará contra el árbol caído porque el automóvil no podrá detenerse antes de alcanzar la posición del árbol.
Even after the body stops moving in a collision, the internal organs are still moving.
Answer:
True
Explanation:
The bodies internal organs move around, even after a collision that may impact your skeletal system.
When a collision occurs and the body comes to a sudden stop, the internal organs can continue to move due to their inertia. Yes, that statement is generally true.
Inertia is the property of an object that resists changes in its state of motion. The internal organs of the body, such as the heart, lungs, liver, and others, are not directly attached to the skeletal structure and are instead supported by connective tissues and surrounded by fluids.
During a collision, the body experiences a rapid deceleration or change in velocity. While the external motion of the body may come to a stop, the internal organs, due to their inertia, continue to move forward momentarily until they are acted upon by internal forces. This phenomenon is known as "organ motion" or "organ inertia."
In situations where high-impact collisions occur, such as in car accidents or contact sports, the continued motion of internal organs can result in serious injuries, even when external signs of trauma may be minimal.
To know more about the moment of inertia:
https://brainly.com/question/30051108
#SPJ6
If I were to fill a water bottle full of air and go up in elevation, would the water bottle expand or shrink? If I were to fill a water bottle full of air and go down in elevation, would the water bottle expand or shrink? I am at elevation 20000 I think.
Answer:
a. It would shrink
b. It would expand
Explanation:
a. Since the water bottle is filled with air at atmospheric pressure at 20000 ft, and since atmospheric pressure decreases with altitude, when we go up in elevation.
The pressure exerted by the molecules of air in the water bottle seek to balance out the atmospheric pressure as we go higher. Since the atmospheric pressure exerted by the molecules of air in the atmosphere are greater than that exerted by the molecules of air in the water bottle, this causes the volume of the water bottle to decrease and thus shrinks the water bottle until the pressure balances out
b. Since the water bottle is filled with air at atmospheric pressure at 20000 ft, and since atmospheric pressure increases with decreasing altitude, when we go down in elevation.
The pressure exerted by the molecules of air in the water bottle seek to balance out the atmospheric pressure as we go lower. The water bottle expands until the atmospheric pressure outside equals the pressure inside the water bottle.this causes the volume of the water bottle to increase and thus expands the water bottle until the pressure balances out
As a motorcycle takes a sharp turn, the type of motion that occurs is called _______________ motion.
Answer:
circular motion
Explanation:
As a motorcycle takes a sharp turn, the type of motion that occurs is called circular motion.
Circular motion is a movement of an object along a circular path. As this motorcycle makes the sharp turn, it is acted upon by a centripetal force which directs the motorcycle towards the center.
Therefore, circular motion is the correct answer to the question.
Answer:
Circular Motion
Danny lowers the sails on his boat. He paddles upstream at 19 km/hr. The current is still running downstream at 15 km/hr. What is the actual velocity of the boat?
Answer:
4 km/hr
Explanation:
The computation of the actual velocity is shown below:
Because the path of its paddles is opposed to the current direction, the real velocity can be determined by deducting the current velocity to its velocity while paddling
So, the actual velocity is
= Upstream - downstream
= 19 km/hr - 15 km/hr
= 4 km/hr
As we can see it is in positive, so it is an upstream direction
Answer:
since the direction of his paddles is opposite of the the direction of the current, so the actual velocity can be calculated by subtracting the velocity of current to to his velocity when paddling
v = 19 - 15
v = 4 since the answer is positive, then the direction is upstream
Explanation:
a force of 50 n acts on abody of mass 5 kg .calculate the acceleration produced
Answer:
a = 10 m/s²
Explanation:
Given:
Force = F = 50 N
Mass = m = 5 kg
Required:
Acceleration = a = ?
Formula:
F = ma
Solution:
Rearranging the formula for a
=> a = F/m
=> a = 50/5
=> a = 10 m/s²
An apple falls out of a tree from a height of 2.3 m What is the impact speed of the apple?
Answer:
6.72 m/s
Explanation:
recall that the equations of motion may be expressed as
v² = u² + 2as
where,
v = final velocity,
u = initial velocity = 0 m/s because it is stationary before it starts falling
a = acceleration (in this case because it is falling, it is the acceleration due to gravity = 9.81 m/s²)
s = distance traveled = 2.3m
in our case, if we neglect air resistance, then we simply substitute the known values above into the equation of motion.
v² = u² + 2as
v² = 0² + 2(9.81)(2.3)
v² = 45.126
v = √45.126
v = 6.72 m/s
I NEEED HELP!!!!! Upon using Thomas Young’s double-slit experiment to obtain measurements, the following data were obtained. Use these data to determine the wavelength of light being used to create the interference pattern.
Do this using three different methods.
The angle to the eighth maximum is 1.12°.
The distance from the slits to the screen is 302.0 cm.
The distance from the central maximum to the fifth minimum is 3.33cm.
The distance between the slits is 0.000250 m
Answer:
The wavelength is approximately 611 nm
Explanation:
We can use the formula for the condition of maximum of interference given by:
[tex]d\,sin(\theta)=m\,\lambda\\(0.000250\,\,m)\,\,sin(1.12^o)=8\,\lambda\\\lambda=\frac{1}{8} \,(0.000250\,\,m)\,\,sin(1.12^o)\\\lambda \approx 610.8\,\,nm[/tex]
We can also use the formula for the distance from the central maximum to the 5th minimum by first finding the tangent of the angle to that fifth minimum:
[tex]tan(\theta)=\frac{y}{D}\\ tan(\theta)=\frac{0.0333}{3.02} =0.011026[/tex]
and now using it in the general formula for minimum:
[tex]d\,sin(\theta)\approx d\,tan(\theta)=(m-\frac{1}{2} )\,\lambda\\\lambda\approx 0.00025\,(0.011026)/(4.5)\,\,m\\\lambda\approx 612.55\,\,nm[/tex]
Answer:
The correct answer is [tex]6.1\times10^{-7}\:m[/tex]
Explanation:
The distance from the central maxima to 5th minimum is:
[tex]x_{5n}-x_{0} =3.33\:cm=0.033\:m[/tex]
The distance between the slits and the screen:
[tex]L = 302\:cm = 3.02\:m[/tex]
Distance between 2 slits: [tex]d = 0.00025\:m[/tex]
[tex](n-\frac{1}{2})\lambda=\frac{d(x_n)}{L}[/tex]
For fifth minima, n = 5... so we have:
[tex]x_{5n}=\frac{9\lambda L}{2d}[/tex]
For central maxima, n = 0... so we have:
[tex]x_{0}=\frac{n\lambda L}{d}=0[/tex]
So the distance from central maxima to 5th minimum is:
[tex]\frac{9\lambda \:L}{2d}-0=0.033[/tex] (Putting the values, we get):
[tex]\Rightarrow \lambda = 6.1\times 10^{-7}\:m[/tex]
Best Regards!
A machine is 40 % efficient. The total energy supplied to the machine is 4 kJ. Calculate how much useful energy can be transferred.
Answer:
1.6 kJ
Explanation:
0.40 (4 kJ) = 1.6 kJ
A 500 kg satellite experiences a gravitational force of 3000 N, while moving in a circular orbit around the earth. Determine the speed of the satellite.
Answer:
Speed of the satellite V = 6.991 × 10³ m/s
Explanation:
Given:
Force F = 3,000N
Mass of satellite m = 500 kg
Mass of earth M = 5.97 × 10²⁴
Gravitational force G = 6.67 × 10⁻¹¹
Find:
Speed of the satellite.
Computation:
Radius r = √[GMm / F]
Radius r = √[(6.67 × 10⁻¹¹ )(5.97 × 10²⁴)(500) / (3,000)
Radius r = 8.146 × 10⁶ m
Speed of the satellite V = √rF / m
Speed of the satellite V = √(8.146 × 10⁶)(3,000) / 500
Speed of the satellite V = 6.991 × 10³ m/s
1-D Kinematics
A car starts at a position of -153 m
and undergoes a displacement of
512 m. What is its final position?
(Unit = m)
Answer:
hope it helps you...........
0.0000302 in scientific notation
Answer:
3.02x10^-5
Explanation:
A scientific notation consists of
c x 10^n
the c must be a number between 1-9, while n must be an integer.
it indicates the c being multiplied by the nth power of 10.
From 0.0000302, we need to move the decimal to after 3 so that 3.02 can be a number between 1-9. When moving the decimal point to the right side, each digit moved counts as -1 power of 10.
So, to give 3.02, we need to move the decimal by 5 digits. hence, we can conclude n = -5.
0.0000302 = 3.02x10^-5
differences between concave and convex meniscus
Explanation:
A concave meniscus,(normally seen) occurs when the molecules of the liquid are attracted to those of the container. This occurs with water and a glass tube. A convex meniscus occurs when the molecules have a stronger attraction to each other than to the container, as with mercury and glass.
Answer:
there are differences between concave and convex menuscus
Explanation:
A concave meniscus, which is what you normally will see, occurs when the molecules of the liquid are attracted to those of the container. This occurs with water and a glass tube. A convex meniscus occurs when the molecules have a stronger attraction to each other than to the container, as with mercury and glass.
Dominic made the table below to organize his notes about mixtures.
Properties of Mixtures
has no set composition
must have more than one state of matter
must have more than one substance
What mistake did Dominic make?
The title should read "Properties of Solutions" because some mixtures do not have all of the properties listed.
There is a definite recipe to make each mixture, so the composition of a mixture is set.
Although it is possible to have more than one state, it is also possible to have only one state.
A single substance can be used to make a mixture if the substance is composed of more than one element.
Answer:
Althought it us possible to have more then one state, it's also possible to have only one state of matter
Explanation:
You can make solutions of only one state if matter, for example , it two liquids can be mixed to form a solution they are called miscible.
Answer:
The correct answer is C.) Although it is possible to have more than one state, it is also possible to have only one state.
Explanation:
I just did the test on edge and got it right
how does an electric iron work when the power is on
Answer:
The basic principle on which the electric iron works is that when a current is passed through a piece of wire, the wire heats up. This heat is distributed to the sole (base) plate of the electric iron through conduction.
the value of MA in the third class lever is alaways less than one,why
Answer:
It is always less than 1 because the load arm is always longer than effort arm.
Explanation:
In the formula, MA= effort divided by load which makes it less than 1.
This helps by reducing the applied force(effort). It is a speed multiplier.
Hope it helps.
Which of the following statements are true (mark all that apply) primordial nucleosynthesis produced all of the elements heavier than helium chemical composition of our solar system matches the chemical composition of the Milky Way some of the stars in the Milky Way may be older than the Milky Way your body contains a lot of helium nearly all atoms of elements heavier then helium were produced through nuclear fusion in stellar interiors and through reactions that occur during explosions that massive stars undergo at the ends of their lives or during mergers of stellar remnants called neutron stars some of the oldest galaxies are about 13.2 billion years old nucleosynthesis is a process through which the atoms of various elements are produced you're mainly made of hydrogen
Answer:
The correct options are;
1) The chemical composition of our solar system matches the chemical composition of the Milky Way
2) Nearly all atoms of elements heavier than helium were produced through nuclear fusion in stellar interiors and through reactions that occur during explosions that massive stars undergo at the ends of their lives or during mergers of stellar remnants called neutron stars
3) Some of the oldest galaxies are about 13.2 billion years old
4) Nucleosynthesis is a process through which the atoms of various elements are produced
5) You re mainly made of hydrogen
Explanation:
1) There are dependencies between chemical composition of stars and planets and the same distribution of chemicals we have in our Solar system have been observed to be present in varying resemblance through out the Milky Way
2) The formation of heavier elements are believed to have been formed by astrophysical fusion processes
3) The oldest known object (and hence the galaxy where the star resides), is from a distant star known as GRB 090423 which is about 13 billion years old
4) New atomic nuclear are created by the process of protons and neutrons by the process of nucleosynthesis
5) 62%of the atoms in the body are hydrogen atoms.