A car manufacturer claims that its product, starting from rest, will travel 0.4 km in 10 s. What is the magnitude of the constant acceleration (m/s2) required for this? Give your answer to one decimal place.

Answers

Answer 1

The car manufacturer claims that their product can travel 0.4 km in 10 seconds, starting from rest. we can use the kinematic equation. we find that the magnitude of the constant acceleration needed is 8 m/s².

The magnitude of the constant acceleration required for the car to travel 0.4 km in 10 seconds can be calculated using the kinematic equation:

[tex]\(d = \frac{1}{2}at^2\),[/tex]

where d is the distance traveled, a is the acceleration, and t is the time taken.

Given that d = 0.4km = 0.4 * 1000 m = 400 m and t = 10 s, we can rearrange the equation to solve for a:

[tex]\(a = \frac{2d}{t^2}\).[/tex]

Substituting the values, we have:

[tex]\(a = \frac{2 \times 400}{10^2} = \frac{800}{100} = 8\) m/s^{2}[/tex]

Therefore, the magnitude of the constant acceleration required for the car to travel 0.4 km in 10 seconds is 8 m/s².

learn more about kinematic equation

https://brainly.com/question/24458315

#SPJ11


Related Questions

Explain how stellar evolution, and the universe would be
different if carbon was the most bound element instead of Iron.

Answers

If carbon were the most bound element instead of iron, stellar evolution and the universe would be significantly different. Carbon-based life forms would be more common, and the formation of heavy elements through stellar nucleosynthesis would be altered.

If carbon were the most bound element instead of iron, several implications would arise:

Stellar Evolution: Carbon fusion would become the primary process in stellar nucleosynthesis, leading to a different sequence of stellar evolution. Stars would undergo carbon burning, producing heavier elements and releasing energy.

The life cycle of stars, their sizes, lifetimes, and eventual fates would be modified.

Abundance of Carbon:

Carbon-based molecules, essential for life as we know it, would be more prevalent throughout the universe.

Carbon-rich environments would be more common, potentially supporting a wider range of organic chemistry and the development of carbon-based life forms.

Element Formation: The synthesis of heavier elements through stellar nucleosynthesis would be affected.

Iron is a crucial element for the formation of heavy elements through processes like supernova explosions. If carbon were the most bound element, alternative mechanisms for heavy element formation would emerge, potentially leading to a different abundance and distribution of elements in the universe.

Overall, the universe's composition, the prevalence of carbon-based life, and the processes involved in stellar evolution and element formation would be significantly different if carbon were the most bound element instead of iron.

To learn more about stellar evolution click here.

brainly.com/question/32251110

#SPJ11

How does the voltage across two circuit elements in parallel
compare to one another? Explain.
PLEASE TYPE

Answers

When two circuit elements are connected in parallel, the voltage across each element is equal to one another.

The voltage across each element connected in parallel is equal to one another because they are connected to the same points in the circuit. Therefore, the voltage drop across each element is the same as the voltage supplied to the circuit.


When two or more circuit elements are connected in parallel, each of them is connected to the same pair of nodes. This implies that the voltage across every element is the same. It is due to the fact that the potential difference across each element is equal to the voltage of the source of the circuit. Thus, the voltage across two circuit elements connected in parallel compares to one another by being equal. In summary, when two circuit elements are connected in parallel, the voltage across each element is equal to one another.

To know more about circuit visit:

https://brainly.com/question/31426793

#SPJ11

A pair of point charges are separated by a known distance. Suddenly a wind came through that doubled both charges, and the wind brought them twice as close together as they were previously. If the force at the start was some value F, then what is the firce after all of the changes have occured?

Answers

The force after all the changes have occurred is 16 times the initial force (F).

To determine the force after the changes have occurred, we can analyze the situation using Coulomb's law, which states that the force between two point charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

Let's denote the initial charges as q1 and q2, separated by a distance d. The initial force between them is F.

After the wind doubles both charges, their new values become 2q1 and 2q2. Additionally, the wind brings them twice as close together, so their new distance is d/2.

Using Coulomb's law, the new force, F', can be calculated as:

F' = k * (2q1) * (2q2) / [tex](d/2)^2[/tex]

Simplifying, we get:

F' = 4 * (k * q1 * q2) / [tex](d^2 / 4)[/tex]

F' = 16 * (k * q1 * q2) / [tex]d^2[/tex]

To know more about force refer to-

https://brainly.com/question/13191643

#SPJ11

A loop of wire carrying current I (moving counterclockwise as seen from above) lies in the xy. plane. The loop is placed in a constant magnetic field of magnitude B that points at 30° from the z-axis. If the loop has a radius of 10 meters, carries a current of 2 amps, and the magnitude of the magnetic field is B Tesla, then the magnitude of the torque on the loop is given by am Newton-meters What is the value of a if B=5 Tesla?

Answers

The value of a is 100, as it represents the coefficient π in the equation. Therefore, if B = 5 Tesla, the magnitude of the torque on the loop is 500π N·m, or approximately 1570 N·m.

The torque on a current-carrying loop placed in a magnetic field is given by the equation τ = NIABsinθ, where τ is the torque, N is the number of turns in the loop, I is the current, A is the area of the loop, B is the magnitude of the magnetic field, and θ is the angle between the magnetic field and the normal to the loop.

In this case, the loop has a radius of 10 meters, so the area A is πr² = π(10 m)² = 100π m². The current I is 2 amps, and the magnitude of the magnetic field B is 5 Tesla. The angle θ between the magnetic field and the z-axis is 30°.

Plugging in the values into the torque equation, we have: τ = (2)(1)(100π)(5)(sin 30°)

Using the approximation sin 30° = 0.5, the equation simplifies to: τ = 500π N·m

To know more about torque refer here:

https://brainly.com/question/28220969#

#SPJ11

A hollow square steel tube has a height and width dimension of 5 in and a wall thickness of 0.4 in. and an original length of 8 in. The tube is loaded with 44000 lb. in compression and is shortened by 0.0017 in. as a result of the load. Determine the Modulus of Elasticity of the steel with 1-decimal place accuracy.E= _______ x10^6
(to 1 decimal place)

Answers

The Modulus of Elasticity of the steel with 1-decimal place accuracy is 0.0017 in / 8 in

To determine the modulus of elasticity (E) of the steel, we can use Hooke's law, which states that the stress (σ) is directly proportional to the strain (ε) within the elastic limit.

The stress (σ) can be calculated using the formula:

σ = F / A

Where:

F is the force applied (44000 lb in this case)

A is the cross-sectional area of the steel tube.

The strain (ε) can be calculated using the formula:

ε = ΔL / L0

Where:

ΔL is the change in length (0.0017 in)

L0 is the original length (8 in)

The modulus of elasticity (E) can be calculated using the formula:

E = σ / ε

Now, let's calculate the cross-sectional area (A) of the steel tube:

The outer dimensions of the tube can be calculated by adding twice the wall thickness to each side of the inner dimensions:

Outer height = 5 in + 2 × 0.4 in = 5.8 in

Outer width = 5 in + 2 × 0.4 in = 5.8 in

The cross-sectional area (A) is the product of the outer height and outer width:

A = Outer height × Outer width

Substituting the values:

A = 5.8 in × 5.8 in

A = 33.64 in²

Now, we can calculate the stress (σ):

σ = 44000 lb / 33.64 in²

Next, let's calculate the strain (ε):

ε = 0.0017 in / 8 in

Finally, we can calculate the modulus of elasticity (E):

E = σ / ε

To know more about elasticity click on below link :

https://brainly.com/question/17250844#

#SPJ11

A sinker of 4 Oz is weighed to be 3 OZ in water. The density of
alcohol used is 0.81 g/cm3. How many Oz will it weigh in the
alcohol?

Answers

The sinker will weigh approximately 2.8676 oz in alcohol.

To find the weight of the sinker in alcohol, we need to calculate the buoyant force and subtract it from the weight of the sinker.

Weight of the sinker in water = 3 oz

Density of alcohol = 0.81 g/cm^3

First, let's convert the density of alcohol to ounces per cubic inch to match the units of weight:

Density of alcohol = 0.81 g/cm^3

                              = (0.81 g/cm^3) × (0.03527396 oz/g) × (1 cm^3 / 0.06102374 in^3)

                              ≈ 0.046708 oz/in^3

The buoyant force is equal to the weight of the liquid displaced by the sinker. The volume of liquid displaced is the difference in volume between the sinker in water and the sinker in alcohol.

To find the weight of the sinker in alcohol, we need to calculate the volume of the sinker in water and the volume of the sinker in alcohol:

Volume of sinker in water = Weight of sinker in water / Density of water

                                           = 3 oz / 1 oz/in^3

                                           = 3 in^3

Volume of sinker in alcohol = Volume of sinker in water - Volume of liquid displaced

                                              = 3 in^3 - 3 in^3 × (Density of alcohol / Density of water)

                                              = 3 in^3 - 3 in^3 × (0.046708 oz/in^3 / 1 oz/in^3)

                                              = 3 in^3 - 3 in^3 × 0.046708

                                              = 3 in^3 - 0.140124 in^3

                                              ≈ 2.859876 in^3

Finally, we can calculate the weight of the sinker in alcohol by subtracting the buoyant force from the weight of the sinker:

Weight of the sinker in alcohol = Weight of the sinker in water - Buoyant force

                                                   = 3 oz - (Volume of sinker in alcohol × Density of alcohol)

                                                   = 3 oz - (2.859876 in^3 × 0.046708 oz/in^3)

                                                   ≈ 2.867576 oz

Learn more about density at https://brainly.com/question/26364788

#SPJ11

If you where to shrink Jupiter and put all of its mass into a small enough radius, you could form a black hole with mass equal to the mass of Jupiter. Calculate the radius at which Jupiter would become a black hole.

Answers

The radius at which Jupiter would become a black-hole is approximately 2.79 km.

To calculate the radius at which Jupiter would become a black hole, we can use the Schwarzschild radius formula, which relates the mass of an object to its black hole radius. The formula is given by:

Rs=2GM/c^2

where Rs is Schwarzschild radius

Rs= 6.67430 *10^-11 * 1.898*10^27/(2.998*10^8)^2

Rs = 2.79 km (approx)

Therefore, if the mass of Jupiter were compressed within a radius of approximately 2.79 kilometers, it would become a black hole.

To learn more about black-hole , click here : https://brainly.com/question/10597324

#SPJ11

Explain within 150 words why cool lakes can form natural sound
amplifiers on a clear shiny morning?

Answers

On a clear and shiny morning, cool lakes can form natural sound amplifiers. This phenomenon is because of the temperature difference between the water and the air above it. The surface of the lake warms more slowly than the air, so the air near the water is cooler and denser than the air above it.

When sound waves travel through this denser layer of air, they refract or bend downward towards the surface of the lake. As the sound waves move towards the surface of the lake, they are met with an increasingly cooler and denser layer of air. This creates a sound channel, similar to a fiber optic cable, that carries the sound waves across the lake.

The sound channel extends to the middle of the lake where it reaches the opposite shore, where it can be heard clearly. The shape of the lake can also affect the amplification of sound. If a lake is bowl-shaped, sound waves will be reflected back towards the center of the lake, resulting in even greater amplification. This amplification can result in the sound traveling further and clearer than it would in normal conditions. This is why cool lakes can form natural sound amplifiers on a clear shiny morning, making it easier to hear sounds that would usually be difficult to pick up.

To know more about denser layer visit

https://brainly.com/question/17388150

#SPJ11

HEAT experiment (2) A stream of water strikes a stationary turbine blade horizontally, as the drawing illustrates. The incident water stream has a velocity of 16.0 m/s, while the exiting water stream has a velocity of -16.0 m/s. The mass of water per second that strikes the blade is 30.0 kg/s. Calculate the magnitude of the average force exerted on the water by the blade. [Answer: 960 N)

Answers

The magnitude of the average force exerted on the water by the blade is 960 N.

The average force exerted on the water can be calculated using Newton's second law, which states that force equals mass times acceleration. The change in velocity of the water stream is given as -16.0 m/s (opposite to the initial velocity).

Since the water stream's mass per second is 30.0 kg/s, we can calculate the acceleration using the change in velocity and time.

The average force can then be found by multiplying the mass per second by the acceleration. Plugging in the given values, we find that the average force exerted on the water by the blade is 960 N.

To learn more about  Newton's second law

Click here brainly.com/question/31541845

#SPJ11

A voltage source E-5V is connected in series to a capacitance of 1 x 10 farad and a resistance of 4 ohms. What is the appropriate equation to model the behavior of the charge. Q. 100+ 4Q = 5 4 + 10 "Q-5 540 +10°Q = 4 de 04+109Q = 5 dr

Answers

The appropriate equation to model the behavior of the charge is Q - 5 + 10⁹Q = 4.

In this circuit, a voltage source of 5V is connected in series to a capacitance of 1 × 10⁻⁹ Farad (1 nanoFarad) and a resistance of 4 ohms. The behavior of the charge in the circuit can be described by the equation Q - 5 + 10⁹Q = 4.

Let's break down the equation:

Q represents the charge in Coulombs on the capacitor.

The first term, Q, accounts for the charge stored on the capacitor.

The second term, -5, represents the voltage drop across the resistor (Ohm's law: V = IR).

The third term, 10⁹Q, represents the voltage drop across the capacitor (Q/C, where C is the capacitance).

The sum of these terms, Q - 5 + 10⁹Q, is equal to the applied voltage from the source, which is 4V.

By rearranging the terms, we have the equation Q - 5 + 10⁹Q = 4, which models the behavior of the charge in the circuit.

This equation can be used to determine the value of the charge Q at any given time in the circuit, considering the voltage source, capacitance, and resistance.

To know more about voltage refer here:

https://brainly.com/question/32002804#

#SPJ11

(i) Construct linear and quadratic approximations to the function f = x1x2 at the point x0 = (1,2)T. (ii) For the function f = x1x2, determine expressions for f(α) along the line x1 = x2 and also along the line joining (0, 1) to (1, 0).

Answers

The linear and quadratic approximations to the function f = x1x2 at the point x0 = (1,2)T have been constructed and the expressions for f(α) along the line x1 = x2 along the line joining (0, 1) to (1, 0).

For the given function f(x1,x2)=x1x2, the linear and quadratic approximations can be determined as follows:

Linear approximation: By taking the partial derivatives of the given function with respect to x1 and x2, we get:

f1(x1,x2) = x2 and f2(x1,x2) = x1

Now, the linear approximation can be expressed as follows:

f(x1,x2) ≈ f(1,2) + f1(1,2)(x1-1) + f2(1,2)(x2-2)

Thus, we have (x1,x2) ≈ 2 + 2(x1-1) + (x2-2) = 2x1 - x2 + 2.

Quadratic approximation:

For the quadratic approximation, we need to take into account the second-order partial derivatives as well.

These are given as follows:

f11(x1,x2) = 0, f12(x1,x2) = 1, f21(x1,x2) = 1, f22(x1,x2) = 0

Now, the quadratic approximation can be expressed as follows

f(x1,x2) ≈ f(1,2) + f1(1,2)(x1-1) + f2(1,2)(x2-2) + (1/2)[f11(1,2)(x1-1)² + 2f12(1,2)(x1-1)(x2-2) + f22(1,2)(x2-2)²]

Thus, we have (x1,x2) ≈ 2 + 2(x1-1) + (x2-2) + (1/2)[0(x1-1)² + 2(x1-1)(x2-2) + 0(x2-2)²] = 2x1 - x2 + 2 + x1(x2-2)

For the function f(x1,x2)=x1x2, we are required to determine the expressions for f(α) along the line x1 = x2 and also along the line joining (0, 1) to (1, 0).

Line x1 = x2:

Along this line, we have x1 = x2 = α.

Thus, we can write the function as f(α,α) = α².

Hence, the expression for f(α) along this line is simply f(α) = α².

The line joining (0,1) and (1,0):

The equation of the line joining (0,1) and (1,0) can be expressed as follows:x1 + x2 = 1Or,x2 = 1 - x1Substituting this value of x2 in the given function, we get

f(x1,x2) = x1(1-x1) = x1 - x1²

Now, we need to express x1 in terms of t where t is a parameter that varies along the line joining (0,1) and (1,0). For this, we can use the parametric equation of a straight line which is given as follows:x1 = t, x2 = 1-t

Substituting these values in the above expression for f(x1,x2), we get

f(t) = t - t²

Thus, we have constructed the linear and quadratic approximations to the function f = x1x2 at the point x0 = (1,2)T, and also determined the expressions for f(α) along the line x1 = x2 and also along the line joining (0, 1) to (1, 0).

To know more about partial derivatives visit

brainly.com/question/28751547

#SPJ11

David is 30 years old, and his sister Alexis is 25 years old, when David leaves to travel to planet Rosebud. Planet Rosebud is 20 lightyears away, and at rest relative to the Earth, and David travels at 0.85c. When David begins his journey, he is 5 years older than Alexis. When David arrives at planet Rosebud, who is older (David or Alexis) and by how much?

Answers

When David arrives at planet Rosebud, Alexis is older by 2.15 years.

During David's journey to planet Rosebud, time dilation occurs due to his high velocity relative to Earth. According to special relativity, time slows down for an object moving close to the speed of light. As David travels at 0.85c, his journey experiences time dilation effects.To calculate the age difference when David arrives at planet Rosebud, we need to consider the time dilation factor. The Lorentz factor (γ) is given by γ = 1 / sqrt(1 - v^2/c^2), where v is the velocity of David's journey (0.85c) and c is the speed of light.the Lorentz factor, we find that γ ≈ 1.543. We can now calculate the time dilation experienced by David during his journey. Since David is 30 years old when he leaves, his proper time (τ) is 30 years. The dilated time (t) experienced by David during his journey can be calculated as t = γ * τ.So, t ≈ 46.3 years. When David arrives at planet Rosebud, his age is approximately 46.3 years. Meanwhile, Alexis remains on Earth, aging at a normal rate. Therefore, Alexis is 25 years old + the time it took for David to travel to planet Rosebud (20 light-years / speed of light), which is approximately 2.15 years.Hence, when David arrives at planet Rosebud, Alexis is older by approximately 2.15 years.

To learn more about planet:

https://brainly.com/question/29765555

#SPJ11

(a) What is the maximum current in a 5.00-uF capacitor when it is connected across a North American electrical outlet having AV, = 120 V and f= 60.0 Hz? rms mA = 240 V and f = 50.0 Hz? (b) What is the maximum current in a 5.00-4F capacitor when it is connected across a European electrical outlet having AV, rms mA

Answers

The maximum current in the 5.00 μF capacitor is approximately 0.22 mA for the North American electrical outlet and 0.37 mA for the European electrical outlet.

The maximum current in a capacitor connected to an electrical outlet can be calculated using the formula:

[tex]I_{max} = \frac{2\pi f AVC_{max}}{1000}[/tex],

where [tex]I_{max}[/tex] is the maximum current in milliamperes, f is the frequency in hertz, AV is the voltage amplitude, and [tex]C_{max}[/tex] is the capacitance in farads.

(a) For the North American electrical outlet, with AV = 120 V and f = 60.0 Hz, and a capacitance of 5.00 μF (or [tex]5.00 \times 10^{-6} F[/tex]), substituting the values into the formula:

[tex]I_{max}=\frac{2\pi(60.0)(120)(5.00\times10^{-6})}{1000} =2.2\times10^{-4}A[/tex].

Calculating the expression, the maximum current is approximately [tex]2.2\times10^{-4} A[/tex] or 0.22 mA.

(b) For the European electrical outlet, with AV,rms = 240 V and f = 50.0 Hz, and the same capacitance of 5.00 μF, substituting the values into the formula:

[tex]I_{max}= \frac{2\pi(50.0)(240)(5.00\times10^{-6})}{1000} =3.7\times10^{-4}[/tex].

Calculating the expression, the maximum current is approximately 0.038 A or 38 mA.

Therefore, the maximum current in the 5.00 μF capacitor is approximately 0.22 mA for the North American electrical outlet and 0.37 mA for the European electrical outlet.

Learn more about capacitor here: brainly.com/question/27753307

#SPJ11

15) During a 4.50 s time period the magnetic field through a 0.350 m² wire loop changes from 2.30 T to 5.50T (directed straight through the loop), what is the average induced emf in the wire? 4.sos & ang NAER • 6.350m2

Answers

Given a change in magnetic field from 2.30 T to 5.50 T over a time period of 4.50 s, and a wire loop with an area of 0.350 m²,The average induced emf in the wire loop is 5.33 V.

According to Faraday's law, the induced emf in a wire loop is equal to the rate of change of magnetic flux through the loop. The magnetic flux (Φ) is given by the product of the magnetic field (B) and the area of the loop (A). In this case, the magnetic field changes from 2.30 T to 5.50 T, so the change in magnetic field (ΔB) is 5.50 T - 2.30 T = 3.20 T.

The average induced emf (ε) can be calculated using the formula:

ε = ΔΦ / Δt

where ΔΦ is the change in magnetic flux and Δt is the change in time. The change in time is given as 4.50 s.

To find the change in magnetic flux, we multiply the change in magnetic field (ΔB) by the area of the loop (A):

ΔΦ = ΔB * A

Plugging in the values, we have:

ΔΦ = 3.20 T * 0.350 m² = 1.12 Wb (weber)

Finally, substituting the values into the formula for average induced emf, we get:

ε = 1.12 Wb / 4.50 s = 5.33 V

Therefore, the average induced emf in the wire loop is 5.33 V.

To learn more about magnetic field click here brainly.com/question/14848188

#SPJ11

A straight wire with length 2320cm carries a current 20A which is directed to the right and is perpendicular to an unknown uniform magnetic field B. A magnetic
force 31pN acts on a conductor which is directed downwards. A. Determine the magnitude and the direction of the magnetic field in the region
through which the current passes. B. If the angle between the current and the magnetic field is 54 this time, what would
be the new value of the magnitude of the new magnetic force?

Answers

a. The magnitude of the magnetic field is [tex]2.84 * 10^(^-^1^1^) Tesla.[/tex]

b. The new value of the magnitude of the magnetic force is [tex]4.49 * 10^(^-^1^1^)[/tex] Newtons.

How do we calculate?

a.

F_ = BILsinθ

F_ =  magnetic force,

B = magnetic field

I = current,

L =  length of the wire,

θ =  angle between the current and the magnetic field.

Current (I) = 20 A

Length of wire (L) = 2320 cm = 23.20 m

Magnetic force (F) = 31 pN = 31 x 10^(-12) N

B = F/ (ILsinθ)

B = ([tex]31 * 10^(^-^1^2)[/tex]) N) / (20 A x 23.20 m x sin(90°))

B = [tex]2.84 * 10^(^-^1^1^)[/tex] T

b.

F' = BILsinθ'

F' = ([tex]2.84 * 10^(^-^1^1^)[/tex]T) x (20 A) x (23.20 m) x sin(54°)

F' = 4.49 x 10^(-11) N

Learn more about magnetic field at:

https://brainly.com/question/14411049

#SPJ4

A square of side length 3.0 m is placed on the x axis with its
center at (1.5, 1.5). A circular hole with a 1m radius is drilled
at the location (2, 2). Where is the center of mass of the
square?

Answers

To find the center of mass of the square, we need to consider the coordinates of its vertices.

Let's assume that the bottom-left vertex of the square is at (0, 0). Since the side length of the square is 3.0 m, the coordinates of its other vertices are as follows:

Bottom-right vertex: (3.0, 0)

Top-left vertex: (0, 3.0)

Top-right vertex: (3.0, 3.0)

To find the center of mass, we can average the x-coordinates and the y-coordinates of these vertices separately.

Average of x-coordinates:

[tex]\[ \bar{x} = \frac{0 + 3.0 + 0 + 3.0}{4} = 1.5 \][/tex]

Average of y-coordinates:

[tex]\[ \bar{y} = \frac{0 + 0 + 3.0 + 3.0}{4} = 1.5 \][/tex]

Therefore, the center of mass of the square is located at [tex]\((1.5, 1.5)\)[/tex].

To know more about center of mass visit-

brainly.com/question/31595023

#SPJ11

How much work must be done by frictional forces in slowing a 1000-kg car from 25.3 m/s to rest? 3.2 × 105 J X 4,48 x 105 3.84 x *105J O 2.56 × 105 J

Answers

The work done by frictional forces in slowing the car from 25.3 m/s to rest is approximately -3.22 × 10^5 J.

To calculate the work done by frictional forces in slowing down the car, we need to use the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy.

The initial kinetic energy of the car is given by:

KE_initial = 1/2 * mass * (velocity_initial)^2

The final kinetic energy of the car is zero since it comes to rest:

KE_final = 0

The work done by frictional forces is equal to the change in kinetic energy:

Work = KE_final - KE_initial

Given:

Mass of the car = 1000 kg

Initial velocity = 25.3 m/s

Final velocity (rest) = 0

Plugging these values into the equation, we get:

Work = 0 - (1/2 * 1000 kg * (25.3 m/s)^2)

Calculating this expression, we find:

Work ≈ -3.22 × 10^5 J

The negative sign indicates that work is done against the motion of the car, which is consistent with the concept of frictional forces opposing the car's motion.

Therefore, the work done by frictional forces in slowing the car from 25.3 m/s to rest is approximately -3.22 × 10^5 J.

To know more about forces, click here:

brainly.com/question/30280206

#SPJ11

On a day when the speed of sound is 345 m/s, the fundamental frequency of a particular stopped organ pipe is 220 Hz. The second overtone of this pipe has the same wavelength as the third harmonic of an open pipe. How long is the open pipe? Express your answer in mm

Answers

The length of the open pipe can be determined by comparing the wavelength of the third harmonic of the open pipe to the second overtone of the stopped organ pipe.

The fundamental frequency of a stopped organ pipe is determined by the length of the pipe, while the frequency of a harmonic in an open pipe is determined by the length and speed of sound. In this case, the fundamental frequency of the stopped organ pipe is given as 220 Hz.

The second overtone of the stopped organ pipe is the third harmonic, which has a frequency that is three times the fundamental frequency, resulting in 660 Hz (220 Hz × 3). The wavelength of this second overtone can be calculated by dividing the speed of sound by its frequency: wavelength = speed of sound / frequency = 345 m/s / 660 Hz = 0.5227 meters.

Now, we need to find the length of the open pipe that produces the same wavelength as the third harmonic of the stopped organ pipe. Since the open pipe has a fundamental frequency that corresponds to its first harmonic, the wavelength of the third harmonic in the open pipe is four times the length of the pipe. Therefore, the length of the open pipe can be calculated by multiplying the wavelength by a factor of 1/4: length = (0.5227 meters) / 4 = 0.1307 meters.

Finally, to express the length in millimeters, we convert the length from meters to millimeters by multiplying it by 1000: length = 0.1307 meters × 1000 = 130.7 mm. Hence, the length of the open pipe is 130.7 mm.

To learn more about wavelength.

Click here:brainly.com/question/29548846

#SPJ11

A 1350 kg car is going at a constant speed 55.0 km/h when it
turns through a radius of 210 m. How big is the centripetal force?
Answer in 'kiloNewtons'.

Answers

A 1350 kg car is going at a constant speed 55.0 km/h, the centripetal force exerted by the car on taking the turn is approximately 109.37 kN.

Given data

Mass of the car, m = 1350 kg

Speed of the car, v = 55.0 km/h = 15.28 m/s

Radius of the turn, r = 210 m

Formula to find centripetal force : F = (mv²)/r where,

m = mass of the object

v = velocity of the object

r = radius of the turn

The formula to calculate the centripetal force is given as : F = (mv²)/r

We know that, m = 1350 kg ; v = 15.28 m/s and r = 210 m

Substitute the given values in the above equation to get the centripetal force.

F = (1350 kg) × (15.28 m/s)² / 210 m≈ 109.37 kN

Thus, the centripetal force exerted by the car on taking the turn is approximately 109.37 kN.

To learn more about centripetal force :

https://brainly.com/question/898360

#SPJ11

Consider a cube whose volume is 125 cm3. Inside there are two point charges q1 = -24 pico and q2 = 9 pico. The flux of the electric field across the surface of the cube is: a.-5.5N/A b.1.02 N/A c.2.71 N/A d.-1.69 N/A

Answers

The flux of the electric-field across the surface of the cube is approximately -1.69 N/A.

To calculate the flux of the electric field, we can use Gauss's-Law, which states that the flux (Φ) of an electric field through a closed surface is equal to the enclosed charge (Q) divided by the permittivity of free space (ε₀). Since we have two point charges inside the cube, we need to calculate the total charge enclosed within the cube. Let's denote the volume charge density as ρ, and the volume of the cube as V.

The total charge enclosed is given by Q = ∫ρ dV, where we integrate over the volume of the cube.

Given that the volume of the cube is 125 cm³ and the point charges are located inside, we can find the flux of the electric field.

Using the formula Φ = Q / ε₀, we can calculate the flux.

Comparing the options given, we find that option d, -1.69 N/A, is the closest value to the calculated flux.

Therefore, the flux of the electric field across the surface of the cube is approximately -1.69 N/A.

To learn more about electric-field , click here : https://brainly.com/question/12324569

#SPJ11

Two balls are side by side initially. At time = 0s, ball A is thrown at an initial angular velocity of pi radians per second and at time = 5s, the second ball is thrown down at the same angular velocity of pi radians per second down identical inclines with negligible friction. Assume the ramp is big enough so that the balls do not reach the bottom in the time values given.
a) Construct the angular velocity vs. time graph of both balls from time = 0 s to 15 seconds. Clearly label which line represent which ball and the time values.
b) The experiment is repeated on the same ramps with the same balls but this time, both balls are thrown down the incline at the same time with the same angular velocity. Ball A has twice the radius of Ball B.
i) Construct the linear velocity vs. time graph of both balls.
ii) Shade in the part of your linear velocity vs. time graph that represent the separation displacement between Ball A and Ball B as time progresses. Does this distance increase, decrease, or remain the same over time? Explain your answer.

Answers

a) Ball A: Horizontal line at pi radians per second from 0s to 15s.

  Ball B: Horizontal line at pi radians per second from 5s to 15s.

b) i) Ball A: Positive sloped line indicating constant increase in linear velocity.

  Ball B: Positive sloped line indicating constant increase in linear velocity.

ii) The separation distance between Ball A and Ball B remains the same over time.

a) The angular velocity vs. time graph for both balls can be represented as follows:

- Ball A: The graph is a horizontal line at the value of pi radians per second starting from time = 0s and continuing until time = 15s.

- Ball B: The graph is also a horizontal line at the value of pi radians per second starting from time = 5s and continuing until time = 15s.

b) i) The linear velocity vs. time graph for both balls can be represented as follows:

- Ball A: The graph is a straight line with a positive slope, indicating a constant increase in linear velocity over time.

- Ball B: The graph is also a straight line with a positive slope, indicating a constant increase in linear velocity over time.

ii) The separation displacement between Ball A and Ball B will remain the same over time. This is because both balls are thrown down the incline at the same time with the same angular velocity, meaning they will have the same linear velocity at any given time. Since they start at the same position, their relative distance or separation will remain constant throughout their motion.

Learn more about angular velocity:

https://brainly.com/question/29342095

#SPJ11

Score 2 SA biker and her bike have a combined mass of 80.0 kg and are traveling at a speed of 3.00 m/s. If the same biker and bike travel twice as fast, their kinetic energy will_by a factor of Increa

Answers

The kinetic energy of the SA biker and her bike is increased by a factor of four (1440/360 = 4) when their velocity is doubled is the answer.

The kinetic energy of the SA biker and her bike will be increased by a factor of four if they travel twice as fast as they were. Here's how to explain it: Kinetic energy (KE) is proportional to the square of velocity (v).

This implies that if the velocity of an object increases, the KE will increase as well.

The formula for kinetic energy is: KE = 0.5mv²where KE = kinetic energy, m = mass, and v = velocity.

The SA biker and her bike have a combined mass of 80.0 kg and are travelling at a speed of 3.00 m/s, which implies that their kinetic energy can be determined as follows: KE = 0.5 x 80.0 x (3.00)²KE = 360 J

If the same biker and bike travel twice as fast, their velocity would be 6.00 m/s.

The kinetic energy of the system can be calculated using the same formula: KE = 0.5 x 80.0 x (6.00)²KE = 1440 J

The kinetic energy of the SA biker and her bike is increased by a factor of four (1440/360 = 4) when their velocity is doubled.

know more about kinetic energy

https://brainly.com/question/999862

#SPJ11

On her way to visit Grandmother, Red Riding Hood sat down to rest and placed her 1.20-kg basket of goodies beside her. A wolf came along, spotted the basket, and began to pull on the handle with a force of 6.40 N at an angle of 25° with respect to vertical. Red was not going to let go easily, so she pulled on the handle with a force of 14.1 N. If the net force on the basket is straight up, at what angle was Red Riding Hood pulling from the vertical?

Answers

Red Riding Hood was pulling the handle of the basket at an angle of 45.6° with respect to the vertical.

To find the angle at which Red Riding Hood was pulling from the vertical, we can use the concept of vector addition. Since the net force on the basket is straight up, the vertical components of the forces must be equal and opposite in order to cancel out.The vertical component of the wolf's force can be calculated as 6.40 N * sin(25°) = 2.73 N. For the net force to be straight up, Red Riding Hood's force must have a vertical component of 2.73 N as well.Let θ be the angle between Red Riding Hood's force and the vertical. We can set up the equation: 14.1 N * sin(θ) = 2.73 N.Solving for θ, we find θ ≈ 45.6°.Therefore, Red Riding Hood was pulling the handle of the basket at an angle of approximately 45.6° with respect to the vertical.

To learn more about angle:

https://brainly.com/question/13954458

#SPJ11

Review. A small object with mass 4.00kg moves counterclockwise with constant angular speed 1.50rad/s in a circle of radius 3.00m centered at the origin. It starts at the point with position vector 3.00 i^m . It then undergoes an angular displacement of 9.00 rad.(d) In what direction is it moving?

Answers

The object is moving counterclockwise along an arc of length 27.00m.

The small object with a mass of 4.00kg moves counterclockwise in a circle with a radius of 3.00m and a constant angular speed of 1.50rad/s. It starts at the point with a position vector of 3.00i^m.

To determine the direction in which the object is moving, we need to consider the angular displacement of 9.00rad. Angular displacement is the change in angle as an object moves along a circular path. In this case, the object moves counterclockwise, so the direction of the angular displacement is also counterclockwise.

To find the direction in which the object is moving, we can look at the change in the position vector. The position vector starts at 3.00i^m and undergoes an angular displacement of 9.00rad. This means that the object moves along an arc of the circle.

The direction of the object's motion can be determined by finding the vector that points from the initial position to the final position. Since the object moves counterclockwise, the vector should also point counterclockwise.

In this case, the magnitude of the angular displacement is 9.00rad, so the object moves along an arc of length equal to the radius multiplied by the angular displacement. The length of the arc is 3.00m * 9.00rad = 27.00m.

To know more about radius visit:

https://brainly.com/question/13449316

#SPJ11

Hoover Dam on the Colorado River is the highest dam in the United States at 221 m, with an output of 1300MW. The dam generates electricity with water taken from a depth of 151 m and an average flow rate of 620 m 3
/s. (a) Calculate the power in this flow. Report your answer in Megawatts 1,000,000 W =1MW 25. Hoover Dam on the Colorado River is the highest dam in the United States at 221 m, with an output of 1300MW. The dam generates electricity with water taken from a depth of 150 m and an average flow rate of 650 m 3
/s. (a) Calculate the power in this flow. (b) What is the ratio of this power to the facility's average of 680 MW? (These are the same values as the regular homework assignment) The ratio is 2.12 The ratio is 1.41 The ratio is 0.71 The ratio is 0.47

Answers

Hoover Dam on the Colorado River is the tallest dam in the United States, measuring 221 meters in height, with an output of 1300MW. The dam's electricity is generated by water that is taken from a depth of 151 meters and flows at an average rate of 620 m3/s.Therefore, the correct answer is the ratio is 1.41.

To compute the power in this flow, we use the formula:Power = (density) * (Volume flow rate) * (acceleration due to gravity) * (head). Where density is the density of water, which is 1000 kg/m3, and the acceleration due to gravity is 9.81 m/s2. Head = (depth) * (density) * (acceleration due to gravity). Substituting these values,Power = (1000 kg/m3) * (620 m3/s) * (9.81 m/s2) * (151 m) = 935929200 Watts. Converting this value to Megawatts,Power in Megawatts = 935929200 / 1000000 = 935.93 MWFor the second question,

(a) The power in the second flow is given by the formula:Power = (density) * (Volume flow rate) * (acceleration due to gravity) * (head)Where density is the density of water, which is 1000 kg/m3, and the acceleration due to gravity is 9.81 m/s2.Head = (depth) * (density) * (acceleration due to gravity) Power = (1000 kg/m3) * (650 m3/s) * (9.81 m/s2) * (150 m) = 956439000 Watts. Converting this value to Megawatts,Power in Megawatts = 956439000 / 1000000 = 956.44 MW

(b) The ratio of the power in this flow to the facility's average power is given by:Ratio of the power = Power in the second flow / Average facility power= 956.44 MW / 680 MW= 1.41. Therefore, the correct answer is the ratio is 1.41.

To know more about electricity visit:

brainly.com/question/31173598

#SPJ11

Part A What percentage of all the molecules in the glass are water? Express your answer using six significant figures. D | ΑΣΦ VO ? MAREH nwater Submit Request Answer % Assume the total number of molecules in a glass of liquid is about 1,000,000 million trillion. One million trillion of these are molecules of some poison, while 999,999 million trillion of these are water molecules.

Answers

Assuming the total number of molecules in a glass of liquid is about 1,000,000 million trillion.

One million trillion of these are molecules of some poison, while 999,999 million trillion of these are water molecules.

Express your answer using six significant figures. To determine the percentage of all the molecules in the glass that are water, we need to use the following formula: % of water = (number of water molecules/total number of molecules) × 100.

To know more about liquid visit:

https://brainly.com/question/20922015

#SPJ11

An electron is shot vertically upward through the tiny holes in the center of a parallel-plate capacitor. If the initial speed of the electron at the hole in the bottom plate of the capacitor is 4.00

Answers

Given Data: The initial speed of the electron at the hole in the bottom plate of the capacitor is 4.00.What is the final kinetic energy of the electron when it reaches the top plate of the capacitor? Explanation: The potential energy of the electron is given by, PE = q V Where q is the charge of the electron.

V is the potential difference across the capacitor. As the potential difference across the capacitor is constant, the potential energy of the electron will be converted to kinetic energy as the electron moves from the bottom to the top of the capacitor. Thus, the final kinetic energy of the electron is equal to the initial potential energy of the electron. K.E = P.E = qV Thus, K.E = eV Where e is the charge of the electron. K.E = 1.60 × 10-19 × 1000 × 5K.E = 8 × 10-16 Joule, the final kinetic energy of the electron when it reaches the top plate of the capacitor is 8 × 10-16 Joule.

To know more about energy visit:

https://brainly.com/question/1932868

#SPJ11

Any two point charges exert equally strong electric forces on each other. Coulomb's constant is
8.99 × 10° N-m2/C?, and given that an electron has a charge of -1.60 × 10-19 C: What is the electric force (magnitude and direction) between two electrons (-e) separated by a
distance of 15.5 cm?

Answers

The magnitude of the electric force between two electrons separated by a distance of 15.5 cm is approximately 2.32 × 10^-8 N. The direction of the force is attractive, as like charges repel each other, and both electrons have a negative charge.

The electric force between two charges can be calculated using Coulomb's law:

F = k * |q1 * q2| / r^2

where F is the electric force, k is Coulomb's constant (8.99 × 10^9 N m^2/C^2), q1 and q2 are the charges, and r is the distance between the charges.

Given that both charges are electrons with a charge of -1.60 × 10^-19 C, and the distance between them is 15.5 cm (which can be converted to meters as 0.155 m), we can substitute the values into the equation:

F = (8.99 × 10^9 N m^2/C^2) * |-1.60 × 10^-19 C * -1.60 × 10^-19 C| / (0.155 m)^2

Calculating the expression inside the absolute value:

|-1.60 × 10^-19 C * -1.60 × 10^-19 C| = (1.60 × 10^-19 C)^2 = 2.56 × 10^-38 C^2

Substituting this value and the distance into the equation:

F = (8.99 × 10^9 N m^2/C^2) * (2.56 × 10^-38 C^2) / (0.155 m)^2

Calculating further:

F ≈ 2.32 × 10^-8 N

Therefore, the magnitude of the electric force between two electrons separated by a distance of 15.5 cm is approximately 2.32 × 10^-8 N. The direction of the force is attractive, as like charges repel each other, and both electrons have a negative charge.

Learn more about magnitude:

https://brainly.com/question/30337362

#SPJ11

A train car A is traveling at 10 m/s when it strikes an identical train car B
traveling in the same direction at 4 m/s. Determine the following: ( ) a. Assume a perfectly elastic collision. What speed is train car A
traveling after the collision?
b. What is the loss in total mechanical energy for the answer in part A
(AKE = KE - KEi c. Assume that the train cars couple or "join together" (perfectly inelastic collision). What speed is train car A traveling after the
collision?
d. What is the loss in total mechanical energy for the answer in part B
(AKE = KEr- KEi).

Answers

(a) After the perfectly elastic collision, train car A is still traveling at 10 m/s.

(b) There is no loss in total mechanical energy in a perfectly elastic collision.

(c) After the perfectly inelastic collision, the combined train cars are traveling at a speed of 7 m/s.

(d) The loss in total mechanical energy in a perfectly inelastic collision is 9 times the mass of the train cars.

(a) In a perfectly elastic collision, both momentum and kinetic energy are conserved. Let the mass of each train car be denoted by m. Using the principle of conservation of momentum:

Initial momentum = Final momentum

(mass of A * velocity of A before collision) + (mass of B * velocity of B before collision) = (mass of A * velocity of A after collision) + (mass of B * velocity of B after collision)

(m * 10) + (m * 4) = (m * vA) + (m * vB)

Simplifying the equation:

14m = m(vA + vB)

Since the masses of train car A and train car B are identical, the mass terms cancel out:

14 = vA + vB

Since train car B is initially at rest (velocity of B before collision = 0), the equation becomes:

14 = vA

Therefore, after the collision, train car A is traveling at a speed of 14 m/s.

(b) In a perfectly elastic collision, there is no loss in total mechanical energy. Therefore, the loss in total mechanical energy for part (a) is 0.

(c) In a perfectly inelastic collision, the two train cars stick together and move as a single unit.

Using the principle of conservation of momentum:

Initial momentum = Final momentum

(mass of A * velocity of A before the collision) + (mass of B * velocity of B before collision) = (mass of A + mass of B) * velocity after collision

(m * 10) + (m * 4) = (2m) * v

Simplifying the equation:

14m = 2mv

Simplifying further:

7 = v

Therefore, after the collision, the combined train cars are traveling at a speed of 7 m/s.

(d) In a perfectly inelastic collision, there is a loss in total mechanical energy. The loss in total mechanical energy for part (c) can be calculated as the difference between the initial kinetic energy (KEi) and the final kinetic energy (KEr).

Initial kinetic energy (KEi) = (1/2) * mass of A * (velocity of A before collision)^2 + (1/2) * mass of B * (velocity of B before collision)^2

Final kinetic energy (KEr) = (1/2) * (mass of A + mass of B) * (velocity after collision)^2

Substituting the values:

KEi = (1/2) * m * (10^2) + (1/2) * m * (4^2)

KEr = (1/2) * (2m) * (7^2)

Simplifying the equations:

KEi = 58m

KEr = 49m

Loss in total mechanical energy (AKE) = KEr - KEi = 49m - 58m = -9m

Therefore, the loss in total mechanical energy for part (c) is -9m.

Learn more about the elastic collision at https://brainly.com/question/12644900

#SPJ11

A proton traveling at 20.7° with respect to the direction of a magnetic field of strength 3.59 m experiences a magnetic force of 5.64 x
10^-17 N. Calculate (a) the proton's speed and (b) its kinetic energy in electron-volts.

Answers

Velocity of the proton (v) = 2.9 × 10⁷ m/s

Kinetic energy of the proton = 4.2 × 10⁻¹² eV

Magnetic field strength = 3.59 mT = 3.59 × 10⁻³ T

Angle of incidence (θ) = 20.7°

Force experienced by the proton = 5.64 × 10⁻¹⁷ N

Charge on the proton = 1.6 × 10⁻¹⁹ C

Velocity of the proton (v) = ?

We know that force on a charged particle moving in a magnetic field is given by,

F = Bqv …….(1)

where,

F = Magnetic force on the charged particle

q = Charge on the particle

v = Velocity of the charged particle

B = Magnetic field strength at the location of the charged particle

Putting the values in equation (1),

5.64 × 10⁻¹⁷ = (3.59 × 10⁻³) (1.6 × 10⁻¹⁹) v ……(2)

From equation (2),

Velocity of the proton (v) = 2.9 × 10⁷ m/s (approximately)

Let mass of the proton = m

Kinetic energy of a particle is given by,

K = 1/2mv² …….(3)

Putting the values in equation (3),

Kinetic energy of the proton = 4.2 × 10⁻¹² eV (approximately)

Therefore, Velocity of the proton (v) = 2.9 × 10⁷ m/s

Kinetic energy of the proton = 4.2 × 10⁻¹² eV

Learn more about the kinetic energy:

brainly.com/question/8101588

#SPJ11

Other Questions
1) Let D denote the region in the xy-plane bounded by the curves 3x+4y=8,4y3x=8,4yx^2=1. (a) Sketch of the region D and describe its symmetry. 3. The apocalypse continues unabated. On the bright side, your billings are increasing exponentially! Another wealthy couple drops by your office, apparently surviving the walk into the building due to Ethan being a crack marksman from Texas. Ethan and Alice are husband and wife in Texas (recall, a community property state). Their property includes the following: (see next page)Stock investment Nature of Ownership Adj Basis FMVGrey Stock Ethans Separate property $120,000 $70,000White stock Community prop $380,000 $80,000The separate property was inherited by Ethan from his father. When Ethan learns he has advanced cancer (which the zombies avoid like the plague), he transfers by gift to Alice his Grey stock and his community interest in White stock. FAST FORWARD: When he dies a year later, Alice is the sole owner of both the Grey and White stock. (Here, you might recall some other tax rules from your first tax class and some of my materials, as well. Assume the FMV at death is approximately that shown of a year transferred. Please include Units, thanks a lot!5 : Mr. Fantastic can stretch his body to incredible lengths, just like a spring. He reaches out and catches an anti-tank missile with a mass of 26.8 kilograms traveling at 320 meters per second. Hes able to stop the missile, but not before he stretches out to a length of 7.6 meters.A: What is Mr. Fantastics spring constant?B: How much force must the missiles engine produce if it remains stationary while Mr. Fantastic is holding it? Explain your reasoning.C: How much energy does the missile have while Mr. Fantastic is holding it? What kind of energy is this?6 : Mimas has a mass of 3.75 1019 kilograms and orbits Saturn at an average distance of 185,539 kilometers. It takes Mimas about 0.94 days to complete one orbit.A: Use the orbit of Mimas to calculate the mass of Saturn.B: What is the gravitational force between Mimas and Saturn?C: How much work does Saturn do on Mimas over the course of one complete orbit? Over an orbit and a half? Assume Mimas has a circular orbit and explain your reasoning. Question 1 Seawater at 293 K is fed at the rate of 6.3 kg/s to a forward-feed triple-effect evaporator and is concentrated from 2% to 10%. Saturated steam at 170 kN/m is introduced into the the first effect and a pressure of 34 kN/m is maintained in the last effect. If the heat transfer coefficients in the three effects are 1.7, 1.4 and 1.1 kW/m K, respectively and the specific heat capacity of the liquid is approximately 4 kJ/kg K, what area is required if each effect is identical? Condensate may be assumed to leave at the vapor temperature at each stage, and the effects of boiling point rise may be neglected. The latent heat of vaporization may be taken as constant throughout (a = 2270 kJ/kg). (kN/m : kPa) Water vapor saturation temperature is given by tsat = 42.6776 - 3892.7/(In (p/1000) 9.48654) - 273.15 The correlation for latent heat of water evaporation is given by = 2501.897149 -2.407064037 t + 1.192217x10-3 t2 - 1.5863x10-5 t3 Where t is the saturation temperature in C, p is the pressure in kPa. and 2 is the latent heat in kJ/kg. = = - Oneproblematic property of light was how it was transmitted throughspace from the sun to Earth. Explain how the properties of theparticle theory and wave theory each handled thisexplanation? A coal power station transfers 3.01012J by heat from burning coal, and transfers 1.51012J by heat into the environment. What is the efficiency of the power station? A particle of mass m is confined to a 1-dimensional infinite square well of width 6a that is modified by the addition of a perturbation V(x) defined by: V(x) = V., for a< x < a 10, otherwise. Find the even and odd energy eigenstates and the associated eigenvalues for the unperturbed system. Calculate to first order in perturbation theory, the energy of the ground state of the perturbed system. Q VO X - 3a a Based on cross-cultural research of Piagets preoperational and concreteoperational stages of development, we can conclude thata. in many cultures, children do not experience a preoperational stage.b. in most cultures, children do not experience a concrete operational stage.c. attainment of conservation occurs at almost the same age across all cultures studied so far.d. age of attainment of conservation can vary by several years (26 years, or more) across cultures. labor-hours and its standard cost card per unit is as follows:Direct material: $ pounds at $11.00 per poundDirect labor: 3 hours at $12 per hourVariable overhead: 3 hours at $7 per hourTotal standard variable cost per unitThe company also established the following cost formulas for its selling expenses:sales salaries and commissionsshipping expensesFixed Cost perMonth$ 280,000$ 260,000$ 55.0036.00$112.00VariableCost perUnit Sold$ 20.00$ 11.00The planning budget for March was based on producing and selling 21,000 units. However, during March the companyactually produced and sold 26.600 units and incurred the following costs:a Purchased 154.000 pounds of raw materials at a cost of $9.50 per pound. All of this material was used in production.b. Direct laborers worked 63,000 hours at a rate of $13.00 per houre Total variable manufacturing overhead for the month was $510,930d Total advertising sales salaries and commissions, and shipping expenses were $286,000, $495,000, and $195,000,respectively6 What direct labor cost would be included in the company's flexible budget for March? Assuming an annual market rate of 6.4% over all maturities and a lace value of a bond of $1,000. The current yield of the bond with a coupon rate of 8.6%, paying semi-annual coupons, with 8 years to maturity is (Note: please retain at least 4 decimals in your calculations and at least 2 decimals in the final answer.) Select one: 2. 7.53% b. 7.5% c. 9.87% d. 5.63% e. 5.6% f. 6.4% 8. 8.6% Your colleague lionel has just finished drafting an important business proposal. now he has asked you for advice on how to review the document. what should you tell him to do? Situation 3: 3m A frame is shown below. 400 N/m 15m Find the vertical component of the reaction at A. Calculate the horizontal component of the reaction at A. 10. Compute the horizontal component of the reaction at C. I have a young patient with hirsutism caused by polycystic ovarian syndrome. She's fed up with her symptoms, which haven't improved despite long-term treatment with oestrogens, spironolactone, and cyproterone. She has inquired as to whether surgery would be beneficial. Compare and contrast the predictions and economic insights ofthe Aghion and Tirole model of formal and real authority and theproperty-rights approach to the boundaries of the firm. Q1 lecture notesBalance an oxidation-reduction equation in a basic medium from the ones covered in the lecture notes currently available on Moodle associated with Chapter Four. 4.10 Balancing Oxidation-Reduction Eq The current through a 40 W, 120 V light bulb is:A.1/3 Ab.3Ac.80 Ad4,800 AAND.None Two insulated current-carrying wires (wire 1 and wire 2) are bound together with wire ties to form a two-wire unit. The wires are 2.71 m long and are stretched out horizontally parallel to each other. Wire 1 carries a current of I = 8.00 A and the other wire carries a current I2 in the opposite direction. The two-wire unit is placed in a uniform magnetic field of magnitude 0.400 T such that the angle between the direction of I and the magnetic field is 75.0. While we don't know the current in wire 2, we do know that it is smaller than the current in wire 1. If the magnitude of the net force experienced by the two-wire unit is 3.50 N, determine the current in wire 2. Question 5 of 20British colonists gathered for the First Continental Congress to:A. write the first draft of the Declaration of Independence.B. discuss grievances against Great Britain and assert their rights.C. petition Great Britain to reinstate the policy of salutary neglect.D. organize several violent protests against the Townshend Acts. 33Which set of statements best expresses two of the ideas the author offers to support her view thatFranklin's experiment was doubtfullASuch an experiment would have been unsafe and impractical. In addition, it was poorly recordedfor the scientific community.BFranklin admitted in his letter that he had actually conducted the experiment before the storm.The setup for the experiment was impossible, as well.Priestley's eyewitness account did not include any details. Also, a television show proved thelightning would not have reached the key.D Franklin's prediction about electricity and lightning proved false. Moreover, the dramaticlightning bolt was definitely just an "electrical charge." You have taken out a 60-month, $27,000 car loan with an APR of 6%, compounded monthly. The monthly payment on the Ioan is $521.99. Assume that right after you make your 50th payment, the balance of the loan is $5,079.18. How much of your next payment goes toward principal and how much goes toward interest? Compare this with the prinicipal and interest paid in the first month's payment. (Note: Be careful not to round any intermediate steps less than six decimal places.) The amount that goes towards interest is $ (Round to the nearest cent.) The amount that goes towards the principal is $ (Round to the nearest cent.) Compare this with the prinicipal and interest paid in the first month's payment. (Select the best choice below.) A. In the first month, the amount that goes towards principal is $135.00 and toward interest is $386.99. Therefore, you can see that over time, as you pay down the principal of the loan, more of your payment has to go to cover interest and less of your payment can go towards reducing the principal. B. In the first month, the amount that goes towards principal is $386.99 and toward interest is $135.00. Therefore, you can see that over time, as you pay down the principal of the loan, less of your payment has to go to cover interest and more of your payment can go towards reducing the principal. C. In the first month, the amount that goes towards principal is $386.99 and toward interest is $135.00. Therefore, you can see that over time, as you pay down the principal of the loan, more of your payment has to go to cover interest and less of your payment can go towards reducing the principal.