When a slender structure such as a shaft is subjected to torsional loading, it will exhibit a critical speed known as the shaft's critical speed. The critical speed of a shaft is the speed at which it vibrates the most when subjected to an external force or torque.
The shaft's natural frequency is related to its stiffness and mass, and it is critical because if the shaft is allowed to spin at or near its critical speed, it may undergo significant torsional vibration, which can lead to failure. The critical speed of a shaft can be calculated by the following formula:ncr = (c/2*pi)*sqrt((D/d)^4/(1-(D/d)^4))
Where:ncr is the critical speed of the shaft in RPMsD is the diameter of the shaft in metersd is the length of the shaft in metersc is the speed of sound in meters per secondWe have the following data from the given problem:A carbon steel shaft has a length of 700 mm and a diameter of 50 mm. We will convert these units to meters so that the calculations can be done consistently in SI units.Length of the shaft, l = 700 mm = 0.7 mDiameter of the shaft, D = 50 mm = 0.05 m.
To know more about stiffness visit:
https://brainly.com/question/31172851
#SPJ11
A silicon solar cell is fabricated by ion implanting arsenic into the surface of a 200 um thick p-type wafer with an acceptor density of 1x10l4 cm. The n-type side is 1 um thick and has an arsenic donor density of 1x10cm? Describe what happens to electrons generated outside of the depletion region on the p-type side, which comprises most of the volume of a silicon solar cell. Do they contribute to photocurrent?
some of the electrons produced outside the depletion region on the p-type side of a silicon solar cell can contribute to the photocurrent, but it is preferable to keep recombination losses to a minimum.
The depletion region is a type of p-n junction in the p-type semiconductor. It is created when an n-type semiconductor is joined with a p-type semiconductor.
The diffusion of charge carriers causes a depletion of charges, resulting in a depletion region.
A silicon solar cell is created by ion implanting arsenic into the surface of a 200 um thick p-type wafer with an acceptor density of 1x10l4 cm.
The n-type side is 1 um thick and has an arsenic donor density of 1x10cm. Electrons produced outside the depletion region on the p-type side are referred to as minority carriers. The majority of the volume of a silicon solar cell is made up of the p-type side, which has a greater concentration of impurities than the n-type side.As a result, the majority of electrons on the p-type side recombine with holes (p-type carriers) to generate heat instead of being used to generate current. However, some of these electrons may diffuse to the depletion region, where they contribute to the photocurrent.
When photons are absorbed by the solar cell, electron-hole pairs are generated. The electric field in the depletion region moves the majority of these electron-hole pairs in opposite directions, resulting in a current flow.
The process of ion implantation produces an n-type layer on the surface of the p-type wafer. This n-type layer provides a separate path for minority carriers to diffuse to the depletion region and contribute to the photocurrent.
However, it is preferable to minimize the thickness of this layer to minimize recombination losses and improve solar cell efficiency.
As a result, some of the electrons produced outside the depletion region on the p-type side of a silicon solar cell can contribute to the photocurrent, but it is preferable to keep recombination losses to a minimum.
To know more about acceptor visit;
brainly.com/question/30651241
#SPJ11
Consider a substance that boils at -34°C (negative thirty four degrees Celsius) at 98 kPa. At that temperature and pressure, one kg of liquid occupies 0.0015 m³ and one kg of vapor occupies 1.16 m². At 80 kPa, this stuff boils at -38°C (negative thirty eight degrees Celsius). Using just this information: a. Estimate the enthalpy of vaporization of this substance at 98 kPa. (Hint: you can use either the Clapeyron Equation or the Claypeyron-Clausius Equation to solve (a)) b. Estimate the molar mass of the substance.
a. The estimated enthalpy of vaporization of the substance at 98 kPa can be calculated using the Clapeyron Equation or the Clapeyron-Clausius Equation.
b. The molar mass of the substance can be estimated using the ideal gas law and the given information.
a. To estimate the enthalpy of vaporization at 98 kPa, we can use either the Clapeyron Equation or the Clapeyron-Clausius Equation. These equations relate the vapor pressure, temperature, and enthalpy of vaporization for a substance. By rearranging the equations and substituting the given values, we can solve for the enthalpy of vaporization. The enthalpy of vaporization represents the energy required to transform one kilogram of liquid into vapor at a given temperature and pressure.
b. To estimate the molar mass of the substance, we can use the ideal gas law, which relates the pressure, volume, temperature, and molar mass of a gas. Using the given information, we can calculate the volume occupied by one kilogram of liquid and one kilogram of vapor at the specified conditions. By comparing the volumes, we can determine the ratio of the molar masses of the liquid and vapor. Since the molar mass of the vapor is known, we can then estimate the molar mass of the substance.
These calculations allow us to estimate both the enthalpy of vaporization and the molar mass of the substance based on the given information about its boiling points, volumes, and pressures at different temperatures. These estimations provide insights into the thermodynamic properties and molecular characteristics of the substance.
Learn more about Clapeyron Equation here:
https://brainly.com/question/33369944
#SPJ11
Show that the circulation around an infinitesimally small rectangular path of dimensions 8x and Sy in Cartesian coordinates is directly related to the local vorticity multiplied by the area enclosed by the path
The circulation around an infinitesimally small rectangular path of dimensions 8x and Sy in Cartesian coordinates is directly related to the local vorticity multiplied by the area enclosed by the path.
The circulation around a closed path is defined as the line integral of the velocity vector along the path. In Cartesian coordinates, the circulation around an infinitesimally small rectangular path can be approximated by summing the contributions from each side of the rectangle. Consider a rectangular path with dimensions 8x and Sy. Each side of the rectangle can be represented by a line segment. The circulation around the path can be expressed as the sum of the circulation contributions from each side. The circulation around each side is proportional to the velocity component perpendicular to the side multiplied by the length of the side. Since the rectangle is infinitesimally small.
Learn more about infinitesimally small rectangular path here:
https://brainly.com/question/14529499
#SPJ11
You have probably noticed warning signs on the highways stating that bridges may be icy even when the roads are not. Explain how this can happen. If the distance between the sun and the earth was the half of what it is L=0.5 x 1.496 x 1011 m, what would the solar constant be? The sun is a nearly spherical body that has a diameter of D = 1.393 x 109 m and the effective surface temperature of the sun is Tsun = 5778 K.
Bridges are more prone to icing due to their elevated position, exposure to cold air from below, and less insulation. If the distance between the sun and the Earth was halved, the solar constant would be quadrupled.
What factors contribute to bridges being more prone to icing compared to roads, and how would the solar constant change if the distance between the sun and the Earth was halved?Warning signs about icy bridges even when the roads are not icy can be attributed to several factors. Bridges are elevated structures that are exposed to the surrounding air from both above and below. This exposes the bridge surface to colder temperatures and airflow, making them more susceptible to freezing compared to the roads.
Bridges lose heat more rapidly than roads due to their elevated position, which allows cold air to circulate beneath them. This results in the bridge surface being colder than the surrounding road surface, even if the air temperature is above freezing. Additionally, bridges have less insulation compared to roads, as they are usually made of materials like concrete or steel that conduct heat more efficiently. This allows heat to escape more quickly, further contributing to the freezing of the bridge surface.
Furthermore, bridges often have different thermal properties compared to roads. They may have less sunlight exposure during the day, leading to slower melting of ice and snow. The presence of shadows and wind patterns around bridges can also create localized cold spots, making them more prone to ice formation.
Regarding the solar constant, which is the amount of solar radiation received per unit area at the outer atmosphere of the Earth, if the distance between the sun and the Earth was halved, the solar constant would be doubled. This is because the solar constant is inversely proportional to the square of the distance between the sun and the Earth. Therefore, halving the distance would result in four times the intensity of solar radiation reaching the Earth's surface.
The solar constant is calculated using the formula:
Solar Constant = (Luminosity of the Sun) / (4 * π * (Distance from the Sun)^2)
Given the diameter of the sun (D = 1.393 x 10^9 m), the effective surface temperature of the sun (Tsun = 5778 K), and the new distance between the sun and the Earth (L = 0.5 x 1.496 x 10^11 m), the solar constant can be calculated using the formula above with the new distance value.
Learn more about elevated position
brainly.com/question/30046587
#SPJ11
An empty cylinder is 50 cm in diameter, 1.20 m high and weighs 312 N. If the cylinder is placed in water with its axis vertical, would it be stable?
The stability of an empty cylinder placed in water with its axis vertical can be determined by analyzing the center of buoyancy and the center of gravity of the cylinder. If the center of gravity lies below the center of buoyancy, the cylinder will be stable.
To assess the stability of the cylinder in water, we need to compare the positions of the center of gravity and the center of buoyancy. The center of gravity is the point where the entire weight of the cylinder is considered to act, while the center of buoyancy is the center of the volume of water displaced by the cylinder. If the center of gravity is located below the center of buoyancy, the cylinder will be stable. However, if the center of gravity is above the center of buoyancy, the cylinder will be unstable and tend to overturn. To determine the positions of the center of gravity and center of buoyancy, we need to consider the geometry and weight of the cylinder. Given that the cylinder weighs 312 N, we can calculate the position of its center of gravity based on the weight distribution. Additionally, the dimensions of the cylinder (50 cm diameter, 1.20 m height) can be used to calculate the position of the center of buoyancy. By comparing the positions of the center of gravity and center of buoyancy, we can conclude whether the cylinder will be stable or not when placed in water with its axis vertical.
Learn more about buoyancy here:
https://brainly.com/question/30641396
#SPJ11
solve Maximize Z = 15 X1 + 12 X2
s.t 3X1 + X2 <= 3000 X1+x2 <=500 X1 <=160 X2 >=50 X1-X2<=0
Maximize Z = 15 X1 + 12 X2 subject to the following constraints:3X1 + X2 ≤ 3000X1+x2 ≤ 500X1 ≤ 160X2 ≥ 50X1-X2 ≤ 0Solution:We need to maximize the value of Z = 15X1 + 12X2 subject to the given constraints.3X1 + X2 ≤ 3000, This constraint can be represented as a straight line as follows:X2 ≤ -3X1 + 3000.
This line is shown in the graph below:X1+x2 ≤ 500, This constraint can be represented as a straight line as follows:X2 ≤ -X1 + 500This line is shown in the graph below:X1 ≤ 160, This constraint can be represented as a vertical line at X1 = 160. This line is shown in the graph below:X2 ≥ 50, This constraint can be represented as a horizontal line at X2 = 50. This line is shown in the graph below:X1-X2 ≤ 0, This constraint can be represented as a straight line as follows:X2 ≥ X1This line is shown in the graph below: We can see that the feasible region is the region that is bounded by all the above lines. It is the region that is shaded in the graph below: We need to maximize Z = 15X1 + 12X2 within this region.
To know more about maximize visit:
https://brainly.com/question/30072001
#SPJ11
Q. 1 Model and simulate a thermal heating house system using Simulink models controlled by ON/OFF control strategy to calculate the heating cost taking into account the outdoor environment, the thermal characteristics of the house, and the house heater system. Your answer should include Simulink models of the whole system showing the heat cost and a comparison between the in and out doors temperatures, the heater unit and the house. Also, write the mathematical equations of both heater and house.
The Simulink model of the thermal heating house system can be used to optimize energy efficiency and reduce heating costs.
The Simulink model of the thermal heating house system using ON/OFF control strategy is presented below:There are three main components of the thermal heating house system, which are the outdoor environment, the thermal characteristics of the house, and the house heater system. The outdoor environment affects the overall heat loss of the house.
The thermal characteristics of the house describe how well the house retains heat. The house heater system is responsible for generating heat and maintaining a comfortable temperature indoors.In the thermal heating house system, heat transfer occurs between the house and the outdoor environment.
Heat is generated by the heater unit inside the house and is transferred to the indoor air, which then warms up the house. The temperature difference between the in and out doors and the heater unit and the house were calculated. The mathematical equations of both heater and house are shown below.Heater Equationq(t) = m * c * (T(t) - T0)T(t) = q(t) / (m * c) + T0House Equationq(t) = k * A * (Ti - Ta) / dT / Rq(t) = m * c * (Ti - To)
The heat cost can be calculated based on the amount of energy consumed by the heater unit. A comparison between the heat cost and the outdoor temperature can help determine how much energy is required to maintain a comfortable indoor temperature.
To know more about heating visit :
https://brainly.com/question/14643550
#SPJ11
Question 3: Explain in your own words what happens with the energy terms for a stone falling from a height into a bucket of water. Assume the water and stone are at the same temperature, which is higher than the surrounding temperature. What would happen if the object was a bouncing ball falling to a hard surface?
When a stone is dropped from a certain height into a bucket of water, it undergoes a potential to kinetic energy conversion. When the stone is lifted, it possesses a certain amount of potential energy due to its position. This energy is converted into kinetic energy as the stone starts falling towards the water.
At the same time, the water exerts an opposing force against the stone, which leads to a decrease in its kinetic energy. When the stone finally hits the water, the kinetic energy gets converted into sound and heat energy, causing a splash and a rise in temperature of the water.
In case a bouncing ball is dropped onto a hard surface, the potential energy is converted into kinetic energy as the ball falls towards the surface. Once it touches the surface, the kinetic energy is converted into potential energy. The ball bounces back up due to the elastic force exerted by the surface, which converts the potential energy into kinetic energy again. The process of conversion of potential to kinetic energy and back continues until the ball stops bouncing, and all its energy is dissipated in the form of heat.
To know more about potential energy visit :-
https://brainly.com/question/24284560
#SPJ11
Consider Stokes' first problem, but allow the plate velocity to be an arbitrary function of time, U(t). By differentiation, show that the shear stress Tyx = pôuloy obeys the same diffusion equation that the velocity does. Suppose the plate is moved in such a way as to produce a constant wall shear stress. Determine the plate velocity for this motion. Discuss the distribution of vorticity in this flow field; compare and contrast with Stokes’ first problem. Hint: At some point, you will have to calculate an integral like: ∫ [1 – erf(n)an ju- 0 This may be done using integration by parts. It may be helpful to note that eftc(n) – n*-1exp(-n2) for large n.
Differentiating the shear stress equation shows its connection to the velocity equation. Determining plate velocity and vorticity distribution depend on specific conditions.
By differentiating the shear stress equation Tyx = pμU(y,t), we can show that it satisfies the same diffusion equation as the velocity equation. This demonstrates the connection between the shear stress and velocity in the flow field.
When the plate is moved to produce a constant wall shear stress, the plate velocity can be determined by solving the equation that relates the velocity to the wall shear stress. This may involve performing linear calculations or integrations, such as the mentioned integral involving the error function.
The distribution of vorticity in this flow field, which represents the local rotation of fluid particles, will depend on the specific plate motion and boundary conditions. It is important to compare and contrast this distribution with Stokes' first problem, which involves a plate moving at a constant velocity. The differences in the velocity profiles and boundary conditions will result in different vorticity patterns between the two cases.
Learn more about Linear click here :brainly.com/question/30763902
#SPJ11
A first-order instrument with a time constant of 0.5 s is to be used to measure a periodic input. If a dynamic error of 12% can be tolerated, determine the maximum frequency of periodic inputs that can be measured; in Hz. Provide your answer using 3 decimal places.
The equation that will be used to determine the maximum frequency of periodic inputs that can be measured with a first-order instrument with a time constant of 0.5 s and a dynamic error of 12% is given below:
[tex]$$\% Overshoot =\\ \frac{100\%\ (1-e^{-\zeta \frac{\pi}{\sqrt{1-\zeta^{2}}}})}{(1-e^{-\frac{\pi}{\sqrt{1-\zeta^{2}}}})}$$[/tex]
Where [tex]$\zeta$[/tex] is the damping ratio.
We can derive an equation for [tex]$\zeta$[/tex] using the time constant as follows:
[tex]$$\zeta=\frac{1}{2\sqrt{2}}$$[/tex]
To find the maximum frequency of periodic inputs that can be measured we will substitute the values into the formula provided below:
[tex]$$f_{m}=\frac{1}{2\pi \tau}\sqrt{1-2\zeta^2 +\sqrt{4\zeta^4 - 4\zeta^2 +2}}$$[/tex]
Where [tex]$\tau$[/tex] is the time constant.
Substituting the values given in the question into the formula above yields;
[tex]$$f_{m}=\frac{1}{2\pi (0.5)}\sqrt{1-2(\frac{1}{2\sqrt{2}})^2 +\sqrt{4(\frac{1}{2\sqrt{2}})^4 - 4(\frac{1}{2\sqrt{2}})^2 +2}}$$$$=2.114 \text{ Hz}$$[/tex]
The maximum frequency of periodic inputs that can be measured with a first-order instrument with a time constant of 0.5 s and a dynamic error of 12% is 2.114 Hz. The calculation is based on the equation for the maximum frequency and the value of damping ratio which is derived from the time constant.
The damping ratio was used to calculate the maximum percentage overshoot that can be tolerated, which is 12%. The frequency that can be measured was then determined using the equation for the maximum frequency, which is given above. The answer is accurate to three decimal places.
Learn more about time constant here:
brainly.com/question/32577767
#SPJ11
Q6
Question 6 Other tests: a) Nominate another family of tests which may be required on a completed fabrication? b) Two test methods for detecting surface flaws in a completed fabrication are?
Non-destructive testing and destructive testing are two types of tests that may be required on a completed fabrication. Liquid penetrant testing and magnetic particle testing are two test methods for detecting surface flaws in a completed fabrication. These tests should be conducted by qualified and competent inspectors to ensure that all aspects of the completed fabrication are in accordance with the relevant specifications and requirements.
a) After completing fabrication, another family of tests that may be required is destructive testing. This involves examining the quality of the weld, the condition of the material, and the material’s performance.
b) Two test methods for detecting surface flaws in a completed fabrication are liquid penetrant testing and magnetic particle testing.Liquid Penetrant Testing (LPT) is a non-destructive testing method that is used to find surface cracks, flaws, or other irregularities on the surface of materials. The surface is cleaned, a penetrant is added, and excess penetrant is removed.
A developer is added to draw the penetrant out of any cracks, and the developer dries, highlighting the crack.Magnetic Particle Testing (MPT) is another non-destructive testing method that is used to find surface cracks and flaws on the surface of ferromagnetic materials. A magnetic field is generated near the material’s surface, and iron oxide particles are spread over the surface. These particles gather at areas where the magnetic field is disturbed, highlighting the crack, flaw, or discontinuity. These tests should be conducted by qualified and competent inspectors to ensure that all aspects of the completed fabrication are in accordance with the relevant specifications and requirements.
Explanation:There are different types of tests that may be required on a completed fabrication. One of these tests is non-destructive testing, which includes examining the quality of the weld, the condition of the material, and the material's performance. Destructive testing is another type of test that may be required on a completed fabrication, which involves breaking down the product to examine its structural integrity. Two test methods for detecting surface flaws in a completed fabrication are liquid penetrant testing and magnetic particle testing.
Liquid Penetrant Testing (LPT) is a non-destructive testing method that is used to find surface cracks, flaws, or other irregularities on the surface of materials. Magnetic Particle Testing (MPT) is another non-destructive testing method that is used to find surface cracks and flaws on the surface of ferromagnetic materials.
To know more about magnetic visit:
brainly.com/question/3617233
#SPJ11
Since Auger effect produce electron with chemically specific energy for each elements, Auger electron spectroscopy is a very useful thin film analysis technique for modern day materials science. Can hydrogen or helium be detected by this way? Explain.
No, hydrogen and helium cannot be effectively detected using Auger electron spectroscopy (AES) due to their low atomic numbers and specific electron configurations.
Auger electron spectroscopy relies on the principle of electron transitions within the inner shells of atoms.
When a high-energy electron beam interacts with a solid sample, it can cause inner-shell ionization, resulting in the emission of an Auger electron.
The energy of the Auger electron is characteristic of the element from which it originated, allowing for the identification and analysis of different elements in the sample.
However, hydrogen and helium have only one and two electrons respectively, and their outermost electrons reside in the first energy level (K shell).
Since Auger transitions involve electron transitions from higher energy levels to lower energy levels, there are no available higher energy levels for transitions within hydrogen or helium.
As a result, Auger electron emission is not observed for these elements.
While Auger electron spectroscopy is highly valuable for analyzing the composition of thin films and surfaces of materials containing elements with higher atomic numbers, it is not suitable for detecting hydrogen or helium due to their unique electron configurations and absence of available Auger transitions.
Other techniques, such as mass spectrometry or techniques specifically designed for detecting light elements, are typically employed for the analysis of hydrogen and helium.
to learn more about Auger electron spectroscopy.
https://brainly.com/question/29363677
Breeze Toothpaste Company has been having a problem with some of the tubes of toothpaste leaking. The tubes are produced in lots of 100 and are subject to 100% visual inspection. The latest 25 lots produced yielded 112 rejected toothpastes. 1) Calculate the central line and control limits to monitor this process? 2) What is the approximate probability of Type 2 error if the mean shifts to 5.2? 3) Use the Poisson Table to find the approximate probability of Type 1 error.
The probability of a Type II error can be calculated as follows:
P(Type II error) = β = P(fail to reject H0 | H1 is true)
We are given that if the true mean shifts to 5.2, then the probability distribution changes to a normal distribution with a mean of 5.2 and a standard deviation of 0.1.
To calculate the probability of a Type II error, we need to find the probability of accepting the null hypothesis (μ = 5) when the true mean is actually 5.2 (i.e., rejecting the alternative hypothesis, μ ≠ 5).P(Type II error) = P(accept H0 | μ = 5.2)P(accept H0 | μ = 5.2) = P(Z < (CL - μ) / (σ/√n)) = P(Z < (8.08 - 5.2) / (0.1/√100)) = P(Z < 28.8) = 1
In this case, we assume that the toothpastes are randomly inspected, so the number of defects in each lot follows a We want to calculate the probability of Type I error, which is the probability of rejecting a null hypothesis that is actually true (i.e., accepting the alternative hypothesis when it is false).
To know more about probability visit:
https://brainly.com/question/31828911
#SPJ11
The total mass of the table of a planning machine and its attached work piece is 350 kg. The table is traversed by a single-start square thread of external diameter 45 mm and pitch 10 mm. The pressure of the cutting is 600 N and the speed of cutting is 6 meters per minute. The coefficient of friction for the table is 0.1 and for the screw thread is 0.08. Find the power required.
The power required for the planning machine is 1,11,960 N·m/min.
To find the power required for the planning machine, we need to consider the forces involved and the work done.
First, let's calculate the force required to overcome the friction on the table. The friction force can be determined by multiplying the coefficient of friction (0.1) by the weight of the table and the attached workpiece (350 kg * 9.8 m/s^2):
Friction force = 0.1 * 350 kg * 9.8 m/s^2 = 343 N
Next, we need to calculate the force required to move the table due to the screw thread. The force required is given by the product of the cutting pressure and the friction coefficient for the screw thread:
Force due to screw thread = 600 N * 0.08 = 48 N
Now, let's calculate the total force required to move the table:
Total force = Friction force + Force due to screw thread = 343 N + 48 N = 391 N
The work done per unit time (power) can be calculated by multiplying the force by the cutting speed:
Power = Total force * Cutting speed = 391 N * (6 m/min * 60 s/min) = 1,11,960 N·m/min
Therefore, the power required for the planning machine is 1,11,960 N·m/min (approximately).
For more such questions on power,click on
https://brainly.com/question/29898571
#SPJ8
For two given fuzzy sets,
Please calculate the composition operation of R and S. For two given fuzzy sets, R = = [0.2 0.8 0:2 0:1].s = [0.5 0.7 0.1 0 ] Please calculate the composition operation of R and S. (7.0)
The composition operation of two fuzzy relations R and S is given by[tex]R∘S(x,z) = supy(R(x,y) ∧ S(y,z)).[/tex]
To calculate the composition operation of R and S we have the given fuzzy sets R and
S.R
=[tex][0.2 0.8 0.2 0.1]S = [0.5 0.7 0.1 0][/tex]
[tex]R ∘ S(1,1):R(1, y)∧ S(y,1) = [0, 0.7, 0.1, 0][0.2, 0.8, 0.2, 0.1]≤ [0, 0.7, 0.2, 0.1][/tex]
Thus, sup of this subset is 0.7
[tex]R ∘ S(1,1) = 0.7[/tex]
we can find the compositions of R and S as given below:
[tex]R ∘ S(1,2) = 0.8R ∘ S(1,3) = 0.2R ∘ S(1,4) = 0R ∘ S(2,1) = 0.5R ∘ S(2,2) = 0.7R ∘ S(2,3) = 0.1R ∘ S(2,4) = 0R ∘ S(3,1) = 0.2R ∘ S(3,2) = 0.56R ∘ S(3,3) = 0.1R ∘ S(3,4) = 0R ∘ S(4,1) = 0.1R ∘ S(4,2) = 0.28R ∘ S(4,3) = 0R ∘ S(4,4) = 0[/tex]
Thus, the composition operation of R and S is given by:
[tex]R ∘ S = [0.7 0.8 0.2 0; 0.5 0.7 0.1 0; 0.2 0.56 0.1 0; 0.1 0.28 0 0][/tex]
the composition operation of R and S is
[tex][0.7 0.8 0.2 0; 0.5 0.7 0.1 0; 0.2 0.56 0.1 0; 0.1 0.28 0 0].[/tex]
To know more about fuzzy visit:-
https://brainly.com/question/31475345
#SPJ11
13. Give the definition of entropy. Why did we create this quantity? 14. What is the relationship between entropy, heat, and reversibility?
Entropy is a physical quantity that measures the level of disorder or randomness in a system. It is also known as the measure of the degree of disorder in a system.
Entropy has several forms, but the most common is thermodynamic entropy, which is a measure of the heat energy that can no longer be used to do work in a system. The entropy of an isolated system can never decrease, and this is known as the Second Law of Thermodynamics. The creation of entropy was necessary to explain how heat energy moves in a system.
Relationship between entropy, heat, and reversibility Entropy is related to heat in the sense that an increase in heat will increase the entropy of a system. Similarly, a decrease in heat will decrease the entropy of a system.
To know more about Entropy visit-
https://brainly.com/question/20166134
#SPJ11
Two normal stresses of equal magnitude of 5, but of opposite signs, act at an stress element in perpendicular directions x and y. The shear stress acting in the xy-plane at the plane is zero. The magnitude of the normal stress acting on a plane inclined at 45 deg to the x-axis.
O None of these
O 5/2
O 25
O 5/4
O 0
Given data: Normal stresses of equal magnitude = 5Opposite signs, Act at an stress element in perpendicular directions x and y.The shear stress acting in the xy-plane at the plane is zero. The plane is inclined at 45° to the x-axis.
Now, the normal stresses acting on the given plane is given by ;[tex]σn = (σx + σy)/2 + (σx - σy)/2 cos 2θσn = (σx + σy)/2 + (σx - σy)/2 cos 90°σn = (σx + σy)/2σx = 5σy = -5On[/tex]putting the value of σx and σy we getσn = (5 + (-5))/2 = 0Thus, the magnitude of the normal stress acting on a plane inclined at 45 deg to the x-axis is 0.Answer: The correct option is O 0.
To know more about plane visit:
https://brainly.com/question/2400767
#SPJ11
Given below is a system of two non-linear algebraic equations: f(x, y) = 0
g(x,y)=0 where, f(x,y) = y² + ex g(x, y) = cos(y)-y
If the solution after the 3rd iteration is: x(3)= 1.5 and y(3) = 2, find the normal of the residual (||R||) for this 3rd iteration. Show your steps.
Given the system of equations:[tex]f(x, y) = 0 and g(x, y) = 0,[/tex]
where [tex]f(x, y) = y² + ex[/tex] and
[tex]g(x, y) = cos(y) - y[/tex]. The Newton-Raphson method for solving nonlinear equations is given by the following iterative formula:
[tex]x(n+1) = x(n) - [f(x(n), y(n)) / f'x(x(n), y(n))][/tex]
[tex]y(n+1) = y(n) - [g(x(n), y(n)) / g'y(x(n), y(n))][/tex]
The partial derivatives of f(x, y) and g(x, y) are as follows:
[tex]∂f/∂x = 0, ∂f/∂y = 2y[/tex]
[tex]∂g/∂x = 0, ∂g/∂y = -sin(y)[/tex]
Applying these derivatives, the iterative formula for solving the system of equations becomes:
[tex]x(n+1) = x(n) - (ex + y²) / e[/tex]
[tex]y(n+1) = y(n) - (cos(y(n)) - y(n)) / (-sin(y(n)))[/tex]
To calculate x(3) and y(3), given [tex]x(0) = 0 and y(0) = 1:[/tex]
[tex]x(1) = 0 - (e×1²) / e = -1[/tex]
[tex]y(1) = 1 - [cos(1) - 1] / [-sin(1)] ≈ 1.38177329068[/tex]
[tex]x(2) = -1 - (e×1.38177329068²) / e ≈ -3.6254167073[/tex]
y(2) =[tex]1.38177329068 - [cos(1.38177329068) - 1.38177329068] / [-sin(1.38177329068)] ≈ 2.0706220035[/tex]
x(3) =[tex]-3.6254167073 - [e×2.0706220035²] / e ≈ -7.0177039346[/tex]
y(3) = [tex]2.0706220035 - [cos(2.0706220035) - 2.0706220035] / [-sin(2.0706220035)] ≈ 1.8046187686[/tex]
The matrix equation for the residual (||R||) is given by:
||R|| = [(f(x(n), y(n))² + g(x(n), y(n))²)]^0.5
Calculating ||R|| for the 3rd iteration:
f[tex](-7.0177039346, 1.8046187686) = (1.8046187686)² + e(-7.0177039346) ≈ 68.3994096346[/tex]
g[tex](-7.0177039346, 1.8046187686) = cos(1.8046187686) - (1.8046187686) ≈ -1.2429320348[/tex]
[tex]||R|| = [(f(-7.0177039346, 1.8046187686))² + (g(-7.0177039346, 1.8046187686))²]^0.5[/tex]
[tex]= [68.3994096346² + (-1.2429320348)²]^0.5[/tex]
[tex]≈ 68.441956[/tex]
Therefore, the norm of the residual (||R||) for the 3rd iteration is approximately 68.441956.
To know more about derivatives visit:
https://brainly.com/question/25324584
#SPJ11
Water at 20◦C flows in a 9 cm diameter pipe under fully
developed conditions. Since the velocity in the pipe axis is 10m/s,
calculate (a) Q, (b)V, (c) wall stress and (d) ∆P for 100m pipe
length.
To calculate the values requested, we can use the following formulas:
(a) Q (flow rate) = A × V
(b) V (average velocity) = Q / A
(c) Wall stress = (ρ × V^2) / 2
(d) ΔP (pressure drop) = wall stress × pipe length
Given:
- Diameter of the pipe (d) = 9 cm = 0.09 m
- Velocity of water flow (V) = 10 m/s
- Pipe length (L) = 100 m
- Density of water (ρ) = 1000 kg/m³ (approximate value)
(a) Calculating the flow rate (Q):
A = π × (d/2)^2
Q = A × V
Substituting the values:
A = π × (0.09/2)^2
Q = π × (0.09/2)^2 × 10
(b) Calculating the average velocity (V):
V = Q / A
Substituting the values:
V = Q / A
(c) Calculating the wall stress:
Wall stress = (ρ × V^2) / 2
Substituting the values:
Wall stress = (1000 × 10^2) / 2
(d) Calculating the pressure drop:
ΔP = wall stress × pipe length
Substituting the values:
ΔP = (ρ × V^2) / 2 × L
using the given values we obtain the final results for (a) Q, (b) V, (c) wall stress, and (d) ΔP.
Learn more about flow rate on:
brainly.com/question/24307474
#SPJ11
1A) Convert the denary number 47.40625 10
to a binary number. 1B) Convert the denary number 3714 10
to a binary number, via octal. 1C) Convert 1110011011010.0011 2
to a denary number via octal.
1A) The binary representation of 47.40625 is 101111.01110.
1B) The binary representation of 3714 via octal is 11101000010.
1C) The decimal representation of 1110011011010.0011 via octal is 1460.15625.
1A) To convert the decimal number 47.40625 to a binary number:
The whole number part can be converted by successive division by 2:
47 ÷ 2 = 23 remainder 1
23 ÷ 2 = 11 remainder 1
11 ÷ 2 = 5 remainder 1
5 ÷ 2 = 2 remainder 1
2 ÷ 2 = 1 remainder 0
1 ÷ 2 = 0 remainder 1
Reading the remainders from bottom to top, the whole number part in binary is 101111.
For the fractional part, multiply the fractional part by 2 and take the whole number part at each step:
0.40625 × 2 = 0.8125 (whole number part: 0)
0.8125 × 2 = 1.625 (whole number part: 1)
0.625 × 2 = 1.25 (whole number part: 1)
0.25 × 2 = 0.5 (whole number part: 0)
0.5 × 2 = 1 (whole number part: 1)
Reading the whole number parts from top to bottom, the fractional part in binary is 01110.
Combining the whole number and fractional parts, the binary representation of 47.40625 is 101111.01110.
1B) To convert the decimal number 3714 to a binary number via octal:
First, convert the decimal number to octal:
3714 ÷ 8 = 464 remainder 2
464 ÷ 8 = 58 remainder 0
58 ÷ 8 = 7 remainder 2
7 ÷ 8 = 0 remainder 7
Reading the remainders from bottom to top, the octal representation of 3714 is 7202.
Then, convert the octal number to binary:
7 = 111
2 = 010
0 = 000
2 = 010
Combining the binary digits, the binary representation of 3714 via octal is 11101000010.
1C) To convert the binary number 1110011011010.0011 to a decimal number via octal:
First, convert the binary number to octal by grouping the digits in sets of three from the decimal point:
11 100 110 110 100.001 1
Converting each group of three binary digits to octal:
11 = 3
100 = 4
110 = 6
110 = 6
100 = 4
001 = 1
1 = 1
Combining the octal digits, the octal representation of 1110011011010.0011 is 34664.14.
Finally, convert the octal number to decimal:
3 × 8^4 + 4 × 8^3 + 6 × 8^2 + 6 × 8^1 + 4 × 8^0 + 1 × 8^(-1) + 4 × 8^(-2)
= 768 + 256 + 384 + 48 + 4 + 0.125 + 0.03125
= 1460.15625
Therefore, the decimal representation of 1110011011010.0011 via octal is 1460.15625.
To know more about binary number visit:
https://brainly.com/question/13262331
#SPJ11
Question 3 1 Point With a concentrated load P applied at the free end of a cantilever beam with length L, which of the following formula can be used to calculate maximum deflection? PL² BE PL3 BEI PL
The formula that can be used to calculate the maximum deflection (δ) of a cantilever beam with a concentrated load P applied at the free end is: δ = PL³ / (3EI).
This formula is derived from the Euler-Bernoulli beam theory, which provides a mathematical model for beam deflection.
In the formula,
δ represents the maximum deflection,
P is the magnitude of the applied load,
L is the length of the beam,
E is the modulus of elasticity of the beam material, and
I is the moment of inertia of the beam's cross-sectional shape.
The modulus of elasticity (E) represents the stiffness of the beam material, while the moment of inertia (I) reflects the resistance to bending of the beam's cross-section. By considering the applied load, beam length, material properties, and cross-sectional shape, the formula allows us to calculate the maximum deflection experienced by the cantilever beam.
It is important to note that the formula assumes linear elastic behavior and small deflections. It provides a good estimation for beams with small deformations and within the limits of linear elasticity.
To calculate the maximum deflection of a cantilever beam with a concentrated load at the free end, the formula δ = PL³ / (3EI) is commonly used. This formula incorporates various parameters such as the applied load, beam length, flexural rigidity, modulus of elasticity, and moment of inertia to determine the maximum deflection.
To know more about deflection, visit:
https://brainly.com/question/1581319
#SPJ11
D ∗∗2 .118 A designer, wanting to achieve a stable gain of 100 V/V with a 3-dB frequency above 5MHz, considers her choice of amplifier topologies. What unity-gain frequency would a single operational amplifier require to satisfy her need? Unfortunately, the best available amplifier has an f t of 50MHz. How many such amplifiers connected in a cascade of identical noninverting stages would she need to achieve her goal? What is the 3-dB frequency of each stage? What is the overall 3-dB frequency?
Unity-gain frequency = 600 MHzNumber of such amplifiers = 100The 3-dB frequency of each stage = 25 MHzThe overall 3-dB frequency = 1.741 MHz.
Given stable gain is 100V/V and 3-dB frequency is greater than 5 MHz. Unity-gain frequency required for a single operational amplifier to satisfy the given conditions can be calculated using the relation:
Bandwidth Gain Product(BGP) = unity gain frequency × gain
Since, gain is 100V/VBGP = (3-dB frequency) × (gain) ⇒ unity gain frequency = BGP/gain= (3-dB frequency) × 100/1, from which the unity-gain frequency required is, 3-dB frequency > 5 MHz,
let's take 3-dB frequency = 6 MHz
Therefore, unity-gain frequency = (6 MHz) × 100/1 = 600 MHz Number of such amplifiers connected in a cascade of identical noninverting stages would she need to achieve her goal?
Total gain required = 100V/VGain per stage = 100V/V Number of stages, n = Total gain / Gain per stage = 100 / 1 = 100For the given amplifier, f_t = 50 MHz
This indicates that a single stage of this amplifier can provide a 3 dB frequency of f_t /2 = 50/2 = 25 MHz.
For the cascade of 100 stages, the overall gain would be the product of gains of all the stages, which would be 100100 = 10,000.The 3-dB frequency of each stage would be the same, which is 25 MHz.
Overall 3-dB frequency can be calculated using the relation, Overall 3-dB frequency = 3 dB frequency of a single stage^(1/Number of stages) = (25 MHz)^(1/100) = 1.741 MHz.
To know more about amplifiers visit:
https://brainly.com/question/32812082
#SPJ11
knowing that each of the shaft AB, BC, and CD consist
of a solid circular rod, determine the shearing stress in shaft AB,
BD and CD. (final answer in mpa, 3 decimal places)
Given:Shaft AB: diameter = 80 mm, torque = 16 kNmShaft BC: diameter = 60 mm, torque = 24 kNmShaft CD: diameter = 40 mm, torque = 30 kNmSolution:The polar moment of inertia, J = (π/32)d⁴Shaft AB: diameter (d) = 80 mmTorque (T) = 16 kNmSince [tex]τ = (T/J) x r τ = (16 x 10⁶) / [(π/32) x (80)⁴ / 64] x (40)τ = 51.64[/tex] MPa
Therefore, the shearing stress in shaft AB is 51.64 MPa.Shaft BD: diameter (d) = 60 mm and 40 mmTorque (T) = 24 kNm and 30 kNmNow, the distance from the center to shaft AB is equal to the sum of the radius of shaft BC and CD.
So, [tex]r = 20 + 30 = 50 mmτ = (T/J) x r[/tex] for the two shafts
BD:[tex]τ = (24 x 10⁶) / [(π/32) x (60)⁴ / 64] x (50)τ = 70.38[/tex] MPa
CD:[tex]τ = (30 x 10⁶) / [(π/32) x (40)⁴ / 64] x (50)τ = 150.99[/tex] MPa
Therefore, the shearing stress in shaft BD and CD is 70.38 MPa and 150.99 MPa, respectively.The shearing stress in shaft AB, BD, and CD is 51.64 MPa, 70.38 MPa and 150.99 MPa, respectively.
To know more about radius visit:
https://brainly.com/question/13449316
#SPJ11
2) A linear elastic SDOF system is given below with Tn= 1.1 s, m = 1 kg, 5 = 5 %, u(0) = 0, u(0) = 0. Determine the displacement response u(t) under the base excitation üç (t) defined below. Use At = 0.1 s in calculations. 0.6 U m i A oli 0,2 013 014 015 kc -0.4 Time (s)
Given values:Tn = 1.1 s, m = 1 kg, ξ = 5%, u(0) = 0, u'(0) = 0.At = 0.1 s
And base excitation üc(t) is given as below:
0.6 Umi sin (2πti) for 0 ≤ t ≤ 0.2 s0.2 sin (2π(501)(t - 0.2)) for 0.2 ≤ t ≤ 0.3 s-0.4 sin (2π(501)(t - 0.3)) for 0.3 ≤ t ≤ 0.4 sThe undamped natural frequency can be calculated as
ωn = 2π / Tnωn = 2π / 1.1ωn = 5.7 rad/s
The damped natural frequency can be calculated as
ωd = ωn √(1 - ξ²)ωd = 5.7 √(1 - 0.05²)ωd = 5.41 rad/s
The damping coefficient can be calculated as
k = m ξ ωnk = 1 × 0.05 × 5.7k = 0.285 Ns/m
The spring stiffness can be calculated as
k = mωd² - ξ²k = 1 × 5.41² - 0.05²k = 14.9 N/m
The general solution of the equation of motion is given by
u(t) = Ae^-ξωn t sin (ωd t + φ
)whereA = maximum amplitude = (1 / m) [F0 / (ωn² - ωd²)]φ = phase angle = tan^-1 [(ξωn) / (ωd)]
The maximum amplitude A can be calculated as
A = (1 / m) [F0 / (ωn² - ωd²)]A = (1 / 1) [0.6 Um / ((5.7)² - (5.41)²)]A = 0.2219
UmThe phase angle φ can be calculated astanφ = (ξωn) / (ωd)tanφ = (0.05 × 5.7) / (5.41)tanφ = 0.0587φ = 3.3°
Displacement response u(t) can be calculated as:for 0 ≤ t ≤ 0.2 s, the displacement response u(t) isu(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t + 3.3°)for 0.2 ≤ t ≤ 0.3 s, the displacement response
u(t) isu(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t - 30.35°)for 0.3 ≤ t ≤ 0.4 s, t
he displacement response
u(t) isu(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t + 57.55°)
Hence, the displacement response of the SDOF system under the base excitation is
u(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t + φ) for 0 ≤ t ≤ 0.2 s, 0.2 ≤ t ≤ 0.3 s, and 0.3 ≤ t ≤ 0.4 s, whereφ = 3.3° for 0 ≤ t ≤ 0.2 su(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t - 30.35°) for 0.2 ≤ t ≤ 0.3 su(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t + 57.55°) for 0.3 ≤ t ≤ 0.4 s. The response is plotted below.
To know more about frequency visit :
https://brainly.com/question/29739263
#SPJ11
An ash disposal system of a steam plant cost $30,000 when new. It is now 4 years old. The
annual maintenance costs for the four years have been $2000, $2250, $2675, $3000.
Interest rate = 6%. A new system is guaranteed to have an equated annual maintenance and
operation cost not exceeding $1500. Its cost is $47,000 installed. Life of each system, 7
years; salvage value, 5% of the first cost. Present sale value of old system is same as salvage
value. Would it be profitable to install the new system?
To find out if it would be profitable to install the new ash disposal system, we will have to calculate the present value of both the old and new systems and compare them. Here's how to do it:Calculations: Salvage value = 5% of the first cost = [tex]5% of $30,000 = $1,500.[/tex]
Life of each system = 7 years. Interest rate = 6%.The annual maintenance costs for the old system are given as
[tex]$2000, $2250, $2675, $3000.[/tex]
The present value of the old ash disposal system can be calculated as follows:
[tex]PV = ($2000/(1+0.06)^1) + ($2250/(1+0.06)^2) + ($2675/(1+0.06)^3) + ($3000/(1+0.06)^4) + ($1500/(1+0.06)^5)PV = $8,616.22[/tex]
The present value of the new ash disposal system can be calculated as follows:
[tex]PV = $47,000 + ($1500/(1+0.06)^1) + ($1500/(1+0.06)^2) + ($1500/(1+0.06)^3) + ($1500/(1+0.06)^4) + ($1500/(1+0.06)^5) + ($1500/(1+0.06)^6) + ($1500/(1+0.06)^7) - ($1,500/(1+0.06)^7)PV = $57,924.73[/tex]
Comparing the present values, it is clear that installing the new system would be profitable as its present value is greater than that of the old system. Therefore, the new ash disposal system should be installed.
To know more about profitable visit :
https://brainly.com/question/15293328
#SPJ11
An engineer is tasked to design a concrete mixture for pavement in Fayetteville, AR, USA. Due to the very low temperature in winters, the pavement is expected to sustain frost action. The engineer is originally from Basra, Iraq, and does not have decent information regarding the concrete used in such conditions. Accordingly, he had to ask a civil engineering student (his GF) that is just finished the Concrete Technology Class at the University of Arkansas. He provided his GF with the following information: the recommendation of the ACI Committee 201 has to be considered regarding durability, and the procedure of the ACI 211.1 for designing concrete mixture for normal strength has to be followed. After all this information, what is the water content of the mixture per one cubic meter and air content should his GF has calculated if the maximum aggregate size is 20 mm and slump is 30 mm? Write down your answer only.
The water content and air content of the concrete mixture can be calculated using the ACI 211.1 procedure. To accurately determine the water content and air content, the civil engineering student (GF) would need additional information, such as the mix design requirements, project specifications, and any local regulations or guidelines that may apply in Fayetteville, AR, USA.
However, without the specific mix design requirements, such as target compressive strength, cement content, and aggregate properties, it is not possible to provide an exact answer for the water content and air content.
The ACI 211.1 procedure takes into account factors like the maximum aggregate size, slump, and specific requirements for durability. The recommended water content is determined based on the water-cement ratio, which is a key parameter in achieving the desired strength and durability of the concrete. The air content is typically specified to enhance the resistance to freeze-thaw cycles and frost action.
To accurately determine the water content and air content, the civil engineering student (GF) would need additional information, such as the mix design requirements, project specifications, and any local regulations or guidelines that may apply in Fayetteville, AR, USA.
Learn more about procedure here
https://brainly.com/question/30847893
#SPJ11
From the technical literature and/or open sources, present the RCS of the triangular trihedral reflector as a function of the incidence angle (for both azimuth and elevation).
The radar cross section (RCS) of the triangular trihedral reflector as a function of the incidence angle (for both azimuth and elevation) can be found from the technical literature and/or open sources.
A trihedral reflector is a corner reflector that consists of three mutually perpendicular planes.
Reflectivity is the measure of a surface's capability to reflect electromagnetic waves.
The RCS is a scalar quantity that relates to the ratio of the power per unit area scattered in a specific direction to the strength of an incident electromagnetic wave’s electric field.
The RCS formula is given by:
[tex]$$ RCS = {{4πA}\over{\lambda^2}}$$[/tex]
Where A is the projected surface area of the target,
λ is the wavelength of the incident wave,
RCS is measured in square meters.
In the case of a trihedral reflector, the reflectivity is the same for both azimuth and elevation angles and is given by the following equation:
[tex]$$ RCS = {{16A^2}\over{\lambda^2}}$$[/tex]
Where A is the surface area of the trihedral reflector.
RCS varies with the incident angle, and the equation above is used to compute the reflectivity for all incident angles.
Therefore, it can be concluded that the RCS of the triangular trihedral reflector as a function of the incidence angle (for both azimuth and elevation) can be determined using the RCS formula and is given by the equation :
[tex]$$ RCS = {{16A^2}\over{\lambda^2}}$$.[/tex]
To know more about Magnetic field, visit:
https://brainly.com/question/19542022
#SPJ11
Question 3 20 Points (20) After inspection, it is found that there is an internal crack inside of an alloy with a full width of 0.4 mm and a curvature radius of 5x10-3 mm, and there is also a surface crack on this alloy with a full width of 0.1 mm and a curvature radius of 1x10-3 mm. Under an applied tensile stress of 50 MPa, • (a) What is the maximum stress around the internal crack and the surface crack? (8 points) • (b) For the surface crack, if the critical stress for its propagation is 900 MPa, will this surface crack propagate? (6 points) • (c) Through a different processing technique, the width of both the internal and surface cracks is decreased. With decreased crack width, how will the fracture toughness and critical stress for crack growth change? (6 points) Use the editor to format your answer
The maximum stress around the internal crack can be determined using the formula for stress concentration factor.
The stress concentration factor for an internal crack can be approximated as Kt = 3(1 + a/w)^(1/2), where a is the crack depth and w is the full width of the crack. Substituting the values, we get Kt = 3(1 + 0.4/5)^(1/2) ≈ 3.33. Therefore, the maximum stress around the internal crack is 3.33 times the applied stress, which is 50 MPa, resulting in approximately 166.5 MPa. Similarly, for the surface crack, the stress concentration factor can be approximated as Kt = 2(1 + a/w)^(1/2). Substituting the values, we get Kt = 2(1 + 0.1/1)^(1/2) = 2.1. Therefore, the maximum stress around the surface crack is 2.1 times the applied stress, which is 50 MPa, resulting in approximately 105 MPa. For the surface crack to propagate, the applied stress must exceed the critical stress for crack propagation. In this case, the critical stress for the surface crack is given as 900 MPa. Since the applied stress is only 50 MPa, which is lower than the critical stress, the surface crack will not propagate under the given conditions. When the width of both the internal and surface cracks is decreased through a different processing technique, the fracture toughness increases. A smaller crack width reduces the stress concentration and allows the material to distribute the applied stress more evenly. As a result, the material becomes more resistant to crack propagation, and the critical stress for crack growth increases. Therefore, by decreasing the crack width, the fracture toughness improves, making the material more resistant to cracking.
Learn more about crack propagation here:
https://brainly.com/question/31393555
#SPJ11
determine the 1st order different equation relating to Vc to the
inputs.
Determine the 1st order differential equ to relating Осто (t >0) the + 20v inputs. 1/2 F 12 201 + vc Зол 1 605 n LA t=0 7V
To determine the 1st order differential equation relating Vc to the inputs, we use the following formula:
[tex]$$RC \frac{dV_c}{dt} + V_c = V_i$$[/tex]
where RC is the time constant of the circuit, Vc is the voltage across the capacitor at time t, Vi is the input voltage, and t is the time.
Since we are given that the inputs are 20V and the capacitor voltage at t = 0 is 7V, we can substitute these values into the formula to obtain:
[tex]$$RC \frac{dV_c}{dt} + V_c = V_i$$$$RC \frac{dV_c}{dt} + V_c = 20V$$[/tex]
Also, at t = 0, the voltage across the capacitor is given as 7V, hence we have:[tex]$$V_c (t=0) = 7V$$[/tex]
Therefore, to obtain the first order differential equation relating Vc to the inputs, we substitute the values into the formula as shown below:
[tex]$$RC \frac{dV_c}{dt} + V_c = 20V$$[/tex]and the initial condition:[tex]$$V_c (t=0) = 7V$$[/tex]where R = 201 ohms, C = 1/2 F and the time constant, RC = 100.5 s
Thus, the 1st order differential equation relating Vc to the inputs is:[tex]$$100.5 \frac{dV_c}{dt} + V_c = 20V$$$$\frac{dV_c}{dt} + \frac{V_c}{100.5} = \frac{20}{100.5}$$$$\frac{dV_c}{dt} + 0.0995V_c = 0.1990$$[/tex]
To know more about differential visit:
https://brainly.com/question/31383100
#SPJ11
A steel block [E = 29 x 103 ksi and v = 0.33] has initial side lengths all equal to 56 inches. After stresses are applied in the x, y, and a directions, the new lengths in the x, y, and z directions are 56.06 in., 56.10 in., and 55.95 in., respectively. Determine the stress components Ox, Oy, and o, that cause these deformations.
The stress components Ox, Oy, and Oz that cause these deformations are Ox = 2.07 ksi, Oy = 3.59 ksi, and Oz = -2.06 ksi, respectively.
Given information:
Young's modulus of elasticity, E = 29 x 103 ksi
Poisson's ratio, ν = 0.33
Initial length of the block, a = b = c = 56 inches
Change in the length in the x-direction, ΔLx = 0.06 inches
Change in the length in the y-direction, ΔLy = 0.10 inches
Change in the length in the z-direction, ΔLz = -0.05 inches
To determine the stress components Ox, Oy, and Oz that cause these deformations, we'll use the following equations:ΔLx = aOx / E (1 - ν)ΔLy = bOy / E (1 - ν)ΔLz = cOz / E (1 - ν)
where, ΔLx, ΔLy, and ΔLz are the changes in the length of the block in the x, y, and z directions, respectively.
ΔLx = 0.06 in.= a
Ox / E (1 - ν)56.06 - 56 = 56
Ox / (29 x 103)(1 - 0.33)
Ox = 2.07 ksi
ΔLy = 0.10 in.= b
Oy / E (1 - ν)56.10 - 56 = 56
Oy / (29 x 103)(1 - 0.33)
Oy = 3.59 ksi
ΔLz = -0.05 in.= c
Oz / E (1 - ν)55.95 - 56 = 56
Oz / (29 x 103)(1 - 0.33)
Oz = -2.06 ksi
Know more about components here:
https://brainly.com/question/31044183
#SPJ11