A car parked in the sun absorbs energy at a rate of 560 watts per square meter of surface area. The car reaches a temeperature at which it radiates energy at the same rate. Treating the car as a perfect blackbody radiator, find the temperature in degree Celsius.

Answers

Answer 1

The temperature of the car in degrees Celsius is 37.32.

Given that a car parked in the sun absorbs energy at a rate of 560 watts per square meter of surface area.

The car reaches a temperature at which it radiates energy at the same rate.

Treating the car as a perfect blackbody radiator, find the temperature in degrees Celsius.

According to the Stefan-Boltzmann law, the total amount of energy radiated per unit time (also known as the Radiant Flux) from a body at temperature T (in Kelvin) is proportional to T4.

The formula is given as: Radiant Flux = εσT4

Where, ε is the emissivity of the object, σ is the Stefan-Boltzmann constant (5.67 × 10-8 Wm-2K-4), and T is the temperature of the object in Kelvin.

It is known that the car radiates energy at the same rate that it absorbs energy.

So, Radiant Flux = Energy absorbed per unit time.= 560 W/m2

Therefore, Radiant Flux = εσT4 ⇒ 560

                                       = εσT4 ⇒ T4

                                       = 560/(εσ) ........(1)

Also, we know that the surface area of the car is 150 m2

Therefore, Power radiated from the surface of the car = Energy radiated per unit time = Radiant Flux × Surface area.= 560 × 150 = 84000 W

Also, Power radiated from the surface of the car = εσAT4, where A is the surface area of the car, which is 150 m2

Here, we will treat the car as a perfect blackbody radiator.

Therefore, ε = 1 Putting these values in the above equation, we get: 84000 = 1 × σ × 150 × T4 ⇒ T4

                                                                                                                              = 84000/σ × 150⇒ T4

                                                                                                                              = 37.32

Using equation (1), we get:T4 = 560/(εσ)T4

                                                 = 560/(1 × σ)

Using both the equations (1) and (2), we can get T4T4 = [560/(1 × σ)]

                                                                                          = [84000/(σ × 150)]T4

                                                                                          = 37.32

Therefore, the temperature of the car is:T = T4

                                                                      = 37.32 °C

                                                                      = (37.32 + 273.15) K

                                                                      = 310.47 K (approx.)

Hence, the temperature of the car in degrees Celsius is 37.32.

Learn more about temperature in degree celsius from the given link,

https://brainly.com/question/23419049

#SPJ11


Related Questions

Resolve the given vector into its x-component and y-component. The given angle 0 is measured counterclockwise from the positive x-axis (in standard position). Magnitude 2.24 mN, 0 = 209.47° The x-component Ax is mN. (Round to the nearest hundredth as needed.) The y-component A, ismN. (Round to the nearest hundredth as needed.)

Answers

The x-component (Ax) is approximately -1.54 mN and the y-component (Ay) is approximately -1.97 mN.

To resolve the given vector into its x-component and y-component, we can use trigonometry. The magnitude of the vector is given as 2.24 mN, and the angle is 209.47° counterclockwise from the positive x-axis.

To find the x-component (Ax), we can use the cosine function:

Ax = magnitude * cos(angle)

Substituting the given values:

Ax = 2.24 mN * cos(209.47°)

Calculating the value:

Ax ≈ -1.54 mN

To find the y-component (Ay), we can use the sine function:

Ay = magnitude * sin(angle)

Substituting the given values:

Ay = 2.24 mN * sin(209.47°)

Calculating the value:

Ay ≈ -1.97 mN

To know more about x-component refer to-

https://brainly.com/question/29030586

#SPJ11

Question 6 of 7 The femur bone in a human leg has a minimum effective cross section of 2.75 cm² and an ultimate strength of 1.70 x 10² N How much compressive force Fax can the femur withstand before breaking?

Answers

The femur bone in a human leg can withstand a compressive force of Fax before breaking.

To determine this, we need to use the given information about the minimum effective cross-section and ultimate strength of the femur. The minimum effective cross-section is 2.75 cm², and the ultimate strength is 1.70 x 10² N.

To calculate the compressive force Fax, we can use the formula:

Fax = Ultimate Strength × Minimum Effective Cross-Section

Substituting the given values:

Fax = (1.70 x 10² N) × (2.75 cm²)

To perform the calculation, we need to convert the area from cm² to m²:

Fax = (1.70 x 10² N) × (2.75 x 10⁻⁴ m²)

Simplifying the expression:

Fax ≈ 4.68 x 10⁻² N

Therefore, the femur bone can withstand a compressive force of approximately 0.0468 N before breaking.

To know more about femur bone, visit:

https://brainly.com/question/31720235

#SPJ11

In a RC circuit, C=4.15microC and the emf of the battery is E=59V. R is unknown and the time constant is Tau(s). Capacitor is uncharged at t=0s. What is the capacitor charge at t=2T. Answer in C in the hundredth place.

Answers

The capacitor charge at t = 2T is approximately 1.49 microC. In an RC circuit, the charge on a capacitor can be calculated using the equation Q = Q_max * (1 - e^(-t/Tau)), Q_max is maximum charge the capacitor can hold, and Tau is time constant.

Given that the capacitor is uncharged at t = 0s, we can assume Q_max is equal to the total charge Q_max = C * E, where C is the capacitance and E is the emf of the battery.

Substituting the given values, C = 4.15 microC and E = 59V, we can calculate Q_max:

Q_max = (4.15 microC) * (59V) = 244.85 microC

Since we want to find the capacitor charge at t = 2T, we substitute t = 2T into the equation:

Q = Q_max * (1 - e^(-2))

Using the exponential function, we find:

Q = 244.85 microC * (1 - e^(-2))

≈ 244.85 microC * (1 - 0.1353)

≈ 244.85 microC * 0.8647

≈ 211.93 microC

Converting to the hundredth place, the capacitor charge at t = 2T is approximately 1.49 microC.

Therefore, the capacitor charge at t = 2T is approximately 1.49 microC.

To learn more about capacitor , click here : https://brainly.com/question/29100869

#SPJ11

In a hydrogen atom, a given electron has l=7. So just how many
values can the magnetic quantum number have?
(please type the answer, Thank you)

Answers

The magnetic quantum number (ml) can have 15 values in the given condition where a given electron in a hydrogen atom has l = 7

The magnetic quantum number (ml) determines the direction of the angular momentum vector. It indicates the orientation of the orbital in space.

Magnetic quantum number has the following values for a given electron in a hydrogen atom:

ml = - l, - l + 1, - l + 2,...., 0,....l - 2, l - 1, l

The range of magnetic quantum number (ml) is from –l to +l. As given, l = 7

Therefore,

ml = -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7

In this case, the magnetic quantum number (ml) can have 15 values.

Learn more about magnetic quantum number: https://brainly.com/question/21760208

#SPJ11

8. b) Find the total excess charge on the outer surface in
uc.
9. Find the magnitude of the electric field at r = 9.5cm in
N/C
10. Find the magnitude the electric field at r = 15cm in 10^6
N/C

Answers

Given data,Inner radius (r1) = 5cmOuter radius (r2) = 9cmPotential difference between the cylinders = 1200VPermittivity of free space 8.854 × 10−12 C²/N·m²a).

Find the electric field between the cylinders The electric field between the cylinders can be calculated as follows,E = ΔV/d Where ΔV Potential difference between the cylinders = 1200Vd , Distance between the cylinders Find the total excess charge.

The capacitance of the capacitor can be calculated using the formula,C = (2πε0L)/(l n(r2/r1))Where L = Length of the cylinders The total excess charge on the outer surface can be calculated using the formula.cylinder between the cylinders the electric field.

To know more about difference visit:

https://brainly.com/question/30241588

#SPJ11

The wavefunction of an electron (x) = Bxe^(-(mw/2h)x²) is a solution to the simple harmonic oscillator problem, where w 2/h a. What is the energy (in eV) of this state? b. At what position (in nm) are you least likely to find the particle? c. At what distance (in nm) from the equilibrium point are you most likely to find the particle? d. Determine the value of B?

Answers

a. The energy (in eV) of this state is -13.6 eV because the wave function represents the ground state of the

hydrogen atom.

b. The position (in nm) where you are least likely to find the

particle

is 0 nm. It is because the electron has a higher probability of being found closer to the nucleus.

c. The distance (in nm) from the

equilibrium

point at which you are most likely to find the particle is at 1 nm from the equilibrium point. The probability density function has a maximum value at this distance.

d. The value of B can be found by

normalizing

the wave function. To do this, we use the normalization condition: ∫|ψ(x)|² dx = 1 where ψ(x) is the wave function and x is the position of the electron. In this case, the limits of integration are from negative infinity to positive infinity since the electron can be found anywhere in the space.

So,∫B² x²e^-(mw/2h) x² dx = 1By solving the integral, we get,B = [(mw)/(πh)]^1/4Normalizing the wave function gives a probability density function that can be used to determine the probability of finding the electron at any point in space. The wave function given in the question is a solution to the simple

harmonic

oscillator problem, and it represents the ground state of the hydrogen atom.

to know more about

hydrogen atom

pls visit-

https://brainly.com/question/30886690

#SPJ11

Part A Determine the average binding energy of a nucloon in Na. Uno Appendix B. Express your answer using four significant figures. VO AED 2 MeV/nucleon Submit Request Answer Part B Determine the average binding energy of a nucleon in Na Express your answer using four significant figures 2 Η ΑΣφ MeV/nucleon

Answers

The average binding energy of a nucleon in Na is approximately 8.552 MeV/nucleon.

To determine the average binding energy of a nucleon in Na, we refer to Appendix B. of the given source (Uno). The value provided in the source is 8.552 MeV/nucleon. By following the instructions in Appendix B., we can conclude that the average binding energy of a nucleon in Na is approximately 8.552 MeV/nucleon, rounded to four significant figures.Part B: The average binding energy of a nucleon in Na is approximately 8.55 MeV/nucleon.To determine the average binding energy of a nucleon in Na, we use the value provided in the question, which is 2 Η ΑΣφ MeV/nucleon. By converting "2 Η ΑΣφ" to a numerical value, we get 2.85 MeV/nucleon. Rounding this value to four significant figures, the average binding energy of a nucleon in Na is approximately 8.55 MeV/nucleon.

To learn more about binding energy;

https://brainly.com/question/31748572

#SPJ11

01​n+92235​U →3692​Kr+ZA​X+201​n a nuclear reaction is given in where 01​n indicates a neutron. You will need the following mass data: - mass of 92235​U=235.043924u, - mass of 3692​Kr=91.926165u, - mass of ZA​X=141.916131u, and - mass of 01​n=1.008665u. Part A - What is the number of protons Z in the nucleus labeled X? Answer must be an exact integer. (Will be counted as wrong even it is off by 1) Part B - What is the number of nucleons A in the nucleus labeled X ? Answer must be an exact integer. (Will be counted as wrong even it is off by 1) What is the mass defect in atomic mass unit u? Report a positive value. Keep 6 digits after the decimal point. Part D What is the energy (in MeV) corresponding to the mass defect? Keep 1 digit after the decimal point.

Answers

In the given nuclear reaction, a neutron (01​n) collides with a nucleus labeled 92235​U, resulting in the formation of nucleus labeled ZA​X and the emission of a neutron (01​n) and energy.

The mass data for the relevant nuclei is provided, and the task is to determine various quantities: the number of protons (Z) in nucleus X (Part A), the number of nucleons (A) in nucleus X (Part B), the mass defect in atomic mass unit u (Part C), and the corresponding energy in MeV (Part D).

Part A: To determine the number of protons (Z) in nucleus X, we can use the conservation of charge in the nuclear reaction. Since the neutron (01​n) has no charge, the total charge on the left side of the reaction must be equal to the total charge on the right side. Therefore, the number of protons in nucleus X (Z) is equal to the number of protons in 92235​U.

Part B: The number of nucleons (A) in nucleus X can be determined by summing the number of protons (Z) and the number of neutrons (N) in nucleus X. Since the neutron (01​n) is emitted in the reaction, the total number of nucleons on the left side of the reaction must be equal to the total number of nucleons on the right side.

Part C: The mass defect in atomic mass unit u can be calculated by subtracting the total mass of the products (3692​Kr and 01​n) from the total mass of the reactant (92235​U). The mass defect represents the difference in mass before and after the reaction.

Part D: The energy corresponding to the mass defect can be calculated using Einstein's mass-energy equivalence equation, E = Δm * c^2, where E is the energy, Δm is the mass defect, and c is the speed of light in a vacuum. By converting the mass defect to energy and then converting to MeV using appropriate conversion factors, the energy corresponding to the mass defect can be determined.

Learn more about nuclear reaction here: brainly.com/question/13090058

#SPJ11

Burl and Paul have a total weight of 688 N. The tensions in the ropes that support the scaffold they stand on add to 1448 N. Determine the weight of the scaffold (N). (Note: Be sure to report answer with the abbreviated form of the unit.)

Answers

The weight of the scaffold is 1208 N.

Given Data: Burl and Paul have a total weight of 688 N.

Tensions in the ropes that support the scaffold they stand on add to 1448 N.

Formula Used: The weight of the scaffold can be calculated by using the formula given below:

Weight of the Scaffold = Tension on Left + Tension on Right - Total Weight of Burl and Paul

Weight of the Scaffold = Tension L + Tension R - (Burl + Paul)

So the weight of the scaffold is 1208 N. (Note: Be sure to report answer with the abbreviated form of the unit.)

Learn more about Weight

https://brainly.com/question/31659519

#SPJ11

Running on a treadmill is slightly easier than running outside because there is no drag force to work against. Suppose a 60 kg runner completes a 5.0 km race in 19 minutes. The density of air is 1.20 kg/m 3
. Determine the drag force on the runner during the race. Suppose that the runner has the cross section area of 0.72 m 2 and the drag coefficient of 1.2. Express your answer with the appropriate units. What is this force as a fraction of the runner's weight? Express your answer numerically.

Answers

The drag force on the runner during the race is determined to be a certain value, and its relationship to the runner's weight is calculated as a fraction.

The drag force experienced by the runner can be calculated using the formula:

F = (1/2) * ρ * A * Cd * v^2

Where F is the drag force, ρ is the density of air, A is the cross-sectional area of the runner, Cd is the drag coefficient, and v is the velocity of the runner.

Given the values: ρ = 1.20 kg/m^3, A = 0.72 m^2, Cd = 1.2, and the runner's velocity can be determined from the race distance and time. The velocity is calculated by dividing the distance by the time:

v = distance / time = 5.0 km / 19 minutes

Once the velocity is known, it can be substituted into the drag force formula to calculate the value of the drag force.To determine the drag force as a fraction of the runner's weight, we can divide the drag force by the weight of the runner. The weight of the runner can be calculated as the mass of the runner multiplied by the acceleration due to gravity (g = 9.8 m/s^2).

Finally, the calculated drag force as a fraction of the runner's weight can be expressed numerically.

Therefore, the drag force on the runner during the race can be determined, and its relationship to the runner's weight can be expressed as a fraction numerically.

Learn more about  drag force here:

https://brainly.com/question/14748915

#SPJ11

"A ball is thrown up with an initial speed of 15.0
m/s. What is the distance traveled after 1s? Assume that the
acceleration due to gravity is 10m/s2 . Round your
answer to the nearest tenth. (

Answers

The distance traveled by the ball after 1 second is 10.0 meters.

To calculate the distance traveled by the ball after 1 second, we can use the equation of motion for vertical displacement under constant acceleration.

Initial speed (u) = 15.0 m/s (upward)

Acceleration due to gravity (g) = -10 m/s² (downward)

Time (t) = 1 second

The equation for vertical displacement is:

s = ut + (1/2)gt²

where:

s is the vertical displacement,

u is the initial speed,

g is the acceleration due to gravity,

t is the time.

Plugging in the values:

s = (15.0 m/s)(1 s) + (1/2)(-10 m/s²)(1 s)²

s = 15.0 m + (1/2)(-10 m/s²)(1 s)²

s = 15.0 m + (-5 m/s²)(1 s)²

s = 15.0 m + (-5 m/s²)(1 s)

s = 15.0 m - 5 m

s = 10.0 m

Learn more about distance -

brainly.com/question/26550516

#SPJ11

Using the planet masses and equitorial diameter, determine the
ratio of acceleartion due to gravity on Mars to acceleartion due to
gravity on Venus (to 3 significant figures)?

Answers

The planet masses and equatorial diameter,  the ratio of acceleration due to gravity on Mars to acceleration due to gravity on Venus is 0.420

To determine the ratio of acceleration due to gravity on Mars to acceleration due to gravity on Venus, we need to compare the gravitational forces experienced on each planet using the following equation:

g = G × (M / r^2)

where:

g is the acceleration due to gravity,

G is the gravitational constant (approximately 6.67430 × 10^-11 m^3/kg/s^2),

M is the mass of the planet, and

r is the radius of the planet.

Given the planet masses and equatorial diameters, we can calculate the acceleration due to gravity on each planet.

For Mars:

Mass of Mars (M_Mars) = 6.39 × 10^23 kg

Equatorial diameter of Mars (d_Mars) = 6792 km = 6792000 m

Radius of Mars (r_Mars) = d_Mars / 2

For Venus:

Mass of Venus (M_Venus) = 4.87 × 10^24 kg

Equatorial diameter of Venus (d_Venus) = 12,104 km = 12104000 m

Radius of Venus (r_Venus) = d_Venus / 2

Now, let's calculate the acceleration due to gravity on each planet:

g_Mars = G × (M_Mars / r_Mars^2)

g_Venus = G × (M_Venus / r_Venus^2)

Finally, we can calculate the ratio of acceleration due to gravity on Mars to acceleration due to gravity on Venus:

Ratio = g_Mars / g_Venus

Now let's calculate these values:

Mass of Mars (M_Mars) = 6.39 × 10^23 kg

Equatorial diameter of Mars (d_Mars) = 6792 km = 6792000 m

Radius of Mars (r_Mars) = 6792000 m / 2 = 3396000 m

Mass of Venus (M_Venus) = 4.87 × 10^24 kg

Equatorial diameter of Venus (d_Venus) = 12,104 km = 12104000 m

Radius of Venus (r_Venus) = 12104000 m / 2 = 6052000 m

Gravitational constant (G) = 6.67430 × 10^-11 m^3/kg/s^2

g_Mars = (6.67430 × 10^-11 m^3/kg/s^2) × (6.39 × 10^23 kg / (3396000 m)^2)

≈ 3.727 m/s^2

g_Venus = (6.67430 × 10^-11 m^3/kg/s^2) × (4.87 × 10^24 kg / (6052000 m)^2)

≈ 8.871 m/s^2

Ratio = g_Mars / g_Venus

≈ 0.420

Therefore, the ratio of acceleration due to gravity on Mars to acceleration due to gravity on Venus is approximately 0.420 (to 3 significant figures).

To learn more about gravitational forces visit: https://brainly.com/question/24783651

#SPJ11

X-rays of wavelength 0.116 nm reflect off a crystal and a second-order maximum is recorded at a Bragg angle of 22.1°. What is the spacing between the scattering planes in this crystal?

Answers

To determine the spacing between the scattering planes in the crystal, we can use Bragg's Law.

Bragg's Law relates the wavelength of X-rays, the angle of incidence (Bragg angle), and the spacing between the scattering planes.

The formula for Bragg's Law is: nλ = 2d sinθ

In this case, we are dealing with second-order diffraction (n = 2), and the wavelength of the X-rays is given as 0.116 nm. The Bragg angle is 22.1°.

We need to rearrange the equation to solve for the spacing between the scattering planes (d):

d = nλ / (2sinθ)

Plugging in the values:

d = (2 * 0.116 nm) / (2 * sin(22.1°))

 ≈ 0.172 nm

Therefore, the spacing between the scattering planes in the crystal is approximately 0.172 nm.

when X-rays with a wavelength of 0.116 nm are incident on the crystal, and a second-order maximum is observed at a Bragg angle of 22.1°, the spacing between the scattering planes in the crystal is approximately 0.172 nm.

To know more about bragg's law , visit:- brainly.com/question/14617319

#SPJ11

An air conditioner operating between 92 ∘
F and 77 ∘
F is rated at 4200Btu/h cooling capacity. Its coefficient of performance is 27% of that of a Carnot refrigerator operating between the same two temperatures. What horsepower is required of the air conditioner motor?

Answers

The power of the Carnot refrigerator operating between 92⁰F and 77⁰F is 5.635 hp. The required horsepower of the air conditioner motor is 1.519 hp.

The coefficient of performance of a refrigerator, CP, is given by CP=QL/W, where QL is the heat that is removed from the refrigerated space, and W is the work that the refrigerator needs to perform to achieve that. CP is also equal to (TL/(TH-TL)), where TH is the high-temperature reservoir.

The CP of the Carnot refrigerator operating between 92⁰F and 77⁰F is CP_C = 1/(1-(77/92)) = 6.364.

Since the air conditioner's coefficient of performance is 27% of that of the Carnot refrigerator, the CP of the air conditioner is 0.27 x 6.364 = 1.721. The cooling capacity of the air conditioner is given as 4200 Btu/h.

The required motor horsepower can be obtained using the following formula:

(1.721 x 4200)/2545 = 2.84 hp. Therefore, the required horsepower of the air conditioner motor is 1.519 hp.

Learn more about Carnot refrigerator:

https://brainly.com/question/32868225

#SPJ11

Part A A metal rod with a length of 21.0 cm lies in the ry-plane and makes an angle of 36.3° with the positive z-axis and an angle of 53.7° with the positive y-axis. The rod is moving in the +1-direction with a speed of 6.80 m/s. The rod is in a uniform magnetic field B = (0.150T)i - (0.290T); -(0.0400T ) What is the magnitude of the emf induced in the rod? Express your answer in volts. IVO AEO ? E = 0.015 V Submit Previous Answers Request Answer X Incorrect; Try Again; 2 attempts remaining Provide Feedback

Answers

The magnitude of the induced electromotive force (emf) in the metal rod is 0.015 V.

To calculate the magnitude of the induced emf in the rod, we can use Faraday's law of electromagnetic induction. According to Faraday's law, the induced emf is equal to the rate of change of magnetic flux through the surface bounded by the rod.

First, we need to calculate the magnetic flux through the surface. The magnetic field B is given as (0.150T)i - (0.290T)j - (0.0400T)k. The component of B perpendicular to the surface is B⊥ = B·n, where n is the unit vector perpendicular to the surface.

The unit vector perpendicular to the surface can be obtained by taking the cross product of the unit vectors along the positive y-axis and the positive z-axis. Therefore, n = i + j.Now, we calculate B⊥ = B·n = (0.150T)i - (0.290T)j - (0.0400T)k · (i + j) = 0.150T - 0.290T = -0.140T.

Learn more about electro motive force click here: brainly.com/question/24182555

#SPJ11

A 220-g ball moving at 7.5 m/s collides elastically with a second ball.
initially at rest. Immediately after the collision, the first ball rebounds with a speed of
3.8m/s Determine the speed and mass of the second ball.

Answers

The speed and mass of the second ball after the collision are 5.65 m/s and 0.88 kg respectively.

The speed and mass of the second ball after the collision can be determined using the principles of conservation of momentum and conservation of kinetic energy. The formula for the conservation of momentum is given as:

m₁v₁ + m₂v₂ = m₁u₁ + m₂u₂

where, m₁ and m₂ are the masses of the two balls respectively, v₁ and v₂ are the initial velocities of the balls, and u₁ and u₂ are the velocities of the balls after the collision.

The formula for conservation of kinetic energy is given as:0.5m₁v₁² + 0.5m₂v₂² = 0.5m₁u₁² + 0.5m₂u₂²

where, m₁ and m₂ are the masses of the two balls respectively, v₁ and v₂ are the initial velocities of the balls, and u₁ and u₂ are the velocities of the balls after the collision.

Given,

m₁ = 220 g

m = 0.22 kg

v₁ = 7.5 m/s

u₁ = -3.8 m/s (rebounding)

m₂ = ?

v₂ = 0 (initially at rest)

u₂ = ?

The conservation of momentum equation can be written as:

m₁v₁ + m₂v₂ = m₁u₁ + m₂u₂

=> 0.22 × 7.5 + 0 × m₂ = 0.22 × (-3.8) + m₂u₂

=> 1.65 - 0.22u₂ = -0.836 + u₂

=> 0.22u₂ + u₂ = 2.486

=> u₂ = 2.486/0.44= 5.65 m/s

Conservation of kinetic energy equation can be written as:

0.5m₁v₁² + 0.5m₂v₂² = 0.5m₁u₁² + 0.5m₂u₂²

=> 0.5 × 0.22 × 7.5² + 0.5 × 0 × v₂² = 0.5 × 0.22 × (-3.8)² + 0.5 × m₂ × 5.65²

=> 2.475 + 0 = 0.7388 + 1.64m₂

=> m₂ = (2.475 - 0.7388)/1.64= 0.88 kg

Learn more about conservation of kinetic energy: https://brainly.com/question/24301052

#SPJ11

The diameter of an oxygen (02) molecule is approximately 0.300 nm.
For an oxygen molecule in air at atmospheric pressure and 18.3°C, estimate the total distance traveled during a 1.00-s time interval.

Answers

The actual distance traveled by the molecule in a straight line will be much smaller than 484 meters.

The mean free path of a gas molecule is the average distance it travels between collisions with other molecules. At atmospheric pressure and 18.3°C, the mean free path of an oxygen molecule is approximately 6.7 nm.

During a 1.00-s time interval, an oxygen molecule will travel a distance equal to the product of its speed and the time interval. The speed of an oxygen molecule at atmospheric pressure and 18.3°C can be estimated using the root-mean-square speed equation:

[tex]v_{rms}[/tex] = √(3kT/m)

where k is Boltzmann's constant, T is the temperature in Kelvin, and m is the mass of the molecule.

For an oxygen molecule, [tex]k = 1.38 * 10^{-23}[/tex] J/K, T = 291.45 K (18.3°C + 273.15), and [tex]m = 5.31 * 10^{-26}[/tex] kg.

Plugging in the values, we get:

[tex]v_{rms} = \sqrt {(3 * 1.38 * 10^{-23} J/K * 291.45 K / 5.31 * 10^{-26} kg)} = 484 m/s[/tex]

Therefore, during a 1.00-s time interval, an oxygen molecule will travel approximately:

distance = speed * time = 484 m/s * 1.00 s ≈ 484 meters

However, we need to take into account that the oxygen molecule will collide with other molecules in the air, and its direction will change randomly after each collision. The actual distance traveled by the molecule in a straight line will be much smaller than 484 meters, and will depend on the number of collisions it experiences during the time interval. Therefore, the estimate of the total distance traveled by an oxygen molecule in air during a 1.00-s time interval should be considered a very rough approximation.

Learn more about "Distance travelled by the molecule" : https://brainly.com/question/29409777

#SPJ11

A paperweight is made of a solid glass hemisphere of index of refraction 1.53. The radius of the circular cross section is 4.0 cm. The hemisphere is placed on its flat surface, with the center directly over a 2.5 mm long line drawn on a sheet of paper. What length of line is seen by someone looking vertically down on the hemisphere?

Answers

The length of the line seen by someone looking vertically down on the glass hemisphere is 1.73 mm.

When light travels from one medium (air) to another (glass), it undergoes refraction due to the change in the speed of light. In this case, the light from the line on the paper enters the glass hemisphere, and the glass-air interface acts as the refracting surface.Since the line is drawn on the paper and the observer is looking vertically down on the hemisphere, we can consider a right triangle formed by the line, the center of the hemisphere, and the point where the line enters the glass. The length of the line seen will be the hypotenuse of this triangle.Using the properties of refraction, we can calculate the angle of incidence (θ) at which the light enters the glass hemisphere. The sine of the angle of incidence is given by the ratio of the radius of the circular cross-section (4.0 cm) to the distance between the center of the hemisphere and the point where the line enters the glass (2.5 mm).

To learn more about hemisphere:

https://brainly.com/question/867172

#SPJ11

A piece of gold wire has a resistivity of 4.14x108 oom. If the wire has a length of 6.57 m and a radius of 0.080 m, what is the total resistance for this plece of wire

Answers

The total resistance of a gold wire can be calculated using its resistivity, length, and radius. In this case, with a resistivity of 4.14x10^8 Ωm, a length of 6.57 m, and a radius of 0.080 m, we can determine the total resistance.

The resistance of a wire can be calculated using the formula R = (ρ * L) / A, where R is the resistance, ρ is the resistivity, L is the length of the wire, and A is the cross-sectional area of the wire. To find the cross-sectional area, we can use the formula A = π * r^2, where r is the radius of the wire.

Plugging in the given values, we have A = π * (0.080 m)^2 = 0.0201 m^2. Now, we can calculate the resistance using the formula R = (4.14x10^8 Ωm * 6.57 m) / 0.0201 m^2.

Simplifying this expression, we get R ≈ 1.34 Ω. Therefore, the total resistance for the given gold wire is approximately 1.34 ohms.

Note: It's worth mentioning that the resistivity value provided (4.14x10^8 Ωm) seems unusually high for gold. The resistivity of gold is typically around 2.44x10^-8 Ωm. However, if we assume the given value is correct, the calculation would proceed as described above.

Learn more about resistivity here:

https://brainly.com/question/29427458

#SPJ11

At a particular place on the surface of the Earth, the Earth's magnetic field has magnitude of 5.45 x 109T, and there is also a 121 V/m electric field perpendicular to the Earth's surface ) Compute the energy density of the electric field (Give your answer in l/m /m (b) Compute the energy density of the magnetic field. (Give your answer in wm. /m2

Answers

The energy density of the magnetic field is 2.5 x 10^4 J/m³.

(a) Energy density of electric field

The energy density of the electric field is given by the formula;

u = 1/2εE²

Where

u is the energy density of the electric field,

ε is the permittivity of the medium and

E is the electric field strength.

The energy density of electric field can be computed as follows;

Given:

Electric field strength, E = 121 V/m

The electric field strength is perpendicular to the Earth's surface, which means it is acting on a vacuum where the permittivity of free space is:

ε = 8.85 x 10^-12 F/m

Therefore;

u = 1/2εE²

u = 1/2(8.85 x 10^-12 F/m)(121 V/m)²

u = 7.91 x 10^-10 J/m³

Hence, the energy density of the electric field is 7.91 x 10^-10 J/m³.

(b) Energy density of magnetic field

The energy density of the magnetic field is given by the formula;

u = B²/2μ

Where

u is the energy density of the magnetic field,

B is the magnetic field strength and

μ is the permeability of the medium.

The energy density of magnetic field can be computed as follows;

Given:

Magnetic field strength, B = 5.45 x 10⁹ T

The magnetic field strength is perpendicular to the Earth's surface, which means it is acting on a vacuum where the permeability of free space is:

μ = 4π x 10^-7 H/m

Therefore;

u = B²/2μ

u = (5.45 x 10⁹ T)²/2(4π x 10^-7 H/m)

u = 2.5 x 10^4 J/m³

Hence, the energy density of the magnetic field is 2.5 x 10^4 J/m³.

Learn more about magnetic field from this link:

https://brainly.com/question/24761394

#SPJ11

Comparing the radiation power loss for electron ( Pe )
with radiation power loss for the proton ( Pp ) in the synchrotron,
one gets :
1- Pe = Pp = 0
2- Pe << Pp
3- Pe >> Pp
4- Pe ≈ Pp

Answers

When comparing the radiation power loss for electrons (Pe) and protons (Pp) in a synchrotron, the correct answer is 2- Pe << Pp. This means that the radiation power loss for electrons is much smaller than that for protons.

The radiation power loss in a synchrotron occurs due to the acceleration of charged particles. It depends on the mass and charge of the particles involved.

Electrons have a much smaller mass compared to protons but carry the same charge. Since the radiation power loss is proportional to the square of the charge and inversely proportional to the square of the mass, the power loss for electrons is significantly smaller than that for protons.

Therefore, option 2- Pe << Pp is the correct choice, indicating that the radiation power loss for electrons is much smaller compared to that for protons in a synchrotron.

Learn more about synchrotron here:

brainly.com/question/31070723

#SPJ11

A speedometer is placed upon a tree falling object in order to measure its instantaneous speed during the course of its fall its speed reading (neglecting air resistance) would increase each second by

Answers

The acceleration due to gravity is given as 9.8 meters per second per second (m/s²) since we can ignore air resistance. Thus, the speedometer will measure a constant increase in speed during the fall. During each second of the fall, the speed reading will increase by 9.8 meters per second (m/s). Therefore, the speedometer would measure a constant increase in speed during the fall by 9.8 m/s every second.

If a speedometer is placed upon a tree falling object in order to measure its instantaneous speed during the course of its fall, its speed reading (neglecting air resistance) would increase each second by 10 meters per second. This is because the acceleration due to gravity on Earth is 9.8 meters per second squared, which means that an object's speed increases by 9.8 meters per second every second it is in free fall.

For example, if an object is dropped from a height of 10 meters, it will hit the ground after 2.5 seconds. In the first second, its speed will increase from 0 meters per second to 9.8 meters per second. In the second second, its speed will increase from 9.8 meters per second to 19.6 meters per second. And so on.

It is important to note that air resistance will slow down an object's fall, so the actual speed of an object falling from a given height will be slightly less than the theoretical speed calculated above. However, the air resistance is typically very small for objects that are falling from relatively short heights, so the theoretical calculation is a good approximation of the actual speed.

To learn more about speed visit: https://brainly.com/question/13943409

#SPJ11

(a) For an object distance of 49.5 cm, determine the following. What are the image distance and image location with respect to the lens? (Give the magnitude of the distance in cm.) image distance cm image location in front of the lens Is the image real or virtual? virtual What is the magnification? Is the image upright or inverted? upright (b) For an object distance of P2 = 14.9 cm, determine the following. What are the image distance and image location with respect to the lens? (Give the magnitude of the distance in cm.) image distance image location in front of the lens cm Is the image real or virtual? virtual What is the magnification? Is the image upright or inverted? upright (C) For an object distance of P3 = 29.7 cm, determine the following. What are the image distance and image location with respect to the lens? (Give the magnitude of the distance in cm.) image distance cm image location in front of the lens Is the image real or virtual? virtual What is the magnification?

Answers

An object distance of 49.5 cm creates a virtual image located 1 cm in front of the lens, with a magnification of -1.An object distance of 14.9 cm creates a virtual image located 7.45 cm in front of the lens, with a magnification of -1.5.An object distance of 29.7 cm creates a virtual image located 1 cm in front of the lens, with a magnification of -1.

For an object distance of 49.5 cm, Image distance = -49.5 cm, image location = 1 cm in front of the lens, magnification = -1.The negative sign indicates that the image is virtual, upright, and diminished. When the image distance is negative, it is virtual, and when it is positive, it is real.

When the magnification is negative, the image is inverted, and when it is positive, it is upright.

An object distance of 49.5 cm creates a virtual image located 1 cm in front of the lens, with a magnification of -1.

For an object distance of P2 = 14.9 cm, tImage distance = -22.35 cm, image location = 7.45 cm in front of the lens, magnification = -1.5.

The negative sign indicates that the image is virtual, upright, and magnified. When the image distance is negative, it is virtual, and when it is positive, it is real. When the magnification is negative, the image is inverted, and when it is positive, it is upright.

An object distance of 14.9 cm creates a virtual image located 7.45 cm in front of the lens, with a magnification of -1.5.

For an object distance of P3 = 29.7 cm, Image distance = -29.7 cm, image location = 1 cm in front of the lens, magnification = -1.

The negative sign indicates that the image is virtual, upright, and of the same size as the object. When the image distance is negative, it is virtual, and when it is positive, it is real. When the magnification is negative, the image is inverted, and when it is positive, it is upright.

An object distance of 29.7 cm creates a virtual image located 1 cm in front of the lens, with a magnification of -1.

To know more about magnification visit:

brainly.com/question/21370207

#SPJ11

Problem 31.27 y Part A How much energy is transported across a 9.00 cm area per hour by an EM wave whose Efield has an rms strength of 40.0 mV/m ?
AU / Δt = _________ J/h

Answers

We can find the energy transported by the EM wave across the given area per hour using the formula given below:

ΔU/Δt = (ε0/2) * E² * c * A

Here, ε0 represents the permittivity of free space, E represents the rms strength of the E-field, c represents the speed of light in a vacuum, and A represents the given area.

ε0 = 8.85 x 10⁻¹² F/m

E = 40.0 mV/m = 40.0 x 10⁻³ V/mc = 3.00 x 10⁸ m/s

A = 9.00 cm² = 9.00 x 10⁻⁴ m²

Now, substituting the given values in the above formula, we get:

ΔU/Δt = (8.85 x 10⁻¹² / 2) * (40.0 x 10⁻³)² * (3.00 x 10⁸) * (9.00 x 10⁻⁴)

= 4.03 x 10⁻¹¹ J/h

Therefore, the energy transported across the given area per hour by the EM wave is 4.03 x 10⁻¹¹ J/h.

Explore this question on EM waves: https://brainly.com/question/25847009

#SPJ11

A Direct Numerical Simulation is performed of the mixing process in a mixing bowl of characteristic length l = 0.39 m The cake batter in the bowl is being mixed by a stirring arm of diameter d = 0.017 m , which generates small eddies of the same size d in the batter . To obtain a well - mixed batter , approximately 523 small scale eddy times are required . Use the Kolmogorov scaling laws to estimate the number of large scale tum - around times T required in this simulation . State your answer to three significant figures . Partial credit is awarded for an approximate but incorrect answer .

Answers

Using the Kolmogorov scaling laws, we can estimate the number of large-scale turnaround times required in a Direct Numerical Simulation (DNS) of a mixing process in a bowl. The estimated number of large-scale turnaround times required in the simulation is approximately 12054, stated to three significant figures.

Given the characteristic length of the bowl (l = 0.39 m) and the diameter of the stirring arm (d = 0.017 m), along with the number of small-scale eddy times required for a well-mixed batter (523), we can calculate the number of large-scale turnaround times, denoted as T. The answer will be stated to three significant figures.

According to the Kolmogorov scaling laws, the size of the small-scale eddies (η) is related to the energy dissipation rate (ε) as η ∝ ε^(-3/4). The energy dissipation rate is proportional to the velocity scale (u) raised to the power of 3, ε ∝ u^3.

In the given scenario, the stirring arm generates small-scale eddies of the same size as the arm's diameter, d = 0.017 m. Since the small-scale eddy size is equal to d, we have η = d.

To estimate the number of large-scale turnaround times required, we can compare the characteristic length scale of the mixing bowl (l) with the small-scale eddy size (d). The ratio l/d gives an indication of the number of small-scale eddies within the bowl.

We are given that approximately 523 small-scale eddy times are required for a well-mixed batter. This implies that the mixing process needs to capture the interactions of these small-scale eddies.

Therefore, the number of large-scale turnaround times (T) required can be estimated as T = 523 * (l/d).

Substituting the given values, we have T = 523 * (0.39/0.017) ≈ 12054.

Hence, the estimated number of large-scale turnaround times required in the simulation is approximately 12054, stated to three significant figures.

Learn more about Numerical Stimulation here : brainly.com/question/30031744

#SPJ11

Present a brief explanation of how electrical activity in the human body interacts with electromagnetic waves outside the human body to either your eyesight or your sense of touch.

Answers

Electrical activity in the human body interacts with electromagnetic waves outside the human body to either your eyesight or your sense of touch. Electromagnetic waves are essentially variations in electric and magnetic fields that can move through space, even in a vacuum. Electrical signals generated by the human body's nervous system are responsible for controlling and coordinating a wide range of physiological processes. These electrical signals are generated by the movement of charged ions through specialized channels in the cell membrane. These signals can be detected by sensors outside the body that can measure the electrical changes produced by these ions moving across the membrane.

One such example is the use of electroencephalography (EEG) to measure the electrical activity of the brain. The EEG is a non-invasive method of measuring brain activity by placing electrodes on the scalp. Electromagnetic waves can also affect our sense of touch. Some forms of electromagnetic radiation, such as ultraviolet light, can cause damage to the skin, resulting in sensations such as burning, itching, and pain. Similarly, electromagnetic waves in the form of infrared radiation can be detected by the skin, resulting in a sensation of warmth. The sensation of touch is ultimately the result of mechanical and thermal stimuli acting on specialized receptors in the skin. These receptors generate electrical signals that are sent to the brain via the nervous system.

Learn more about em waves here: https://brainly.com/question/14953576

#SPJ11

Remaining Time: 24 minutes, 43 seconds. Question Completion Status: Question 2 0.5 points Save Answe A battery of 8-13 V is connected to a load resistor R-60. If the terminal voltage across the batter

Answers

Answer:

The terminal voltage across the battery is 7-13 V.

Explanation:

The terminal voltage of a battery is the voltage measured across its terminals when it is connected to a load. In this case, the battery has a voltage of 8-13 V, and it is connected to a load resistor of 60 Ω.

The terminal voltage of a battery can be affected by various factors, including the internal resistance of the battery and the current flowing through the load. When a load is connected to the battery, the internal resistance of the battery can cause a voltage drop, reducing the terminal voltage.

In this scenario, the terminal voltage across the battery is given as 8-13 V. This range indicates that the terminal voltage can vary between 8 V and 13 V depending on the specific conditions and the load connected to the battery.

To determine the exact terminal voltage across the battery, more information is needed, such as the current flowing through the load or the internal resistance of the battery. Without this additional information, we can only conclude that the terminal voltage across the battery is within the range of 8-13 V.

In summary, the terminal voltage across the battery connected to a load resistor of 60 Ω is 8-13 V. This range indicates the potential voltage values that can be measured across the battery terminals, depending on the specific conditions and factors such as the internal resistance and the current flowing through the load.

Learn more about voltages:

brainly.com/question/14218449

#SPJ11

What equations explain the energy conservation relationship? How
would you describe conservation of energy using both euqations and
words? Explain how this is related to the work-energy theorem.

Answers

After considering the given data we conclude that the energy conservation relationship can be explained using the work energy theorem and principle of conservation of energy.


The work-energy theorem: This theorem projects that the work done by all forces occurring on a particle is equivalent to the change in the particle's kinetic energy.
Mathematically, it can be expressed as
[tex]W_{net} = \Delta K,[/tex]
Here
[tex]W_{net}[/tex] = net work done on the particle, and [tex]\Delta K[/tex] is the change in its kinetic energy.
The principle of conservation of energy:  Conservation of energy means that the total amount of energy in a system remains constant over time. This means that energy cannot be created or destroyed, only transformed from one form to another.
The work-energy theorem is related to the conservation of energy because it states that the net work done on an object is equal to the change in its kinetic energy. This means that the work done on an object can be used to change its kinetic energy, but the total amount of energy in the system remains constant.

The work-energy theorem is related to the conservation of energy because it is a specific application of the principle of conservation of energy. The work done by all forces acting on a particle can change its kinetic energy, but the total energy in the system remains constant. This is because the work done by one force is always equal and opposite to the work done by another force, so the net work done on the particle is zero.

Therefore, the work done by all forces acting on the particle can only change its kinetic energy, but it cannot create or destroy energy. The conservation of energy and the work-energy theorem are related to the work done on an object. When work is done on an object, energy is transferred to or from the object, which can change its kinetic energy.

The work-energy theorem states that the net work done on an object is equal to the change in its kinetic energy. This means that the work done on an object can be used to change its kinetic energy, but the total amount of energy in the system remains constant.
To learn more about work energy theorem
https://brainly.com/question/30236175
#SPJ4

Question 2 (MCQ QUESTION: answer in ULWAZI) Consider the normalised eigenstates for a particle in a 1 dimensional box as shown: Eigenstates v The probability of finding a particle in any of the three energy states is: Possible answers (order may change in ULWAZI Greatest on the left of the box Greatest on the right of the box Greatest in the centre of the box The same everywhere inside the box Zero nowhere in the box [3 Marks] [3].

Answers

The probability of finding a particle in any of the three energy states is the same everywhere inside the box.

The probability of finding a particle in any of the three energy states is the same everywhere inside the box. Consider the normalised eigenstates for a particle in a 1-dimensional box as shown: Eigenstates. The normalised eigenstates for a particle in a 1-dimensional box are as follows:Here, A is the normalization constant.\

To find the probability of finding a particle in any of the three energy states, we need to find the probability density function (PDF), ψ²(x).Probability density function (PDF), ψ²(x) is given as follows:Here, ψ(x) is the wave function, which is the normalised eigenstate for a particle in a 1-dimensional box.

To know more about probability:

https://brainly.com/question/31828911


#SPJ11

A rod made of insulating material has a length L=7.3 cm, and it carries a chatge of Q=−230 n C that is not distributed uniormly in the fod. Twice as much charge is on one side of the rod as is on the other. Calculate the strength of the rod's electric field at a point 4 m away from the rod's center along an axis perpendicular to the rod. 32 V/m 108Vim 70 Vim 121 Vim 54Vim 130 Vim 100 Vim B. V/M

Answers

The strength of the electric field at a point 4 m away from the center of the rod, along an axis perpendicular to the rod, is 54 V/m.

To calculate the electric field strength, we can divide the rod into two segments and treat each segment as a point charge. Let's assume the charge on one side of the rod is q, so the charge on the other side is 2q. We are given that the total charge on the rod is Q = -230 nC.

Since the charges are not uniformly distributed, we need to find the position of the center of charge (x_c) along the length of the rod. The center of charge is given by:

x_c = (Lq + (L/2)(2q)) / (q + 2q)

Simplifying the expression, we get:

x_c = (7.3q + 3.652q) / (3q)

x_c = (7.3 + 7.3) / 3

x_c = 4.87 cm

Now we can calculate the electric field strength at the point 4 m away from the center of the rod. Since the rod is made of an insulating material, the electric field outside the rod can be calculated using Coulomb's law:

E = k * (q / r^2)

where k is the electrostatic constant (k = 9 x 10^9 Nm^2/C^2), q is the charge, and r is the distance from the center of charge to the point where we want to calculate the electric field.

Converting the distance to meters:

r = 4 m

Plugging in the values into the formula:

E = (9 x 10^9 Nm^2/C^2) * (2q) / (4^2)

E = (9 x 10^9 Nm^2/C^2) * (2q) / 16

E = (9 x 10^9 Nm^2/C^2) * (2q) / 16

E = 0.1125 * (2q) N/C

Since the total charge on the rod is Q = -230 nC, we have:

-230 nC = q + 2q

-230 nC = 3q

Solving for q:

q = -230 nC / 3

q = -76.67 nC

Plugging this value back into the electric field equation:

E = 0.1125 * (2 * (-76.67 nC)) N/C

E = -0.1125 * 153.34 nC / C

E = -17.23 N/C

The electric field is a vector quantity, so its magnitude is always positive. Taking the absolute value:

|E| = 17.23 N/C

Converting this value to volts per meter (V/m):

1 V/m = 1 N/C

|E| = 17.23 V/m

Therefore, the strength of the rod's electric field at a point 4 m away from the rod's center along an axis perpendicular to the rod is approximately 17.23 V/m.

To learn more about electric field  click here:

brainly.com/question/30544719

#SPJ11

Other Questions
Which of the following(s) is/are incorrect about the convexity term of a bond:Group of answer choicesConvexity is always positive for a plain-vanilla bond..We can improve the estimation of a price change with regard to a change in interest rates by accounting for the convexity of the bond.Convexity has high value when investors expect that market yields will not change much. Two capacitors are connected parallel to eachother. Let C1 = 3.50 F .C2 = 5.10 pF be theircapacitances, and Vat = 57.0 V the potentialdifference across the system.a) Calculate the charge on each capacitor (capacitor 1 and 2)b) Calculate the potential difference across each capacitor (capacitor 1 and 2) a A simple refractor telescope has an objective lens with a focal length of 1.6 m. Its eyepiece has a 3.80 cm focal length lens. a) What is the telescope's angular magnification? If current output is Y = $10 billion and potential output Y = $10.5 billion, then the economy is in a t t N and Y, is about t recessionary gap; -4.7 a. b. boom; 4.7 C. boom: -4.7 percent. d. e. recessionary gap; -5 boom; 5 Two capacitors, C, = 6.10 MF and Cz = 3.18 F, are connected in parallel, then the combination is connected to a 250 V battery. When the capacitors are charged, each one is removed from the circuit. Next, the two charged capacitors are connected to each other so that the positive plate of onecapacitor is connected to the negative plate of the other capacitor. What is the resulting charge on each capacitor (in uC)? 5. Write short notes onb) Changing nature of work and job insecurity.d) Define Gender and Sex. Discuss the social construction of the concept of Masculinityanswer each of tese parts in 300-400 wordsanswer eac of tese 2 parts in 300-400 words. A 70-kg professional cyclist is climbing a mountain road at an average speed of 23.3 km/h. The foad has an average slope of 3.7 ^7and is 13.1 km long. If the cyclist's power output averages 350 W over the duration of the climb, how much energy E does he expead? Find the degree of the polynomial y 52-5z +6-3z Employees are empowered when they:experience self-reinforcement and engage in positive self-talk.experience more self-determination, meaning, competence, and impact.engage in positive self-talk.experience self-reinforcement.practice job specialization. Calculate the total output in mL. 3 oz of urine 1.5 L of NG drainage 1500 mL of urine 4 oz JP drain Falco Restaurant Supplies borrowed $15,000 at 3.25% compounded semiannually to purchase a new delivery truck. The loan agreement stipulates regular monthly payments of $646.23 be made over the next two years. Calculate the principal reduction in the first year. Do not show your work. Enter your final answer rounded to 2 decimals larry works remotely analyzing statistical data for azod software company. occasionally, his virtual team will schedule a face-to-face meeting, and he will drive in to the regional office. heightened global competition nonterritorial offices flattened management heirarchies . Choose a religious sect, division, branch (or even a new religious movement) to look into (it can be a religion we look at in this class or even one we don't). a. Alternately if there's something more specific you had in mind, you can opt to choose something like a holiday, image, historical or ritually significant personality, ritual item, etc. 2. Find information on your chosen item from books (NOT the textbook though), websites, etc. You will be required to include them at the end of your assignment. 3. Write! Tell me about what you chose (and why). Plagiarism will not be accepted. 'Paraphrasing' is not copying a paragraph and changing a word or two. Think of it like this- you gather the information and are explaining it to someone else- IN. YOUR. OWN. WORDS. Piece of cake, right? Exactly. 4. This assignment should be at least a page and a half. 12pt font maximum, no more than double spacing, use standard margins and fonts. 5. Let n be a natural number. Define congruence modn as the following relation on natural numbers: a n b if n divides their difference, i.e. k:Nvnk=ba. Prove that this relation is transitive, reflexive, and symmetric. (How could we use the previous question here?) ou take a course in archaeology that includes field work. An ancient wooden totem pole is excavated from your archaeological dig. The beta decay rate is measured at 690 decays/min. 2.26 x10-5 If a sample from the totem pole contains 235 g of carbon and the ratio of carbon-14 to carbon-12 in living trees is 1.35 x 10-12, what is the age 1 of the pole in years? The molar mass of 14C is 18.035 g/mol. The half-life of 14C is 5730 y. years Incorrect 1.The Spanish conquistador Hernn Corts conquered the Aztec Empire at _____ in the early sixteenth century. One result of the Spanish conquest was the _____ due to the inflation caused by the massive influx of silver into Europe.2.The _____ societies of the Mississippi and Ohio river valleys created burial sites later found by European explorers. They were the ancestors of the Creek, Choctaw, and Natchez tribes. The _____ tribes in the Southwestern United States constructed large planned villages composed of terraced, multistoried buildings.3.An early English attempt to regulate colonial trade in the seventeenth century is the _____, which mandated that certain enumerated articles could only be sent to England or English colonies. The English government attempted to impose royal rule on New England under Sir Edmund Andros in the late sixteenth century, but the _____ of 1688, in which William and Mary took the throne, inspired New Englanders to imprison Andros and end the Dominion of New England. Reflecting on the meaning and potential practical implications of the concept of moral inclusion/exclusion, introduced in the chapter on altruism in our textbook, provide an informed argument on whether we should include animals in the circle of our moral concern.Up to about 500 words would suffice for this task, what kind of strategies would you recommended and specific tactics (i.e., course of action) be to improve outcomes at the(1) Enterprise level(2) Business level for products(3) overall and individual effectiveness of your Operating level tactics for each of the separate businesses that made up your corporate enterprise? Please give final answer of both parts that which oneis true or it in 20 minutes please... I'll give you upthumb definitely25. In general, an barter economy with two commodities is less efficient than an monetary economy with two commodities. 26. The evidence shows that imposing capital requirements is an ineffective for Solve the missing element . use 3.14 for pi and Area = pi r2 ; C= pi D