We have to convert it to m/s
[tex]\boxed{\sf 1km/h=\dfrac{5}{18}m/s}[/tex]
[tex]\\ \sf\longmapsto 40km/h[/tex]
[tex]\\ \sf\longmapsto 40\times \dfrac{5}{18}[/tex]
[tex]\\ \sf\longmapsto \dfrac{200}{18}[/tex]
[tex]\\ \sf\longmapsto 11.1m/s[/tex]
km/h > m/s
when converting km/h to m/s all you need to do is divide by 3.6
and vise versa when converting m/s to km/h multiply by 3.6
so therefore,
40km/h > m/s
= 40 / 3.6
= 11.11 m/s (4sf)
PPPLLLEEEEAAAASSSSEEEEE ANSWER FAST
The following shape is based only on squares, semicircles, and quarter circles. Find the area of the shaded part.
Answer:
36.53 cm²
Step-by-step explanation:
Picture this repeated four times to make a circle. The circle would have a radius of 8. [tex]\pi[/tex]r² would give us 201.06. One quarter of that would be 50.265.
The area of the square is length times width, or 8X8=64.
64-50.265=13.735. That would be ONE of the non shaded sections of the square. If you take that away twice, the leftover part would be the shaded area.
64-13.735-13.735=36.53 cm²
if ella earns x dollars, she is taxed x%. How much money should she earn to maximize her income?
Answer:
just devide it. after that ÷ with 100 per time
I really need help here I am super confused
Which of the following steps can be performed so that the square root property may easily be applied to 2x^2=16?(1 point)
The square root property requires a quantity squared by itself on one side of the equation. The only quantity squared is 16, so divide both sides by 2 before applying the square root property.
The square root property requires a quantity squared by itself on one side of the equation. The only quantity squared is x, so divide both sides by 2 before applying the square root property.
The square root property requires a quantity squared by itself on one side of the equation. The only quantity squared is 16, so divide both sides by 16 before applying the square root property.
The square root property requires a quantity squared by itself on one side of the equation. The only quantity squared is x, so divide both sides by 16 before applying the square root property.
Which of the following steps would not be necessary when using the square root property to solve a quadratic equation?(1 point)
The square root property may be applied only if the constant is positive.
Isolate the quantity being squared.
After applying the square root property, solve the resulting equations. When taking the square root of both sides, use ± on the square root of the constant.
Answer:
The square root property requires a quantity squared by itself on one side of the equation. The only quantity squared is x, so divide both sides by 2 before applying the square root property.
Step-by-step explanation:
In the above question, we are given the expression: 2x^2=16 and we are asked the proper way to apply the square root property.
2x² = 16 is an algebraic equation
To apply square root property to an expression, there must be only one quantity that is squared.
Step 1
We divide both sides by 2
This is because we have to first eliminate the coefficient of x
2x²/2 = 16/2
x² = 8
Step 2
Now that we have eliminated the coefficient of x², we can apply the square root property now because x is the only quantity that is squared.
√x² = √8
x = √8
Therefore, Option 2 which says: "The square root property requires a quantity squared by itself on one side of the equation. The only quantity squared is x, so divide both sides by 2 before applying the square root property." is the correct option
Y varies inversely with x. If Y=17 and k(The constant of variation) =76, what is x? Round to the nearest tenth if necessary.
Answer:
x ≈ 4.5
Step-by-step explanation:
Given y varies inversely with x then the equation relating them is
y = [tex]\frac{k}{x}[/tex] ← k is the constant of variation
Here k = 76 and y = 17 , thus
17 = [tex]\frac{76}{x}[/tex] ( multiply both sides by x )
17x = 76 ( divide both sides by 17 )
x ≈ 4.5 ( to the nearest tenth )
Solve the equation for y. Identify the slope and y-intercept then graph the equation.
Y=-3x+1
Y=
M=
B=
Please Include a picture of the graph and show your work if you can
Assume that random guesses are made for multiple-choice questions on a test with choices for each question, so that there are n trials, each with probability of success (correct) given by p. Find the probability of no correct answers
Complete Question
Assume that random guesses are made for 7 multiple-choice questions on a test with 5 choices for each question, so that there are n=7 trials, each with probability of success (correct) given by p=0.20. Find the probability of no correct answers.
Answer:
The probability is [tex]P(X = 0 ) = 0.210[/tex]
Step-by-step explanation:
From the question we are told that
The number of trial is n = 7
The probability of success is p = 0.20
Generally the probability of failure is
[tex]q = 1- 0.20[/tex]
[tex]q = 0.80[/tex]
Given that this choices follow a binomial distribution as there is only two probabilities i.e success or failure
Then the probability is mathematically represented as
[tex]P(X = 0 ) = \left n} \atop {}} \right. C_0 * p^{0} * q^{n- 0}[/tex]
[tex]P(X = 0 ) = \left 7} \atop {}} \right. C_0 * (0.2)^{0} * (0.8)^{7- 0}[/tex]
Here [tex]\left 7} \atop {}} \right. C_0 = 1[/tex]
=> [tex]P(X = 0 ) = 1 * 1* (0.8)^{7- 0}[/tex]
=> [tex]P(X = 0 ) = 0.210[/tex]
What is the slope of a line that is perpendicular to the line show negative (3, 2) and (0, -2)
Answer:
My answer is 3 over 2 and O over - 2
Step-by-step explanation:
This is my explanation but I'm not sure if I'm right
find the probability of being dealt 5 cards from a standard 52 card deck, and the cards are 6,7,8,9, and 10, all of the same suit. What is the probability of being dealt this hand is
Answer: 20/52 x 4/51 x 3/50 x 2/49 x 1/48 = .00000153908
Step-by-step explanation:
The probability of being dealt 5 cards from a standard 52 card deck, and the cards are 6,7,8,9, and 10 of the same suit is 0.00000153908
What is Probability?
The probability that an event will occur is measured by the ratio of favorable examples to the total number of situations possible
The value of probability lies between 0 and 1
Given data ,
Let the number of cards in deck be = 52 cards
Total number of cards selected = 5
The number of ways of choosing 5 cards = ⁵²C₅
The cards selected are of the same suit
So , there are 4 ways to select them , Hearts , Clubs , Spades and Diamonds = ⁴C₁
And there is only one way to select the cards 6 , 7 , 8 , 9 , 10 = 1
Now , we use combination to select the cards in a deck,
So,
The probability of being dealt 5 cards from a standard 52 card deck, and the cards are 6,7,8,9, and 10, all of the same suit is calculated by,
P ( x ) = 1 / ⁵²C₅ x ⁴C₁ x 1
P ( x ) = 1 / 52! / ( 47! x 5! ) x 4! / 3! x 1
P ( x ) = 1 / ( 52 x 51 x 50 x 49 x 48 ) / ( 2 x 3 x 4 x 5 ) x 4
P ( x ) = 1 / ( 2598966 ) x 4
P ( x ) = 4 / 2598966
P ( x ) = 0.00000153908
Hence , The probability of being dealt 5 cards from a standard 52 card deck, and the cards are 6,7,8,9, and 10 of the same suit is 0.00000153908
To learn more about probability click :
https://brainly.com/question/17089724
#SPJ2
Please help! Make sure to simplify
[tex] \frac{5b^{5}c}{4c^4} \times \frac{8c}{b^4}[/tex]
[tex]\frac{40b^{5}c^2}{4b^{4}c^4}[/tex]
[tex]{10b^{5-4}c^{2-4}}[/tex]
[tex]10bc^-2[/tex]
[tex]\frac{10b}{c^2}[/tex]
Step-by-step explanation:
[tex] \frac{5 {b}^{5} c}{ 4{c}^{4} } \times \frac{8c}{ {b}^{4} } [/tex]
First reduce the expression with b⁴
b⁴ will cancel b^5 remaining with one b
That's
[tex] \frac{5bc}{4 {c}^{4} } \times 8c[/tex]Next reduce 8 and 4 with their GCF which is 4
We have
[tex] \frac{5bc}{ {c}^{4} } \times 2c[/tex]Reduce the expression with c .
c will go into c⁴ remaining with c³
That's
[tex] \frac{5bc}{ {c}^{3} } \times 2[/tex]Simplify the expression again with c
That's
[tex] \frac{5b}{ {c}^{2} } \times 2[/tex]Multiply the expression
We have the final answer as
[tex] \frac{10b}{ {c}^{2} } [/tex]Hope this helps you
Pat bought a new anchor for her boat. She needed to buy rope for the anchor At the
Rope
-N-S store, rope it sold in 4 1/2meter segments. Pat bought 190 segment
for the anchor. Just in case she needed mere.che bought an extra 27 sements. In all,
how many meters of rope did Pat buy?
A.4342
meters
B.976 1/2meters
C.217 meters
D.868 1/2 meters
Answer:
B
Step-by-step explanation:
Total segment bought=190+27=217 segments
Total length of the whole anchor=217*9/2=1953/2=976 1/2 meters
which best defines a service
Answer:
A service could be multiple things.
Step-by-step explanation:
Like, working as a scribe in a nursing home helping old people. Or, being part of a leadership club at school that funds food banks and things like that
Answer:
a
Step-by-step explanation:
Function: y = x^2+ 5x - 7
Vertex:(
Solutions:(
and
Answer:
Vertex: [tex](-\frac{5}{2} , -\frac{53}{4})[/tex]
Solutions: (0,-7), (1, -1), (2, 7)
I hope this helps!
What is 32 divided by the opposite of 4
Answer: -8
Since we are dividing the OPPOSITE of 4 then we are dividing 32÷-4
When multiplying or dividing a POSITIVE to a NEGATIVE you get a NEGATIVE
P/N=N
N/N=P
P*P=P
P=Positive
N=Negative
Divide
32/-4=-8
So your answer is -8
When 32 is divided by opposite of 4 the obtained result is - 8.
What is additive inverse ?Additive inverse of a number is such a number when the original number and it's additive inverse is added we get zero.
4 + ( - 4 ) = 0.So the additive inverse of 4 is - 4.
According to the given question we have to obtain the result when 32 is divided by opposite of 4.
Here opposite of 4 means additive inverse of 4 which is -4.
∴ 32/-4
= - 8.
learn more about additive inverse here :
https://brainly.com/question/13715269
#SPJ2
which expression shows a way to find 2813×7
Answer:
19,691
Step-by-step explanation:
Answer:
2813 x 7 = 19691
Hope this helps!
Find the odds in favor and the odds against a randomly selected person from Country X, age 25 and over, with the stated amount of education. four years (or more) of college
Answer:
25 : 63 and 63 : 25
Step-by-step explanation:
This is a complete question
The table shows the educational attainment of the population of Country X, ages 25 and over. Use the data in the table, expressed in millions, to solve the problem. of 10 questions ge 1: Ages 25 and Over, in Miltions 4 Years igh College 4 Years High School (Less than College School Only 4years) Cor Moce) Total Male 29 19 25 89 Female 11 28 23 Total 2 57 42 50 [176 Find the odds in favor and the odds against a randomty selected person from Country X.age 25 and over, with the stated amount of education. four years (or more) of college 21:67, 67:21 63:88, 88:63 25:63, 63:25 25:88, 88:25
According to the question, the relevant data provided in the question for the solution is as follows
Four years or more of college
Number of students = 50
Total = 176 students
Number of students does not belong = 126
So odds in favor is
= 50 : 126
= 25 : 63
And automatically out against the favor is 63 : 25
The value (in dollars) of an airplane depends on the flight hours as given by the formula V= 1,800,000 - 250x . After one year, the value of the plane is between $1,200,000 and $1,300,000. Which range for the flight hours does this correspond to?
a. 1800 <= x <= 2100
b. 2200<= x <= 2500
c. 1500<= x <= 1800
d. 2000<= x <= 2400
Answer:
D
Step-by-step explanation:
To determine the range we must solve this inequality;
● 1200000<1800000-250x<1300000
Substract 1800000 from both sides.
● 1200000-1800000<1800000-250x<1300000-1800000
● -600000< -250x < -500000
Divide both sides by 250
● -600000/250 < -250x/250 < -500000/250
● -2400 < -x < -2000
Multiply both sides by -1 and switch the signs
● 2000 < x < 2400
The correct option is D. 2000<= x <= 2400
Given, the value of an airplane depends on the flight hours,
[tex]V= 1800000-250x[/tex], here x is the flight hours.
We have to calculate the range of x After one year.
Since, [tex]V= 1800000-250x[/tex]
[tex]250x=1800000-V\\\\x=\dfrac{1800000-V}{250}[/tex]
Since the value of the plane is between $1,200,000 and $1,300,000. So,
[tex]x=\dfrac{1800000-1200000}{250}[/tex]
[tex]x=\dfrac{600000}{250}[/tex]
[tex]x=2400\\[/tex]
When V is 1300000 then x will be,
[tex]x=\dfrac{1800000-1300000}{250} \\[/tex]
[tex]x=\dfrac{500000}{250}[/tex]
[tex]x=2000[/tex]
Hence the range of x will be from 2000 to 2400.
The correct option is D. 2000<= x <= 2400.
For more details on range follow the link:
https://brainly.com/question/10185991
PLEASE HELP!!! Determine the domain and range of the following function. Record your answers in set notation.
Answer:
Ok so to help you out, first, off you need to be sure that the sets domain and range use the proper variable. After that, you are going to want to just plug it into the equation. I am going to link a screenshot to the correct answer if you are still have trouble finding it.
Anyways hoped this helped and I got to this question in time c:
Solve for x using the
distributive property.
6(2 - 6x) = -24
X ?
⇛6(2 - 6x) = -24
⇛12 - 36x = -24
⇛-36x = -24 - 12
⇛-36x = -36
⇛x = -36/-36
⇛x = 1
What is the period of the function shown in the graph?
At origin, the value of the function is [tex]0[/tex]
and then it again becomes zero for the first time is at $2$
but the function isn't repeating itself (it's going downwards)
at $x=4$, it's exactly same, hence the period is $4$
I need help with this math problem
Answer:
1). [tex]\frac{2}{x^{2}-x-12 }=\frac{2}{(x+3)(x-4)}[/tex]
2). [tex]\frac{1}{x^{2}-16 }=\frac{1}{(x-4)(x+4)}[/tex]
Step-by-step explanation:
In this question we have to write the fractions in the factored form.
Rational expressions are [tex]\frac{2}{x^{2}-x-12 }[/tex] and [tex]\frac{1}{x^{2}-16 }[/tex].
1). [tex]\frac{2}{x^{2}-x-12 }[/tex]
Factored form of the denominator (x² - x - 12) = x² - 4x + 3x - 12
= x(x - 4) + 3(x - 4)
= (x + 3)(x - 4)
Therefore. [tex]\frac{2}{x^{2}-x-12 }=\frac{2}{(x+3)(x-4)}[/tex]
2). [tex]\frac{1}{x^{2}-16 }[/tex]
Factored form of the denominator (x² - 16) = (x - 4)(x + 4)
[Since (a²- b²) = (a - b)(a + b)]
Therefore, [tex]\frac{1}{x^{2}-16 }=\frac{1}{(x-4)(x+4)}[/tex]
Please answer this correctly without making mistakes
Answer: 7 mi
Step-by-step explanation: since the distance from bluepoint to Manchester is 12 9/10 mi and you know that bluepoint to Silverstone is 5 9/10 subtract that and you get 7 mi as your answer
Answer:
7 miles
Step-by-step explanation:
Hey there!
Well given BM and BS, we need to subtract them.
12 9 /10 - 5 9/10
9/10 - 9/10 = 0
12 - 5 = 7
Silvergrove to Manchester is 7 miles.
Hope this helps :)
Which phrase describes the linear relationship between the x and y values shown in the table?
x l y
8 l 2
9 l 3
10 l 4
A. y is 6 times x
B. x is 6 times y
C. y is 6 less than x
D. y is 6 more than x
9514 1404 393
Answer:
C. y is 6 less than x
Step-by-step explanation:
It is not hard to check.
A. 6 times x is 6×8 = 48, not 2
B. 6 times y is 6×2 = 12, not 8
C. 6 less than 8 is 2; 6 less than 9 is 3
D. 6 more than 8 is 14, not 2
__
The relation described in C matches the table.
-7y=-91 show your work
Answer:
[tex] \boxed{ \bold{\sf{y = 13}}}[/tex]Step-by-step explanation:
[tex] \sf{ - 7y = - 91}[/tex]
Divide both sides of the equation by -7
⇒[tex] \sf{ \frac{ - 7y}{ - 7} = \frac{ - 91}{ - 7} }[/tex]
Calculate
⇒[tex] \sf{y = 13}[/tex]
Hope I helped!
Best regards!!
Answer:
[tex] \boxed{\sf y = 13} [/tex]
Step-by-step explanation:
Solve for y:
[tex] \sf \implies - 7y = - 91[/tex]
Divide both sides of -7y = -91 by -7:
[tex] \sf \implies \frac{ - 7y}{ - 7} = \frac{ - 91}{ - 7} [/tex]
[tex] \sf \frac{ - 7}{ - 7} = 1 : [/tex]
[tex] \sf \implies y = \frac{ - 91}{ - 7} [/tex]
[tex] \sf \implies y = \frac{ \cancel{ - 7} \times 13}{ \cancel{ - 7}} [/tex]
[tex] \sf \implies y = 13[/tex]
Sam have worked these hours during the week: 4.5, 8.75, 9.5, 10, and 4.25 hours. How many hours did Sam work?
Answer:
37 hours
Step-by-step explanation:
4.5 + 8.75 + 9.5 + 10 + 4.25 = 37 hours
Answer:
37 hours
Step-by-step explanation:
4.5 hours = 4 hrs and 30 mins
8.75 hrs = 8 hrs and 45 mins
9.5 hrs = 9 hrs and 30 mins
10 hrs = 10 hrs and 0 min
4.25 hrs = 4 hrs and 15 mins
(30 + 45 + 30 + 15) mins = 2 hrs
Therefore, total hours Sam worked = (4 + 8 + 9 + 10 + 4 + 2) hrs = 37 hours
what is the average rate of change from 1 to 3 of the function represented by the graph? the graph is attached.
Answer: -4
At 1, the parabola is at (1, 3). And at 3, it's at (3, -5). The rate of change is -4, since each time it moves right 1, it goes down 4.
Hope that helped,
-sirswagger21
given the circle find the arc measure
9514 1404 393
Answer:
87°
Step-by-step explanation:
Call the circle center point X. The measure of arc FG is the measure of central angle FXG, which is the supplement of central angle GXH.
arc FG = 180° -93° = 87°
Instructions: The polygons in each pair are similar. Find the
missing side length.
Answer:
45/27=30/18=x/24
x = 30×24/18
or, x = 40
Answer:
? = 40
Step-by-step explanation:
Since the polygons are similar then the corresponding sides are in proportion, that is
[tex]\frac{?}{24}[/tex] = [tex]\frac{?}{24}[/tex] = [tex]\frac{30}{18}[/tex] ( cross- multiply )
18 ? = 720 ( divide both sides by 18 )
? = 40
I need help as soon as possible at 20 points
9514 1404 393
Answer:
(15/14)² = 225/196
Step-by-step explanation:
Evaluating the expressions inside parentheses, we can see they are the same, eliminating a bit of work.
[tex](\frac{5}{7}\times\frac{3}{2})^5\div(\frac{5}{2}\times\frac{3}{7})^3=(\frac{15}{14})^5\div(\frac{15}{14})^3=(\frac{15}{14})^{5-3}=\boxed{(\frac{15}{14})^2=\frac{225}{196}}[/tex]
Find the area of the composite figure in terms of the figure (use 3.14 for pi)
Answer:
105.12 ft²
Step-by-step explanation:
Let's first find the area of the rectangle.
[tex]10\cdot8=80[/tex] ft², so the rectangle has an area of 80ft².
To find the area of the semi-circle, we find the area of a whole circle and divide by two.
The formula to find the area of a circle is [tex]\pi r^2[/tex]. The radius is 4, as the diameter is 8.
[tex]3.14\cdot4^2[/tex]
[tex]3.14\cdot16[/tex]
[tex]50.24\div2=25.12[/tex]
Add 80 and 25.12:
[tex]80+25.12=105.12[/tex]
Hope this helped!
A population is estimated to have a standard deviation of 9. We want to estimate the population mean within 2, with a 99% level of confidence. How large a sample is required? (Round up your answer to the next whole number.)
Answer:
The sample required is [tex]n = 135[/tex]
Step-by-step explanation:
From the question we are told that
The standard deviation is [tex]\sigma = 9[/tex]
The margin of error is [tex]E = 2[/tex]
Given that the confidence level is 99% then the level of significance is mathematically evaluated as
[tex]\alpha = 100-99[/tex]
[tex]\alpha = 1 \%[/tex]
[tex]\alpha = 0.01[/tex]
Next we will obtain the critical value [tex]\frac{\alpha }{2}[/tex] from the normal distribution table(reference math dot armstrong dot edu) , the value is
[tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.05 }{2} } = 2.58[/tex]
The sample size is mathematically represented as
[tex]n = [ \frac{Z_{\frac{\alpha }{2} } * \sigma }{E} ]^2[/tex]
substituting values
[tex]n = [ \frac{ 2.58 * 9 }{2} ]^2[/tex]
[tex]n = 135[/tex]