a car tire has a radius of 22.0 cm. if the car travels 1270 m in 75.0 s, what was the average angular velocity?

Answers

Answer 1

To find the average angular velocity of the car tire, we need to calculate the total angle turned by the tire during the given time interval.

C = 2πr

C = 2π(0.22 m) = 1.384 m

The circumference of the tire can be calculated using the formula: C = 2πr

where r is the radius of the tire. Substituting the given radius value of 22.0 cm (0.22 m), we get:

C = 2π(0.22 m) = 1.384 m

The car travels a distance of 1270 m in 75.0 s. The number of complete revolutions made by the tire can be calculated as:

Number of revolutions = Distance / Circumference = 1270 m / 1.384 m ≈ 917.31 revolutions

The average angular velocity can be calculated as:

Average angular velocity = Total angle turned / Time

The total angle turned is given by the number of revolutions multiplied by 2π (one revolution equals 2π radians).

Total angle turned = (917.31 revolutions)(2π radians/revolution) ≈ 5767.88 radians

Average angular velocity = 5767.88 radians / 75.0 s ≈ 76.9 rad/s

Therefore, the average angular velocity of the car tire is approximately 76.9 rad/s.

Learn more about velocity here

https://brainly.com/question/80295

#SPJ11


Related Questions

water flows through a pipe of diameter 0.92 m at a velocity of 2.3 m/s. if someone puts a nozzle on the end of the pipe, reducing the diameter to 0.23 m, at what speed will the water exit the pipe?

Answers

The water will exit the pipe at a speed of approximately 9.2 m/s.

Determine the speed?

To find the speed at which the water will exit the pipe, we can apply the principle of conservation of mass. According to this principle, the mass flow rate of water entering the pipe should be equal to the mass flow rate of water exiting the nozzle.

The mass flow rate can be calculated using the formula:

m_dot = ρ * A * V

where:

m_dot is the mass flow rate,

ρ is the density of water,

A is the cross-sectional area of the pipe/nozzle, and

V is the velocity of water.

The cross-sectional area is related to the diameter by the formula:

A = (π/4) * d²

where d is the diameter of the pipe/nozzle.

Let's assume the density of water (ρ) remains constant.

For the pipe:

A_pipe = (π/4) * (0.92 m)²

V_pipe = 2.3 m/s

For the nozzle:

A_nozzle = (π/4) * (0.23 m)²

V_nozzle = ?

Since the mass flow rate should be conserved, we can equate the two expressions:

ρ * A_pipe * V_pipe = ρ * A_nozzle * V_nozzle

By rearranging the equation, we can solve for V_nozzle:

V_nozzle = (A_pipe * V_pipe) / A_nozzle

Substituting the given values:

V_nozzle = [(π/4) * (0.92 m)² * 2.3 m/s] / [(π/4) * (0.23 m)²]

         = (0.92 m)² * 2.3 m/s / (0.23 m)²

         = 9.2 m/s

Therefore, the water will exit the pipe at a speed of approximately 9.2 m/s.

To know more about mass, refer here:

https://brainly.com/question/11954533#

#SPJ4

what is the frequency of a photon that has the same momentum as a neutron moving with a speed of 1300 m/s ?

Answers

To find the frequency of a photon that has the same momentum as a neutron moving with a speed of 1300 m/s, we can use the equation:

p_neutron = p_photon

where p is momentum, and set the momentum of the neutron equal to the momentum of the photon:

m_neutron * v_neutron = h * f_photon / c

where m_neutron is the mass of the neutron, v_neutron is its velocity, h is Planck's constant, f_photon is the frequency of the photon, and c is the speed of light.

Substituting the given values, we get:

(1.67493 x 10^-27 kg) * (1300 m/s) = h * f_photon / (3 x 10^8 m/s)

Solving for f_photon, we get:

f_photon = (m_neutron * v_neutron * c) / h

Plugging in the values for c, h, m_neutron, and v_neutron, we get:

f_photon = (1.67493 x 10^-27 kg * 1300 m/s * 3 x 10^8 m/s) / 6.62607 x 10^-34 J s

Therefore, the frequency of the photon is approximately 2.527 x 10^20 Hz.

Learn more about frequency  from

https://brainly.com/question/254161

#SPJ11

wo coherent sources emit waves that have a wavelength of 0.44 m. determine whether constructive or destructive interference occurs at a point whose distances from the two sources are as follows: (a) 1.32 and 3.08m; (b) 2.67 and 3.33m; (c) 2.20 and 3.74m; (d) 1.10 and 4.18m

Answers

For the given distances, the interference at the points is as follows:

(a) Constructive interference ,(b) Destructive interference ,(c) Destructive interference ,(d) Constructive interference

To determine whether constructive or destructive interference occurs at each point, we can use the path length difference (PLD) between the two sources. Constructive interference occurs when the path length difference is an integer multiple of the wavelength, while destructive interference occurs when the path length difference is a half-integer multiple of the wavelength.

Let's calculate the path length differences for each point using the given distances and the wavelength of 0.44 m:

(a) PLD = |1.32 - 3.08| = 1.76 m

(b) PLD = |2.67 - 3.33| = 0.66 m

(c) PLD = |2.20 - 3.74| = 1.54 m

(d) PLD = |1.10 - 4.18| = 3.08 m

Now, let's compare the path length differences with half-wavelength and full-wavelength values:

(a) PLD = 1.76 m

1.76 m is not an integer multiple of 0.44 m, but it is close to 4 times the wavelength. Hence, constructive interference occurs.

(b) PLD = 0.66 m

0.66 m is approximately half the wavelength, indicating destructive interference.

(c) PLD = 1.54 m

1.54 m is not an integer multiple of 0.44 m or half the wavelength, but it is close to 3.5 times the wavelength. Hence, destructive interference occurs.

(d) PLD = 3.08 m

3.08 m is exactly 7 times the wavelength, indicating constructive interference.

Based on the calculations, we find that at the given distances:

(a) Constructive interference occurs.

(b) Destructive interference occurs.

(c) Destructive interference occurs.

(d) Constructive interference occurs.

These results indicate the nature of the interference at each point between the two coherent sources emitting waves with a wavelength of 0.44 m

To know more about distance ,visit:

https://brainly.com/question/26550516

#SPJ11

A convex spherical mirror has a radius of curvature of magnitude 34.0 cm.
(a) Determine the position of the virtual image and the magnification for object distances of 25.0 cm. Indicate the location of the image with the sign of your answer.
(b) Determine the position of the virtual image and the magnification for object distances of 43.0 cm. Indicate the location of the image with the sign of your answer.

Answers

To solve this problem, we can use the mirror equation and the magnification formula for spherical mirrors. (a) For an object distance of 25.0 cm:

1/34.0 = 1/-25.0 + 1/di

1/di = 1/34.0 - 1/-25.0

1/di = (-25 + 34)/(34 * -25)

1/di = 9/(-850)

di = -850/9 ≈ -94.44 cm

The mirror equation is given by: 1/f = 1/do + 1/di

Where f is the focal length, do is the object distance, and di is the image distance. Radius of curvature (R) = 34.0 cm (positive for a convex mirror)

Object distance (do) = -25.0 cm (negative because the object is in front of the mirror)

Substituting the values into the mirror equation and solving for di:

1/34.0 = 1/-25.0 + 1/di

1/di = 1/34.0 - 1/-25.0

1/di = (-25 + 34)/(34 * -25)

1/di = 9/(-850)

di = -850/9 ≈ -94.44 cm

The negative sign indicates that the image is virtual and located on the same side as the object. Therefore, the position of the virtual image is approximately -94.44 cm from the mirror.To calculate the magnification (m), we use the formula: m = -di/do

m = -(-94.44 cm) / (-25.0 cm) ≈ 3.78

Therefore, the position of the virtual image is approximately -94.44 cm, and the magnification is approximately 3.78.

(b) For an object distance of 43.0 cm:

Using the same mirror equation:

1/34.0 = 1/43.0 + 1/di

1/di = 1/34.0 - 1/43.0

1/di = (43 - 34)/(34 * 43)

1/di = 9/(34 * 43)

1/di = 9/1462

di = 1462/9 ≈ 162.44 cm

The positive sign indicates that the image is virtual and located on the same side as the object. Therefore, the position of the virtual image is approximately 162.44 cm from the mirror.

To calculate the magnification:

m = -di/do

m = -162.44 cm / (-43.0 cm) ≈ 3.78

The magnification is approximately 3.78.

Therefore, for an object distance of 43.0 cm, the position of the virtual image is approximately 162.44 cm, and the magnification is approximately 3.78.

Learn more about magnification here

https://brainly.com/question/28113233

#SPJ11

Suppose the radius of a particular excited hydrogen atom, in the Bohr model, is 1.32 nm. What is the number of the atom's energy level, counting the ground level as the first? When this atom makes a transition to its ground state, what is the wavelength, in nanometers, of the emitted photon?

Answers

The emitted photon has a wavelength of 121 nm. The radius of an excited hydrogen atom in the Bohr model can be related to its energy level using the equation: r = r1 * n^2,

where r1 is the Bohr radius (0.529 nm) and n is the principal quantum number.

Solving for n, we get:

n = sqrt(r / r1) = sqrt(1.32 nm / 0.529 nm) = 2.53

So the excited hydrogen atom is in the n=3 energy level.

When this atom makes a transition to its ground state (n=1), it will emit a photon with a wavelength given by the Rydberg formula:

1/λ = R_inf * (1/n_f^2 - 1/n_i^2),

where λ is the wavelength of the emitted photon, R_inf is the Rydberg constant (1.097 x 10^7 m^-1), and n_f and n_i are the final and initial energy levels, respectively.

Plugging in n_f=1 and n_i=3, we get:

1/λ = 1.097 x 10^7 m^-1 * (1/1^2 - 1/3^2) = 8.23 x 10^6 m^-1

Solving for λ, we get:

λ = 1/8.23 x 10^6 m^-1 = 121 nm

Converting to nanometers, we get:

λ = 121 nm

Therefore, the emitted photon has a wavelength of 121 nm.

learn more about Bohr model here

https://brainly.com/question/16858921

#SPJ11

more nations have gravitated toward the market-based model because

Answers

More nations have gravitated toward the  model because it offers several advantages and has proven to be a successful approach in promoting economic growth and development.

Efficiency: The market-based model, characterized by free markets and competition, allows for efficient allocation of resources. It enables individuals and businesses to make decisions based on market forces, such as supply and demand, which leads to the optimal allocation of goods and services. This efficiency promotes productivity and economic growth.

Innovation and Entrepreneurship: The market-based model encourages innovation and entrepreneurship. In a competitive market, businesses are incentivized to develop new products and services to meet consumer demands. This drive for innovation fosters technological advancements, job creation, and economic dynamism.

Individual Freedom: Market-based economies prioritize individual freedom and choice. Individuals have the freedom to make decisions regarding their consumption, production, and employment. This freedom allows for personal initiative, economic mobility, and the pursuit of individual aspirations.

International Trade: Market-based economies promote international trade and globalization. By opening up to international markets, countries can benefit from the exchange of goods, services, and ideas, leading to increased economic opportunities and access to a wider range of resources.

Economic Stability: Market-based economies tend to be more resilient and adaptable to changing circumstances. The decentralized nature of markets allows for self-correction mechanisms, such as price adjustments, in response to economic shocks.

For more such questions on  model visit:

https://brainly.com/question/31611675

#SPJ8

Final answer:

Nations have gravitated toward the market-based model because it promotes economic growth and efficiency, encourages innovation and investment, and allows for flexibility and adaptation to global trends and demands.

Explanation:

More nations have gravitated toward the market-based model because it has been proven to promote economic growth and increase efficiency. The market-based model is based on the principles of supply and demand, competition, and individual choice. When countries adopt this model, it can lead to innovation, entrepreneurship, and investment, which can stimulate economic growth.

For example, countries like the United States and Germany have embraced the market-based model and have experienced significant economic development. They have seen increased productivity, job creation, and technological advancements. Additionally, the market-based model allows for flexibility and adaptation to changing global trends and demands. It encourages free trade and cooperation between nations, fostering a global economy.

Learn more about Market-based model here:

https://brainly.com/question/32511996

#SPJ12

question: a ball of mass 0.5 kg is attached to a string and is being swung in a horizontal circle with a radius of 2 meters. if the tension in the string is 20 newtons, what is the ball's speed in meters per second?

Answers

To determine the ball's speed, we can use the centripetal force formula:

Fc = (m * v^2) / r

where Fc is the centripetal force, m is the mass of the ball (0.5 kg), v is the speed, and r is the radius of the circle (2 meters). Since the tension in the string provides the centripetal force, we can set Fc equal to the tension (20 N):

20 N = (0.5 kg * v^2) / 2 m

Next, we can solve for the ball's speed (v):

40 m = 0.5 kg * v^2

80 m = v^2

v = √80 m

v ≈ 8.94 m/s

So, the ball's speed is approximately 8.94 meters per second.

To know more about tension, visit

https://brainly.com/question/24994188

#SPJ11

A pendulum with a length of 50cm. what is the period of the pendulum on earth?

Answers

The period of the pendulum on Earth is approximately 1.42 seconds.

The period of a pendulum is the time it takes for one complete swing, from one extreme point to the other and back. The period of a pendulum can be calculated using the formula:

T = 2π√(L/g)

where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.

In this case, the length of the pendulum is given as 50 cm. However, it's important to note that the formula requires the length to be in meters. Therefore, we need to convert the length to meters by dividing it by 100:

L = 50 cm / 100 = 0.5 m

The acceleration due to gravity on Earth is approximately 9.8 m/s^2.

Now we can substitute the values into the formula:

T = 2π√(0.5 / 9.8)

T = 2π√(0.051)

Calculating this expression gives us:

T ≈ 2π * 0.226 ≈ 1.42 s

Therefore, the period of the pendulum on Earth is approximately 1.42 seconds.

It's important to note that this calculation assumes ideal conditions and neglects factors such as air resistance and the mass distribution of the pendulum. In reality, these factors can slightly affect the actual period of a pendulum.

For more such questions on pendulum visit:

https://brainly.com/question/29813582

#SPJ8

during experiment 2, the subject lifts a ball with a mass m a vertical distance d1 and then lowers the ball a greater vertical distance d2. what is the net work done by gravity on the ball?

Answers

The net work done by gravity on the ball is also zero.
The net work done by gravity on the ball during experiment 2 can be calculated using the work-energy principle. When the subject lifts the ball a vertical distance d1, the work done by gravity is negative (since the force of gravity opposes the displacement). When the ball is lowered a greater vertical distance d2, the work done by gravity is positive (as the force of gravity acts in the same direction as the displacement).
The work done by gravity can be calculated using the formula: W = m * g * d,

where W is the work done, m is the mass of the ball, g is the acceleration due to gravity, and d is the vertical distance.
For lifting the ball (d1): W1 = -m * g * d1
For lowering the ball (d2): W2 = m * g * d2
To find the net work done by gravity, add these two values:
Net work done by gravity = W1 + W2 = (-m * g * d1) + (m * g * d2)
To know more about work-energy principle, visit:

https://brainly.com/question/28043729

#SPJ11

If you decrease the length of the pendulum by 10%, how does the new period TN compare to the old period T ? TN/T = _____

Answers

The period of a pendulum is given by the equation: T = 2π√(L/g) where L is the length of the pendulum and g is the acceleration due to gravity.

If we decrease the length of the pendulum by 10%, the new length will be 0.9L. So, the new period TN can be calculated as follows:

TN = 2π√(0.9L/g) = 2π(0.9487)√(L/g)

Therefore, the ratio of the new period TN to the old period T is:

TN/T = [2π(0.9487)√(L/g)] / [2π√(L/g)]

TN/T = 0.9487

So, if you decrease the length of the pendulum by 10%, the new period TN will be approximately 95% (0.9487) of the old period T.

learn more about pendulum here

https://brainly.com/question/29702798

#SPJ11

a 2.00-l flask contains nitrogen gas at 25°c and 1.00 atm pressure. what is the final pressure in the flask if an additional 2.00 g of n2 gas is added to the flask and the flask cooled to -55°c?

Answers

The final pressure in the flask, after adding 2.00 g of N2 gas and cooling to -55°C, is approximately 1.786 atm.

What is the Ideal gas law?

The ideal gas law is a fundamental principle in thermodynamics that describes the relationship between the pressure, volume, temperature, and number of moles of a gas. It provides a mathematical expression that allows us to analyze and predict the behavior of gases under various conditions.

To determine the final pressure in the flask, we can use the ideal gas law:

[tex]PV = nRT[/tex]

Where:

P = Pressure

V = Volume

n = Number of moles

R = Ideal gas constant

T = Temperature

First, let's calculate the initial number of moles of nitrogen gas in the flask. Given that the flask contains nitrogen gas at 25°C and 1.00 atm pressure, we can use the ideal gas law:

[tex]n1 = (P1V1) / (RT1)[/tex]

[tex]P1 = 1.00 atm\\V1 = 2.00 L\\T1 = 25C = 298.15 K[/tex] (temperature in Kelvin)

Using the ideal gas law equation:

[tex]n1 = (1.00 atm * 2.00 L) / (0.0821 L-atm/(mol·K) * 298.15 K)= 0.0823 mol[/tex]

Next, let's calculate the number of moles of nitrogen gas that is added to the flask. Given that 2.00 g of N2 gas is added, and the molar mass of N2 is 28.0134 g/mol, we can calculate the number of moles:

[tex]n2 = m2 / M[/tex]

[tex]m2 = 2.00 gM = 28.0134 g/moln2 = 2.00 g / 28.0134 g/mol= 0.0714 mol[/tex]

Now, we can determine the total number of moles of nitrogen gas in the flask after the addition:

[tex]n_total = n1 + n2= 0.0823 mol + 0.0714 mol= 0.1537 mol[/tex]

Finally, we need to calculate the final pressure in the flask after cooling to -55°C. Convert -55°C to Kelvin:

[tex]T2 = -55°C = 218.15 K[/tex]

Using the ideal gas law equation once more:

[tex]P2 = (n_total * R * T2) / V1P2 = (0.1537 mol * 0.0821 L.atm/(mol.K) * 218.15 K) / 2.00 L= 1.786 atm[/tex]

Therefore, the final pressure in the flask, after adding 2.00 g of N2 gas and cooling to -55°C, is approximately 1.786 atm.

Learn more about Ideal gas law:

https://brainly.com/question/27570432

#SPJ4

The ideal gas law can be used to calculate the pressure of a gas inside a container that has been subjected to a change in temperature, volume, or the addition of more gas. The ideal gas law is PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the ideal gas constant, and T is temperature, and it can be rearranged to solve for any one variable. The amount of nitrogen gas added can be calculated using the molecular weight of N2, which is 28 g/mol. Therefore, the number of moles added is 2.00 g / 28 g/mol = 0.0714 mol. We also need to convert the temperatures to Kelvin units because the ideal gas law requires temperature in Kelvin. K = 25 + 273 = 298 KK = -55 + 273 = 218 KNow, we can use the ideal gas law to solve for the final pressure. For this purpose, the number of moles will be the sum of the original and the added moles of nitrogen.P1V1 / n1T1 = P2V2 / n2T2We know that V1 = V2 = 2.00 L, n1 = n2 = 0.0714 mol, T1 = 298 K, and T2 = 218 K. We can substitute the values and solve for P2 as follows: P2 = P1n1T2 / n2T1 = (1.00 atm)(0.0714 mol)(218 K) / (0.0714 mol)(298 K)= 0.524 am therefore, the final pressure in the flask is 0.524 atm.

To know more about Ideal gas law visit

https://brainly.com/question/32523550

SPJ11

an inductor has a current i(t) = (0.500 a) cos[(275 s-1)t] flowing through it. if the maximum emf across the inductor is equal to 0.500 v, what is the self-inductance of the inductor?

Answers

We can use the formula for the emf induced in an inductor, which is given by:

emf = -L(di/dt)

where L is the self-inductance of the inductor and di/dt is the rate of change of current with time.

The maximum emf across the inductor is given as 0.500 V. Therefore, we have:

0.500 V = L(d/dt)(0.500 A cos[(275 s^-1)t])

Taking the derivative of the current with respect to time, we get:

di/dt = (-0.500 A) (275 s^-1) sin[(275 s^-1)t]

Substituting this back into the equation for emf, we get:

0.500 V = (-L) (-0.500 A) (275 s^-1) sin[(275 s^-1)t]

Simplifying, we get:

L = (0.500 V) / (0.500 A) / (275 s^-1) / sin[(275 s^-1)t]

Since we do not have information about the time t, we cannot find the exact value of the self-inductance L. However, we can say that it will be equal to:

L = 0.00363 H

assuming t = 0.5 seconds.

Learn more about change of current with time. from

https://brainly.com/question/31686186

#SPJ11

Consider the state that could represent the isospin component of the 19O nucleus, assuming it to be an inert core of 16O plus three neutrons: In) In) In) (a) Define an isopin raising operator in analogy to the spin raising operator and apply it to the 19O state to get the isobaric analogue state in 1'F. (b) What are the total isospin quantum number, I, and the quantum number for the projection of isospin along the 3 direction, 13, for both states above? (c) What two other nuclei have members of the isospin quartet corresponding to the states dis- cussed above?

Answers

(a) In order to define the isospin raising operator, let's denote the three neutrons as |n⟩ and the inert core of 16O as |16O⟩. The isospin raising operator, denoted by I+, acts on the total isospin space of the system.

The isospin raising operator, I+, is defined as:

I+ = Ix + iIy,

where Ix and Iy are the components of the isospin operator along the x and y axes, respectively.

Applying the isospin raising operator to the 19O state, we have:

I+ |19O⟩ = (Ix + iIy) |19O⟩.

Since the 19O state is composed of three neutrons and a 16O core, we can express it as:

|19O⟩ = |n⟩⨂|n⟩⨂|n⟩⨂|16O⟩,

where ⨂ represents the tensor product.

Applying the isospin raising operator to this state, we get:

I+ |19O⟩ = (Ix + iIy) (|n⟩⨂|n⟩⨂|n⟩⨂|16O⟩).

(b) To determine the total isospin quantum number (I) and the quantum number for the projection of isospin along the 3 direction (I3), we need to evaluate the action of the isospin operators on the states.

For the 19O state, let's assume its isospin quantum numbers are I and I3. Applying the isospin raising operator to the state |19O⟩, we obtain:

I+ |19O⟩ = (Ix + iIy) |n⟩⨂|n⟩⨂|n⟩⨂|16O⟩.

The resulting state, which represents the isobaric analogue state in 1'F, can be denoted as |1'F⟩.

Now, comparing the two expressions, we have:

(Ix + iIy) |n⟩⨂|n⟩⨂|n⟩⨂|16O⟩ = |1'F⟩.

Since |1'F⟩ belongs to the isospin space of the system, the isospin operators act on it as well.

To determine the total isospin quantum number (I) and the quantum number for the projection of isospin along the 3 direction (I3) for both states, we need to analyze the isospin content of |1'F⟩.

(c) To identify the two other nuclei that have members of the isospin quartet corresponding to the states discussed above, we need to consider the isospin multiplets.

The isospin quartet consists of four states with the same total isospin quantum number (I) but different values of the quantum number for the projection of isospin along the 3 direction (I3).

In this case, the states we have discussed are |19O⟩ and |1'F⟩. To find the other two states, we need to determine their isospin content.

If we denote the two additional states as |A⟩ and |B⟩, we can write the isospin multiplet as:

|19O⟩, |1'F⟩, |A⟩, |B⟩.

These states belong to the same isospin multiplet and have the same total isospin quantum number (I).

To determine the two other nuclei that correspond to |A⟩ and |B⟩, we need more information about the isospin content of the states. The isospin

Learn more about neutrons here:

https://brainly.com/question/31977312

#SPJ11

a tourist being chased by an angry bear is running in a straight line toward his car at a speed of 5.66 m/s. the car is a distance d away. the bear is 25.9 m behind the tourist and running at 7.46 m/s. the tourist reaches the car safely. what is the maximum possible value for d?

Answers

The maximum possible value for distance, d is calculated as equal to 80.9 meters. This means that if the car is farther away than 80.9 meters, the bear will catch up to the tourist before the tourist reaches the car.

The tourist's speed is given as 5.66 m/s, so we can find the time it takes for the tourist to reach the car by dividing the distance d by 5.66 m/s: time = d / 5.66

Now we need to figure out how far the bear can run in this amount of time. We can use the formula: distance = speed x time

The bear's speed is given as 7.46 m/s, and the time it takes for the tourist to reach the car is d / 5.66. So the distance the bear can run in this time is: distance = 7.46 x (d / 5.66)

Now we can set up an equation to find the maximum possible value for d. We know that the bear starts 25.9 m behind the tourist, and the tourist reaches the car safely, which means the bear doesn't catch up. So the maximum distance the bear can run is equal to the distance between the tourist and the car, which is: d - 25.9

Setting this equal to the distance the bear can run, we get: d - 25.9 = 7.46 x (d / 5.66)

Now we can solve for d: d - 25.9 = 1.32d
0.32d = 25.9

Thus, d = 80.9

So, the maximum possible value for d is 80.9 meters.

To know more about distance, refer

https://brainly.com/question/26550516

#SPJ11

A musician uses a tuning fork of frequency f= 255 Hz to tune his guitar and his trumpet. There is a beat frequency between the tuning fork and the guitar string and between the tuning fork and the trumpet for this note offbeat = 10 Hz. Determine the ratio t ' / t between the tension in the guitar string before tuning t and the tension in the guitar string once it is tuned t ' to eliminate the beat frequency.

Answers

The ratio of tension in the guitar string before and after the beats is 1.079.

Frequency of tuning fork, f = 255 Hz

Beats produced, fb = 10 Hz

The expression for the beat frequency between the tuning fork and guitar string is given by,

fb = f' - f

So, the frequency of the guitar string,

f' = fb + f

f' = 10 + 255

f' = 265 Hz

The frequency of the note produced is directly proportional to the square root of the tension in the string.

f ∝ √t

So,

f'/f = √(t'/t)

t'/t = (f'/f)²

t'/t = (265/255)²

t'/t = (1.039)²

t'/t = 1.079

To learn more about tension, click:

https://brainly.com/question/29525473

#SPJ1

determine the first three standing wave frequencies of a 40 cm long open closed pipe

Answers

The first three standing wave frequencies of a 40 cm long open-closed pipe can be found using the formula: f = nv/2L

Where:

f is the frequency of the standing wave

n is the harmonic number (1 for fundamental, 2 for second harmonic, 3 for third harmonic...)

v is the speed of sound (approximately 343 m/s in air at room temperature)

L is the length of the pipe

Since the pipe is open-closed, it will have an anti-node (point of maximum displacement) at the open end and a node (point of zero displacement) at the closed end.

For the fundamental frequency (first harmonic), n = 1. Plugging in the values:

f = (1)(343 m/s)/(2(0.4 m)) = 429 Hz

For the second harmonic, n = 2. Plugging in the values:

f = (2)(343 m/s)/(2(0.4 m)) = 858 Hz

For the third harmonic, n = 3. Plugging in the values:

f = (3)(343 m/s)/(2(0.4 m)) = 1287 Hz

Therefore, the first three standing wave frequencies of a 40 cm long open-closed pipe are approximately 429 Hz, 858 Hz, and 1287 Hz.

learn more about frequencies  here

https://brainly.com/question/31938473

#SPJ11

Consider A Thin Spherical Shell Of Radius 15.0 Cm With A Total Charge Of +28.0 ΜC Distributed Uniformly On Its Surface.(Take Radially Outward As The Positive Direction.)(A) Find The Electric Field 10.0 Cm From Thecenter Of The Charge Distribution. N/C(B) Find The Electric Field
Consider a thin spherical shell of radius 15.0 cm with a total charge of +28.0µC distributed uniformly on its surface.(Take radially outward as the positive direction.)
(a) Find the electric field 10.0 cm from thecenter of the charge distribution.
N/C
(b) Find the electric field 25.0 cm fromthe center of the charge distribution.
MN/C

Answers

The electric field is defined as the field that surrounds the charges. The electric field is radially outwards if the charge is positive and the electric field is radially inwards if the charge is negative.

The electric field is directly proportional to the charge and is inversely proportional to the distance between them. E = KQ/r, where Q is the charge and r is the distance between the source and test charge. k is the constant of proportionality and is equal to 9×10⁹N.m₂/C².

From the given,

The radius of the spherical shell, R = 15 cm

Total charge (Q) = 28μC

A) electric field E=?

r = 10 cm

The electric field at a distance of 10 cm contains no charge. The Gaussian surface is considered inside of the sphere as the sphere of radius is 15 cm. Inside the sphere, there is no charge. Hence, the electric field, E=0.

B) electric field at a distance of 25 cm=?

E = kQ/r

   = 9×10⁹×26×10⁻⁶ / (0.25)²

   = 3.744×10⁶ C/m.

Thus, the electric field at a distance of 25 cm is 3.74C/m.

To learn more about the Electric field:

https://brainly.com/question/11482745

#SPJ1

the isotope 204pb decays via α decay. the measured atomic mass of 204pb is 203.97304 u , and the daughter nucleus atomic mass is 199.96833 u .
Identify the daughter nucleus by nucleon number. Identify the daughter nucleus by atomic number. Identify the daughter nucleus by neutron number. Calculate the kinetic energy of the alpha particle if we can ignore the recoil of the daughter nucleus.

Answers

The daughter nucleus  is lead by atomic number, nucleon number and neutron number.

What is the name for radioactivity?

The term "radioactivity" is used to describe the natural process by which some atoms spontaneously split into distinct, more stable atoms, producing both particles and energy. Because unstable isotopes frequently change into more stable isotopes, this process, also known as radioactive decay, takes place.

An atomic nucleus emits an alpha particle (the helium nucleus), which causes it to change or "decay" into an other atomic nucleus with a mass number that is reduced by four and an atomic number that is reduced by two. This process is known as alpha decay or -decay.

The measured atomic mass of 204pb is 203.97304 u , and the daughter nucleus atomic mass is 199.96833 u . It is lead isotope

To learn more about isotope :

https://brainly.com/question/14220416

#SPJ4

a manometer measures a pressure difference as 45 inches of water. take the density of water to be 62.4 lbm/ is this pressure difference in pound-force per square inch, psi?

Answers

A manometer measures a pressure difference as 45 inches of water: The pressure difference of 45 inches of water is approximately 1.942 psi.

What is manometer?

A manometer is a device used to measure the pressure of a fluid, usually a gas or a liquid, in a closed system or a container. It consists of a U-shaped tube partially filled with a liquid, such as mercury or water, and the pressure of the fluid being measured causes a change in the liquid level within the tube.

To determine the pressure difference in psi (pound-force per square inch), we can use the relationship between pressure, height of the fluid column, and the density of the fluid.

The pressure difference (ΔP) can be calculated using the equation: ΔP = ρ × g × h,

where ΔP is the pressure difference, ρ is the density of the fluid, g is the acceleration due to gravity, and h is the height of the fluid column.

Given that the density of water (ρ) is 62.4 lbm/ft³ and the height of the water column (h) is 45 inches, we need to convert the units to obtain the pressure difference in psi.

First, let's convert the height from inches to feet: h = 45 inches * (1 foot / 12 inches) = 3.75 feet.

Next, we can substitute the values into the equation: ΔP = 62.4 lbm/ft³ × g × 3.75 feet.

The value of the acceleration due to gravity (g) is approximately 32.174 ft/s².

ΔP = 62.4 lbm/ft³ × 32.174 ft/s² × 3.75 feet.

Evaluating this expression gives the pressure difference in lb/ft². To convert it to psi, we divide by the conversion factor of 144 in²/ft²:

ΔP = (62.4 lbm/ft³ × 32.174 ft/s² × 3.75 feet) / 144 in²/ft².

This simplifies to: ΔP ≈ 1.942 psi.

Therefore, the pressure difference of 45 inches of water is approximately 1.942 psi.

To know more about manometer, refer here:

https://brainly.com/question/30898280#

#SPJ4

The manometer measures a pressure difference of 45 inches of water. However, we want to express this pressure difference in pounds-force per square inch (psi). A pound-force (lb) is the force exerted by a mass of one avoirdupois pound on the surface of the Earth due to gravity. A square inch (in^2) is the area of a square whose sides measure one inch. The pound-force per square inch (psi) is the pressure exerted by one pound-force applied to an area of one square inch. It can be represented mathematically as psi = lb/in^2 To convert the pressure difference in inches of water to psi, we need to use the following formula: psi = (inches of water) x (density of water) / (conversion factor)where the conversion factor is the number of inches of water per psi. We have to determine the value of the conversion factor before we can proceed. Since we know that the manometer measures a pressure difference of 45 inches of water, and the density of water is 62.4 lbm/, we can determine the value of the conversion factor as follows:1 psi = 2.036 in. of water density of water = 62.4 lbm/Conversion factor = 1 psi / 2.036 in. of water = 0.491 lb/in^2Substituting the given values into the formula, we get:psi = (45 inches of water) x (62.4 lbm/) / (0.491 lb/in^2) = 573.6 lb/in^2Therefore, the pressure difference of 45 inches of water is equivalent to 573.6 pounds-force per square inch (psi). Thus, the statement “Is this pressure difference in pound-force per square inch, psi?” is TRUE

To know more about manometer visit

https://brainly.com/question/32523510

SPJ11

you are in a spaceship flying toward two stationary stars. star a is really far away and star b is nearby. which star will have the largest blueshift? a) star a b) star b c) they will have the same blueshift d) cannot tell from the information given

Answers

Star b will have the largest blueshift. The correct option is B.

Since the spaceship is flying towards the two stationary stars, the light waves from both stars will be blueshifted. However, the amount of blueshift will depend on the velocity of the stars relative to the observer. Since star b is nearby, it is likely that it has a larger velocity relative to the observer than star a, which is really far away. As a result, the light waves from star b will be more compressed and will have a larger blueshift compared to star a.

The blueshift occurs when an object, such as a star, is moving towards the observer (in this case, you in the spaceship). The nearby star (Star B) will have a larger blueshift because its relative motion towards the spaceship is greater than that of the farther star (Star A).

To know more about velocity visit:-

https://brainly.com/question/30559316

#SPJ11

the radius of a circle is increasing at a constant rate of 0.4 meters per second. what is the rate of increase in the area of the circle at the instant when the circumference is 60 pie

Answers

The rate of increase of the area of the circle at the instant when the circumference is 60π is 24π square meters per second.

To solve this problem, we need to use the formulas for the circumference and area of a circle:
Circumference = 2πr
Area = πr^2
We are given that the radius of the circle is increasing at a constant rate of 0.4 meters per second. Therefore, the rate of increase of the radius is dr/dt = 0.4 m/s.
We are also given that the circumference of the circle is 60π at the instant we are interested in. We can use this information to find the value of the radius:
Circumference = 2πr
60π = 2πr
r = 30

Now we can use the formulas for the circumference and area to find the rate of increase of the area:
Circumference = 2πr
dC/dt = 2π(dr/dt)
dC/dt = 2π(0.4)
dC/dt = 0.8π
Area = πr^2
dA/dt = 2πr(dr/dt)
dA/dt = 2π(30)(0.4)
dA/dt = 24π

To know more about circumference  visit:-

https://brainly.com/question/28757341

#SPJ11

A certain simple pendulum has a period on the earth of 1.40 s. Part A What is its period on the surface of Mars, where g = 3,71 m/s2 ?Express your answer with the appropriate units. ?

Answers

The formula for the period of a simple pendulum is:

T = 2π√(L/g)

where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.

We can use this formula to find the period on Mars. We know that the period on Earth is 1.40 s, so we can set up a ratio:

T(Mars) / T(Earth) = √(g(Mars) / g(Earth))

Substituting in the values we have:

T(Mars) / 1.40 s = √(3.71 m/s^2 / 9.81 m/s^2)

Simplifying:

T(Mars) / 1.40 s = 0.678

Multiplying both sides by 1.40 s:

T(Mars) = 0.949 s

Therefore, the period of the simple pendulum on Mars is 0.949 seconds (rounded to three significant figures).

Learn more about  simple pendulum on Mars from

https://brainly.com/question/31730303

#SPJ11

what do you do if your trying to use wires for your cart and the hole in the middle coes all the way through

Answers

It's essential to ensure that the wire is securely in place and protected from any potential damage or interference.

If you are trying to use wires for your cart and the hole in the middle goes all the way through, you can do the following:

Use a grommet: This is a protective ring that can be inserted into the hole to prevent the wires from getting damaged by the edges of the hole.

Secure the wires: Use cable ties or clips to keep the wires in place, ensuring they don't slide through the hole or get tangled.
Use a spacer: A spacer can be placed inside the hole to partially fill it, allowing the wires to pass through without falling out.
Insert a Grommet: If the hole in the cart has sharp edges that could damage the wire insulation, you can insert a grommet. A grommet is a rubber or plastic ring that can be placed inside the hole to protect the wire and provide a snug fit.

Use Adhesive or Sealant: If the wire is passing through the hole in a stationary or fixed position, you can use adhesive or sealant to secure the wire in place. This can help fill any gaps or provide additional stability.

Modify or Repair the Cart: Depending on the specific situation, you may consider modifying or repairing the cart to accommodate the wire properly. This could involve using plugs, inserts, or creating a new opening with the appropriate size.

If you are unsure or need assistance, it is advisable to consult a professional or someone with expertise in wiring or cart modifications to ensure a safe and reliable setup.
To know more about interference, visit:

https://brainly.com/question/22320785

#SPJ11

A car moves a distance of 50. 0 km West, followed by a distance of 72 km North. What is the total distance traveled, in units of kilometers?

Answers

The total distance traveled by the car is approximately 87.68 kilometers.

To find the total distance traveled, we can use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

In this case, the car travels 50.0 km west and 72 km north. These distances form the legs of a right triangle, and the total distance traveled is the hypotenuse.

Using the Pythagorean theorem:

Total distance² = (Distance traveled west)² + (Distance traveled north)²

Total distance² = (50.0 km)² + (72 km)²

Total distance² = 2500 km² + 5184 km²

Total distance² = 7684 km²

Taking the square root of both sides to find the total distance:

Total distance = √7684 km²

Total distance ≈ 87.68 km

Therefore, the total distance traveled by the car is approximately 87.68 kilometers.

Learn more about kilometers https://brainly.com/question/13987481

#SPJ11

if a 1 cm3 cube is scaled up to a cube that is 10 cm long on each side, how does the surface area to volume ratio change?

Answers

When a 1 cm³ cube is scaled up to a cube that is 10 cm long on each side, the surface area to volume ratio changes.

The surface area to volume ratio is determined by dividing the surface area of an object by its volume.

For the 1 cm³ cube, the surface area is 6 cm² (since all sides of a cube have equal area), and the volume is 1 cm³.

Surface area to volume ratio for the 1 cm³ cube: 6 cm² / 1 cm³ = 6 cm⁻¹

For the scaled-up cube with sides measuring 10 cm each, the surface area is 6 × (10 cm)² = 600 cm², and the volume is (10 cm)³ = 1000 cm³.

Surface area to volume ratio for the scaled-up cube: 600 cm² / 1000 cm³ = 0.6 cm⁻¹

Comparing the ratios, we can see that the surface area to volume ratio decreases when scaling up the cube. In this case, the surface area to volume ratio reduces from 6 cm⁻¹ for the smaller cube to 0.6 cm⁻¹ for the larger cube. This means that the relative surface area decreases as the volume increases, indicating a relatively smaller surface area compared to the volume in the larger cube.

learn more about "area ":- https://brainly.com/question/25292087

#SPJ11

A football player kicks a ball with a force of 30 N. Find the impulse on the ball if his foot is in contact with the ball for .02 s.

Answers

Answer:

[tex]\Huge \boxed{\text{Impulse = 0.6 N s}}[/tex]

Explanation:

Let's start by defining impulse. By multiplying the force applied to the object by the time that the force was applied, the term "impulse" relates to a measure of the change in momentum of an object. Mathematically, this is written as:

[tex]\LARGE \boxed{\text{Impulse = Force $\times$ Time}}[/tex]

The football player kicks the ball in this case, with a force of 30 N, and his foot makes contact with it for 0.02 seconds. We can easily enter these values into the impulse formula to determine the impulse on the ball:

[tex]\LARGE \text{Impulse = Force $\times$ Time}\\\text{Impulse = 30 N $\times$ 0.02 s}\\\text{Impulse = 0.6 N s}[/tex]

So the impulse on the ball is 0.6 N s.

----------------------------------------------------------------------------------------------------------

Symbols

Newton = N

Newton-Second = N s / N · s

0.02 s = 0.02 seconds

----------------------------------------------------------------------------------------------------------

Further Clarification

To clarify further, we can use impulse as a measurement of how much the player's foot force changes the ball's momentum.

The ball's momentum is increased by the player by kicking it with a force of 30 N since momentum is calculated as the product of an object's mass and velocity. The impulse, which in this case is, 0.6 N s, determines how much momentum is added to the ball.

A 16.0-μF capacitor is charged by a 120.0-V power supply, then disconnected from the power and connected in series with a 0.270-mH inductor.
Part A
Calculate the oscillation frequency of the circuit.
Express your answer with the appropriate units.
Part B
Calculate the energy stored in the capacitor at time t=0 ms (the moment of connection with the inductor).
Express your answer with the appropriate units.
Part C
Calculate the energy stored in the inductor at t = 1.30 ms.
Express your answer with the appropriate units.

Answers

Part A:To calculate the oscillation frequency of the circuit, we can use the formula: f = 1 / (2π√(LC))

C = 16.0 μF = 16.0 × 10^(-6) F

L = 0.270 mH = 0.270 × 10^(-3) H

where f is the frequency, L is the inductance, and C is the capacitance.

Given:

C = 16.0 μF = 16.0 × 10^(-6) F

L = 0.270 mH = 0.270 × 10^(-3) H

Substituting the values into the formula:

f = 1 / (2π√(0.270 × 10^(-3) × 16.0 × 10^(-6)))

Calculating the frequency: f ≈ 1.27 × 10^3 Hz

Therefore, the oscillation frequency of the circuit is approximately 1.27 kHz.

Part B: The energy stored in the capacitor at time t = 0 ms is given by the formula: E = 1/2 CV^2

where E is the energy, C is the capacitance, and V is the voltage.

C = 16.0 μF = 16.0 × 10^(-6) F

V = 120.0 V

Substituting the values into the formula:

E = 1/2 × 16.0 × 10^(-6) × (120.0)^2

Calculating the energy: E ≈ 115.2 μJ

Therefore, the energy stored in the capacitor at time t = 0 ms is approximately 115.2 μJ.

Part C: The energy stored in the inductor at time t = 1.30 ms is given by the formula: E = 1/2 LI^2

where E is the energy, L is the inductance, and I is the current.

Since we are not given the current directly, we would need additional information or equations to calculate the energy stored in the inductor at a specific time.

Learn more about oscillation here

https://brainly.com/question/22499336

#SPJ11

FILL THE BLANK. Consider a fish swimming 5 m below the free surface of water. The increase in the pressure exerted on the fish when it dives to a depth of 45 m below the free surface is _____.

Answers

The increase in the pressure exerted on the fish when it dives to a depth of 45 m below the free surface is equal to the pressure difference between the two depths.

To calculate this pressure difference, we can use the concept of hydrostatic pressure. The pressure in a fluid increases with depth due to the weight of the overlying fluid. The increase in pressure with depth is given by the equation:

ΔP = ρgh

Where:

ΔP is the pressure difference

ρ is the density of the fluid

g is the acceleration due to gravity

h is the difference in depth

In this case, we are considering water as the fluid. The density of water is approximately 1000 kg/m^3, and the acceleration due to gravity is approximately 9.8 m/s^2. The difference in depth is 45 m - 5 m = 40 m.

Plugging these values into the equation, we get:

ΔP = (1000 kg/m^3) * (9.8 m/s^2) * (40 m) = 392,000 Pa

Therefore, the increase in pressure exerted on the fish when it dives to a depth of 45 m below the free surface is 392,000 Pa.

Learn more about pressure  from

https://brainly.com/question/28012687

#SPJ11

points p and q are connected to a battery of fixed voltage. as more resistors r are added to the parallel circuit, what happens to the total current in the circuit?

Answers

In a parallel circuit, as more resistors (R) are added, the total current in the circuit (Itotal) increases.

This is because in a parallel circuit, the total current is divided among the different branches according to the individual resistances. Each resistor provides an additional pathway for current to flow, resulting in an overall decrease in the total resistance of the circuit.

According to Ohm's Law (I = V/R), a decrease in total resistance (R) leads to an increase in total current (I). Therefore, adding more resistors in parallel decreases the total resistance and increases the total current in the circuit.

Learn more about  parallel circuit, as more resistors from

https://brainly.com/question/907760

#SPJ11

an australian emu is running due north in a straight line at a speed of 13.0 m/s and slows down to a speed of 9.90 m/s in 4.70 s. (a) what is the magnitude and direction of the bird's acceleration? (b) assuming that the acceleration remains the same, what is the bird's velocity after an additional 1.80s has elapsed?

Answers

(a) The bird's acceleration magnitude is 0.66 m/s² directed due south. (b) After an additional 1.80 s, the bird's velocity is 8.01 m/s due north.


(a) To find the acceleration, use the formula a = (v_f - v_i) / t:
1. Determine the initial velocity (v_i) = 13.0 m/s north
2. Determine the final velocity (v_f) = 9.90 m/s north
3. Determine the time interval (t) = 4.70 s
4. Calculate acceleration: a = (9.90 - 13.0) / 4.70 = -0.66 m/s², which is directed due south (opposite of north)

(b) To find the velocity after an additional 1.80 s, use the formula v_f = v_i + a*t:
1. Determine the initial velocity (v_i) = 9.90 m/s north
2. Determine the acceleration (a) = -0.66 m/s² (south)
3. Determine the time interval (t) = 1.80 s
4. Calculate the final velocity: v_f = 9.90 + (-0.66)*1.80 = 8.01 m/s, which is directed due north

Learn more about acceleration here:

https://brainly.com/question/17779586

#SPJ11

Other Questions
(1 point) Let A= (-6,-1), B=(-2,3), C = (0, -1), and D=(5,2). Let f(z) be the function whose graph consists of the three line segments: AB, BC, and CD. Evaluate the definite integral by interpreting it in terms of the signed area (the area between f(x) and the z-axis). [ f(x) dx = A company has an independent appraisal showing that the value of its fixed asset investment is valued at an amount substantially above its current net book value (gross cost minus accumulated depreciation). The company desires to increase the value of its fixed assets to reflect the new value. In this situation: a)Revaluation is allowed by GMP but not IFRS b)Revaluation is not allowed under elther GAAP OR IFRS c)Revaluation is lowed IFRS, but not GAAP Find the seriesradius and interval of convergence. Find the values of x for which the series converges (b) absolutely and (c) conditionally (-1)0*x+7) n=1 (a) The limit represents the derivative of some function f at some number a. State such an f and a. 2 cos(O) - lim e TT O f(x) = cos(x), a = 3 TT O f(x) = cos(x), a = 4 TT O f(x) = sin(x), a = Of(x) = cos(x), a = The 6 TC O f(x) = sin(x), a = 6 TT O f(x) = sin(x), a = 4 you are given the following information about an ar(1) model with mean 0: rho(2) = 0.215, rho(3) = 0.100, xt = 0.431. question: calculate the forecasted value of xt 1. Show your work and calculate the total number of cations and anions in the unit cell of: a. Fluorite (CaF2) b. Zinc blende (Zn) Cesium Chloride d. Rock salt (NaCl) A bank has $20 million in assets with risk-weighted assets of $10 million. CET1 capital is $500,000, additional Tier I capital is $50,000, and Tier II capital is $400,000. Which of the following will likely improve the bank's capital adquecy measured by the three capital ratios? suppose that are i.i.d. random variables with a n(, ) distribution. how would the probability density of change as the sample size n increases? hint: think about the law of large numbers. The power series for the exponential function centered at 0 is e* = , for -[infinity]0 Case: Renee Albertelli and Richard Rodriguez shared a dream ever since they met in college: to start their own business. Both took business and marketing courses and began their careers in established businesses so that they could gain experience about what it takes to turn an idea into a business reality. As they advanced in their careers, the firms they worked for didnt offer the types of challenges they wanted to pursue. They decided they wanted to work for themselves, and they saw an opportunity. For her job in marketing at a telecommunications firm, Albertelli had traveled to several regions of the world with developing economies, including Africa, Asia, and South America. She became increasingly aware that women in these regions wantedand neededto find new ways to earn a living to support and educate their families. Rodriguez, on the other hand, spent his time working in the financial offices of a major U.S. clothing firm that had its own stores nationwide. During her travels, Albertelli met a group of women who were highly skilled at crafting handmade sandals. They prepared the leather by hand, designed their own shoe patterns, and assembled each pair of sandals with simple tools. Albertelli thought the finished products were beautiful. She was also impressed by the womens desire to operate their own businesses. She thought they would make a great team, if enough sandals could be produced for saleeven in small numbersin the United States. Albertelli contacted Rodriguez when she returned from her trip, and the two friends met to create a business plan. Both believed in the product and the causethey could build a business based on the desire and craftsmanship of small groups of artisans who wanted to band together to form their own businesses and the market for handcrafted goods in the United States. They knew if they could succeed with one group of women and their products, many more would follow. They banked on the fact that U.S. consumers would fall in love with the idea as welland buy the products. Albertelli and Rodriguez took a huge riskthey decided to cash in their retirement savings to fund the creation of the first batch of sandals. They devised a plan for acquiring more financial backing so that they could transport and advertise the product. They developed a marketing plan based not only on the beauty of the sandals but also on lives of the women who created them, so that consumers would feel a connection with the makers. They named their company Shoes With Soul. The two entrepreneurs didnt need to worry initially about locating a manufacturing facility because the shoes would continue to be made in the village where they originated. Albertelli and Rodriguez worked closely with the woman who had started the shoemaking project in her village. When they had enough prototypes, they began to make the rounds to existing stores. They also considered renting kiosks at certain malls and investigated setting up a booth at specific sporting and cultural events. Although they understood the importance of a website, they decided not to sell the sandals directly online until they had a more complete line of products to offer consumers. At first, interest in the shoes was limited to small boutiquesentrepreneurs themselvesuntil a local TV news show heard about the business and decided to do a story on Albertelli, Rodriguez, and the women. Then things began to change, and Shoes With Soul seemed to take off. Rodriguez and Albertelli were excited by their popularitybut how could they fulfill orders, expand their product line, and grow at a sensible pace? summarize the normal relationship between insulin and glucose which of the following threats would be classified as the actions of a hactivist? Adjusted Trial Balance from Buildex Company FILL THE BLANK. the roving mongol armies of ___ violently subjugated huge parts of asia and europe during the middle ages. for centuries, explorers, missionaries, and others gave accounts of different cultures that they encountered around the world. anthropologists continued this tradition with formalized approaches to data collection and analysis. place the following descriptive accounts of other cultures in order from first to most recent. start by clicking the first item in the sequence or dragging it here drag the items below into the box above in the correct order, starting with the first item in the sequence. herodotus travels throughout egypt, persia, and the area now known as ukraine. christopher columbus arrives in the americas. marco polo crosses from italy to china on the silk route. julian steward conducted fieldwork in puerto rico. could i get help please?Casper and Cecile divorced in 2018. As part of the divorce settlement, Casper transferred stock to Cecile Casper purchased the stock for $160,000, and it had a market value of $256,000 on the date of 10 9 8+ 7+ Q6 5 4+ 3+ 2+ 1+ +++ -10-9-8-7-6-5-4-3-2-1 1 2 3 L 9 10 4 5 6 8 -2+ -37 -3+ 4+ -5+ -6+ -7+ -8+ --9+ -10 Determine the following limit for the function shown in the graph above. (If -3.2 Let f(2)= Evaluate f'(x) at x = 7. sin(2) + cos(x) f(1) = ' 1 Explain how you might use the concept of beat frequency to tune a musical instrument using tuning forks. Would this method work better for an instrument that is slightly out of tune or an instrument that is completely out of tune? For 19 & 20 can you please describesome tips or strategies for solving.2. Find derivatives of the following functions a. f(x) = 2 ln(x) + 12 = b. g(x) = ln(Vx2 + 3) c. H() = sin (sin (2x)) = 19) Find the equation of the line tangent to the graph of f(x) = at the point