Answer:
Option A - Because of Newton's first law of motion
Explanation:
This is as a result of Newton's first law of motion.
Newton's first law of motion which is also referred to as the law of inertia states that; an object at rest will remain at rest and an object in motion will remain in motion with the same speed and in the same direction unless it's acted upon by an unbalanced force.
In this question, the car is at rest and it doesn't move because the upward force of the car is balanced by the downward pull of gravity. It can only move when an external force is applied to it. This fulfills Newton's first law of motion.
What can happen if a body moves through speed of light
As waves travel into the denser medium, they slow down and wavelength decreases.
Explanation:
The denser the medium the slower the waves (speed of light) travels.
◦•●◉✿When the body approaches the speed of light, the body's length appears to contract in the direction of travel, and its mass appears to increase from the point of view of a stationary observer. Only photons move to light velocity. They don´t have length.✿◉●•◦
A proton moves perpendicular to a uniform magnetic field B at a speed of 2.30 107 m/s and experiences an acceleration of 1.70 1013 m/s2 in the positive x direction when its velocity is in the positive z direction. Determine the magnitude and direction of the field.
Answer:
Explanation:
Given the following :
Speed (V) = speed of 2.30×10^7 m/s
Acceleration (a) = 1.70×10^13 m/s^2
Using the right hand rule provided by Lorentz law:
B = F / qvSinΘ
Where B = magnitude of the magnetic field
v = speed of the particle
Θ = 90° (perpendicular to the field)
q = charge of the particle
SinΘ = sin90° = 1
Note F = ma
Therefore,
B = ma / qvSinΘ
Mass of proton = 1.67 × 10^-27
Charge = 1.6 × 10^-19 C
B = [(1.67 × 10^-27) × (1.70 × 10^13)] / (1.6 × 10^-19) × (2.30 × 10^7) × 1
B = 2.839 × 10^-14 / 3.68 × 10^-12
B = 0.7715 × 10^-2
B = 7.72 × 10^-3 T
2) Magnetic field will be in the negative y direction according to the right hand thumb rule.
Since Velocity is in the positive z- direction, acceleration in the positive x - direction, then magnetic field must be in the negative y-direction.
can all alpha beta and gamma radiation treat cancer
Answer:
No
Explanation:
Only a few of alpha beta and gamma radiation can treat cancer
A ball has a mass of 0.25 kg and is moving to the right at 1.0 m/s. It hits a ball of mass 0.15 kg that is initially at rest. After the collision, the 0.15 kg ball moves off to the right with a velocity of 0.75 m/s. What is the final velocity of the 0.25 kg ball? 0.42 m/s to the right 0.42 m/s to the left 0.55 m/s to the right 0.55 m/s to the left
Answer:
C-0.55 m/s to the right
Explanation:
edg
Answer:
0.55 to the right
Explanation:
A transformer is used to light a lamp rated 40w, 240v from a 400v A.C supply. Calculate:
A. The ratio of the number of turns of the primary to the secondary coil.
B. Current drawn from the main circuit if the efficiency of the transformer is 90%.
Answer:1.81
(a) Explanation:the turn ratio= input voltage÷output voltage.
400÷220=1.81.
Don't know how to solve b part...
Can someone please help me with this ? Neon gas in a container was heated from 20°C to 120°C. It's new volume is 150ml. What was the original volume ?
Answer:
110 mL
Explanation:
Ideal gas law:
PV = nRT
Assuming the container isn't rigid, and the pressure is constant, then:
V/T = V/T
Plug in values (remember to use absolute temperature).
V / 293 K = 150 mL / 393 K
V = 110 mL
Un contenedor de 1800 N está en reposo sobre un plano inclinado a 28°, el coeficiente de fricción entre el contenedor y el plano es de 0.4. Calcule la fuerza P paralela al plano y dirigida hacia arriba de éste que hará que el contenedor se mueva hacia arriba con una velocidad constante.
Answer:
F = 1480.77N
Explanation:
In order to calculate the required force to push the container with a constant velocity, you take into account the the sum of force on the container is equal to zero. Furthermore, you have for an incline the following sum of forces:
[tex]F-Wsin\alpha-F_r=0\\\\F-Wsin\alpha-N\mu cos\alpha=0\\\\F-Wsin\alpha-W\mu cos\alpha=0[/tex] (1)
F: required force = ?
W: weight of the container = 1800N
N: normal force = weigth
α: angle of the incline = 28°
g: gravitational acceleration = 9.8m/s^2
μ: coefficient of friction = 0.4
You solve the equation (1) for F and replace the values of the other parameters:
[tex]F=W(sin\alpha+\mu cos\alpha)\\\\F=(1800N)(sin28\°+(0.4)cos28\°)=1480.77N[/tex]
The required force to push the container for the incline with a constant velocity is 1480.77N
coma Narrows Bridge across the Puget Sound collapsed. The bridge was a suspension bridge. The wind blowing through the narrows matched the natural frequency of the bridge. This resulted in a large movement of roadway, which eventually caused the bridge to fail. What characteristic of waves caused the bridge to collapse
Answer:
amplitude
Explanation:
Amplitude is the characteristic of waves which caused the bridge to collapse. Amplitude of a wave is the maximum amount of displacement of a particle occurs in the medium from its rest position. When the frequency of a wave reaches the natural frequency of the bridge, the oscillation of the bridge produce an amplitude where it causing the destruction of the bridge which is called Resonance. So we can say that amplitude is the characteristic of waves which is responsible for the collapse of the bridge.
Answer: C.interference, because constructive interference occurred when the wind frequency matched the natural frequency of the bridge
Explanation:
Two identical resistors are connected in parallel across a 26-V battery, which supplies them with a total power of 7.1 W. While the battery is still connected, one of the resistors is heated so that its resistance doubles. The resistance of the other resistor remains unchanged. Find (a) the initial resistance of each resistor, and (b) the total power delivered to the resistors after one resistor has been heated.
Answer:
A) R = 190.42 Ω
B) P = 5.325 W
Explanation:
We are given;
Total power;P_tot = 7.1 W
Voltage;V = 26 V
A)We are told that while the battery is still connected, one of the resistors is heated, so that its resistance doubles.
Thus, the power is doubled.
Now, formula for power is;
P = IV
Thus, since power is doubled, we have;
P = 2(IV)
Now, formula for current is; I = V/R
So, P = 2V²/R
Making R the subject, we have;
R = 2V²/P
In this question, P is p_total = 7.1 W
Thus;
R = (2 × 26²)/7.1
R = 190.42 Ω
B) Now, the resistance of the resistors are R and 2R.
Formula for power in this context is;
P = V²/R
Thus,
Total power delivered to the resistors is;
P = V²/R + V²/2R
P = 3V²/2R
P = (3 × 26²)/(2 × 190.42)
P = 5.325 W
Moment of inertia describes Select one: a. How the mass of an extended object is distributed about a rotation axis. b. How a force can rotate an object. c. The average position of the mass in an extended object. d. The tendency of an object to move in a circular path. e. The tendency of an object to move in a straight line.
Answer: a. How the mass of an extended object is distributed about a rotation axis
Explanation: Moment of inertia is defined as the measure of the rotational inertia of a solid object, it is a quantity that defines the torque needed to reach a desired angular acceleration around a given rotation axis, and it depends mainly on the mass distribution of the object, so the correct answer is: "how the mass of an extended object is distributed about a rotation axis"
a child rides her bicycle in her level drive way. what form of energy does she possess A. Elastic B. Nuclear C. Potential D. Kinetic
Answer:
Kinetic Energy
Explanation:
Kinetic energy is energy due to motion.
Answer:
D
Explanation:
Elastic energy is energy stored in a object when there is a strain or compression on the object.
Nuclear energy is the energy found in the nucleus of an atom.
Potential energy is energy that an object stores because of its position to other objects.
Kinetic energy is the energy that an object has due to motion.
The child is riding her bicycle, therefore the child is in motion. So, the correct answer must be D. Kinetic energy
A lens with f= 20.0 cm creates a
virtual image at -37.5 cm (in front of
the lens). The object is 4.44 cm
tall. How tall is the image?
(Mind your minus signs.)
(Unit = cm)
Answer:
h ’= 12,768 cm
Explanation:
For this exercise let's use the constructor equation
1 / f = 1 / p + 1 / q
where f is the focal length, p the distance to the object and q the distance to the image
the magnification equation is
m = h '/ h = -q / p
let's find the distance to the object
1 / p = 1 / f- 1 / q
1 / p = 1/20 - 1 / (- 37.5)
1 / p = 0.076666
p = 13.04 cm
now let's use the magnification equation
h ’= - q / p h
let's calculate
h ’= - (-37.5) / 13.04 4.44
h ’= 12,768 cm
Answer:
12.8
Explanation:
got the answer from chegg. Correct for acellus.
A car speeds over a hill past point A, as shown in the figure. What is the maximum speed the car can have at point A such that its tires will not leave the track? Round to one decimal place and include units. Image:
Answer:
11.8 m/s
Explanation:
At the top of the hill, there are two forces on the car: weight force pulling down (towards the center of the circle), and normal force pushing up (away from the center of the circle).
Sum of forces in the centripetal direction:
∑F = ma
mg − N = m v²/r
At the maximum speed, the normal force is 0.
mg = m v²/r
g = v²/r
v = √(gr)
v = √(9.8 m/s² × 14.2 m)
v = 11.8 m/s
A wire carries a steady current of 2.80 A. A straight section of the wire is 0.750 m long and lies along the x axis within a uniform magnetic field, = 1.50 T. If the current is in the positive x direction, what is the magnetic force on the section of wire?
Answer:
The magnetic force in the wire is 3.15NExplanation:
Given
current I= 2.80 A.
length of conductor L= 0.75 m
Magnetic field, B = 1.50 T
∅=90
according to Fleming's left hand rule the conductor will observe a force perpendicular to it
Applying the formula
[tex]F= BIL* sin(90)[/tex]
[tex]F=1.50* 2.80* 0.750* sin(90)\\\F= 3.15N[/tex]
Note: sine(90)= 1
1. Find the energy required to melt 255g of ice at 0°C into water at 0°C
Answer:
E = 85170 J (/ 85.2 kJ)
Explanation:
Take the latent heat of fusion of water be 334J / g.
From the equation E = ml,
E = energy required (unknown),
mass m = 255g,
latent heat of fusion l = 334J / g,
E = 255 x 334
E = 85170 J (/ 85.2 kJ)
Write the importance of sound in our life.
Will give brainliest for the person who answers first
A 75W television is on for 400s, how much energy is transferred, leave your answer in Joules
Answer:
30,000 J
Explanation:
Energy (Joules) = Power (Watt) × Time (seconds)
Energy (J) = 75 × 400
Energy (J) = 30,000
30,000 Joules of energy will be transferred.
Imagine that you are sitting in a chamber with your back to one wall. An electron beam, moving horizontally from the front wall towards the back wall, is deflected by a strong magnetic field to your right side. What is the direction of the magnetic field? Name the rule used to find out the direction of magnetic field in this situation
Answer:
Flemmings' left hand rule and Downward direction
Explanation:
The person could able to determine the path of force by applying the left-hand rule of Fleming.
Via holding the thumb the forefinger and second finger at right angles for one other
The left-hand rule is applied in the electric motors
On the other hand, the right-hand rule is applied for electric generators.
So different hands are used for the different thing as there is a difference between the cause and effect
Therefore in this case there is a left hand rule used and the direction is downward
state the observations made in this experiment
Answer:
the water is going to boil and the mercury ill melt and shoot the cork out the bottom of the tube
Explanation:
What did classical physics predict would happen to the light given off by an
object as its temperature increased?
A. The wavelength of the light would decrease from visible light into
the ultraviolet range.
B. The color of the light would fade to black as the brightness
decreased.
C. The color of the light would change to white, and the brightness
would decrease.
D. The wavelength of the light would decrease from visible light into
the infrared range.
Answer:
The Wavelength of the light would decrease from visible light into ultraviolet range A P E X
Explanation:
Classical physics predict that as the temperature is increased, the wavelength of the light would decrease from visible light into more energetic ultraviolet range.
What is classical physics?When an electric charge vibrates, an electromagnetic wave is produced. Remember that heat is simply the kinetic energy of random motion. In a hot object, electrons vibrate in random directions and produce light as a result.
A hotter object produces more energetic vibrations, and thus emits more light —- it glows brighter. So far, so good. However, classical physics was unable to explain the shape of the blackbody spectrum.
As per the classical physics concepts, as the temperature increases, the wavelength of light becomes shorter and shifts to higher energy regions. Therefore, option A is correct.
To find more on blackbody radiation, refer here:
https://brainly.com/question/16749080
#SPJ5
A pendulum at position A is released and swings through position B to position Con the other side.
B
1. Describe the total mechanical energy at each of the following positions. (3)
A.
B.
C
Explanation:
Given the conditions A,B and C when the pendulum is released, at point A the initial velocity of the pendulum is zero(0), the potential energy stored is maximum(P.E= max),
the conditions can be summarized bellow
point A
initial velocity= 0
final velocity=0
P.E= Max
K.E= 0
point B
initial velocity= maximum
final velocity=maximum
P.E=K.E
point C
initial velocity= min
final velocity=min
P.E= 0
K.E= max
How many atoms of oxygen in the chemical formula 2 Ca(ClO2)2?
Answer:
8
Explanation:
Ca(ClO2)2 - 2*2 = 4 Oxygen atoms
2 Ca(ClO2)2 - 2*4 = 8 Oxygen atoms
Un depósito de gran superficie se llena de agua hasta una altura de 0,3 m. En el fondo del depósito hay un orificio de 5 cm2 de sección por el que sale el agua con un chorro continuo. A) ¿Qué cantidad de líquido saldrá del depósito expresada en m3/s?
Answer:
a) El caudal de salida del chorro es [tex]1.213\times 10^{-3}\,\frac{m^{3}}{s}[/tex].
Explanation:
a) Asúmase que el tanque se encuentra a presión atmósferica y que la sima del tanque tiene una altura de 0 metros. La rapidez de salida del chorro del depósito se determined a partir del Principio de Bernoulli, cuya línea de corriente entre la cima y la sima del tanque queda descrita por la siguiente ecuación:
[tex]\Delta z = \frac{v_{out}^{2}}{2\cdot g}[/tex]
Donde:
[tex]\Delta z[/tex] - Diferencia de altura, medida en metros.
[tex]g[/tex] - Constante gravitacional, medida en metros por segundo al cuadrado.
[tex]v_{out}[/tex] - Rapidez de salida del chorro, medida en metros por segundo.
Se despeja la rapidez de salida del chorro:
[tex]v_{out} = \sqrt{2\cdot g \cdot \Delta z}[/tex]
Si [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] y [tex]\Delta z = 0.3\,m[/tex], entonces la rapidez de salida del chorro es:
[tex]v_{out} = \sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (0.3\,m)}[/tex]
[tex]v_{out} \approx 2.426\,\frac{m}{s}[/tex]
Ahora, la cantidad de líquido que sale del depósito por unidad de tiempo se obtiene al multiplicar la rapidez de salida del chorro por el área transversal del orificio. Esto es:
[tex]\dot V_{out} = v_{out}\cdot A_{t}[/tex]
Donde:
[tex]v_{out}[/tex] - Rapidez de salida del chorro, medida en metros por segundo.
[tex]A_{t}[/tex] - Área transversal del orificio, medido en metros cuadrados.
[tex]\dot V_{out}[/tex] - Caudal de salida del chorro, medido en metros cúbicos por segundo.
Dado que [tex]v_{out} = 2.426\,\frac{m}{s}[/tex] y [tex]A_{t} = 5\,cm^{2}[/tex], el caudal de salida del chorro es:
[tex]\dot V_{out} = \left(2.426\,\frac{m}{s} \right)\cdot (5\,cm^{2})\cdot \left(\frac{1}{10000}\,\frac{m^{2}}{cm^{2}} \right)[/tex]
[tex]\dot V_{out} = 1.213\times 10^{-3}\,\frac{m^{3}}{s}[/tex]
El caudal de salida del chorro es [tex]1.213\times 10^{-3}\,\frac{m^{3}}{s}[/tex].
Answer part (d) please
Answer:
MARK me brainliest please and follow my page
Explanation:
All you have to do to get the average speed is to calculate the total distance covered and divide it by the total time taken
= 16/18 = 0.88m/s
Average speed = (distance covered) / (time to cover the distance)
For the full 18 seconds described by the graph . . .
Average speed = (16 meters) / (18 seconds)
Average speed = (16 / 18) m/s
Average speed = 0.89 m/s
A car is running at the speed of 45km/hr see a child 25 meter ahead and suddenly apllies a brakes. If the retradation of the car is 2 meter per second square,is the child spared?
Answer:
The car stops in 7.78s and does not spare the child.
Explanation:
In order to know if the car stops before the distance to the child, you take into account the following equation:
[tex]x=x_o+v_ot-\frac{1}{2}at^2[/tex] (1)
vo: initial speed of the car = 45km/h
a: deceleration of the car = 2 m/s^2
t: time
xo: initial distance to the child = 25m
x: final distance to the child = 0m
It is necessary that the solution of the equation (1) for time t are real.
You first convert the initial speed to m/s, then replace the values of the parameters and solve the quadratic polynomial for t:
[tex]45\frac{km}{h}*\frac{1h}{3600s}*\frac{1000m}{1km}=12.5\frac{m}{s}[/tex]
[tex]0=25+12.5t-2t^2\\\\2t^2-12.5t-25=0\\\\t_{1,2}=\frac{-(-12.5)\pm \sqrt{(-12.5)^2-4(2)(-25)}}{2(2)}\\\\t_{1,2}=\frac{12.25\pm 18.87}{4}\\\\t_1=7.78s\\\\t_2=-1.65s[/tex]
You take the first value t1 because it has physical meaning.
The solution for t is real, then, the car stops in 7.78s and does not spare the child.
Magnetic field lines exit out of the . Magnetic field lines enter into the . Magnetic field lines travel around a bar magnet in
Answer:
Magnetic field lines exit out of the North pole . Magnetic field lines enter into the South pole. Magnetic field lines travel around a bar magnet in closed loops.
Explanation:
Magnetic field lines shows the direction of a magnetic force and how it acts, it gives the direction of the magnetic field at that point in time.
For a bar magnetic, the magnetic field lines runs from the north pole to the south pole, i.e. it exits the north pole and enters into the south pole. This magnetic field lines also go through the magnet forming closed loops without ends.
Answer:
Magnetic field lines exit out of the
✔ north pole
.
Magnetic field lines enter into the
✔ south pole
.
Magnetic field lines travel around a bar magnet in
✔ a closed loop
.
Explanation:
You are trying to overhear a juicy conversation, but from your distance of 25.0 m , it sounds like only an average whisper of 20.0 dB . So you decide to move closer to give the conversation a sound level of 70.0 dB instead. How close should you come? (in cm)
Answer:So You Decide To Move Closer To Give The Conversation A Sound Level Of 80.0dB Instead. ... You are trying to overhear a juicy conversation, but from your distance of 24.0m , it sounds like only an average whisper of 40.0dB .
Explanation:
Danny lowers the sails on his boat. He paddles upstream at 19 km/hr. The current is still running downstream at 15 km/hr. What is the actual velocity of the boat?
Answer:
4 km/hr
Explanation:
The computation of the actual velocity is shown below:
Because the path of its paddles is opposed to the current direction, the real velocity can be determined by deducting the current velocity to its velocity while paddling
So, the actual velocity is
= Upstream - downstream
= 19 km/hr - 15 km/hr
= 4 km/hr
As we can see it is in positive, so it is an upstream direction
Answer:
since the direction of his paddles is opposite of the the direction of the current, so the actual velocity can be calculated by subtracting the velocity of current to to his velocity when paddling
v = 19 - 15
v = 4 since the answer is positive, then the direction is upstream
Explanation:
On a horizontal frictionless surface a mass M is attached to two light elastic strings both having length l and both made of the same material. The mass is displaced by a small displacement Δy such that equal tensions T exist in the two strings, as shown in the figure. The mass is released and begins to oscillate back and forth. Assume that the displacement is small enough so that the tensions do not change appreciably. (a) Show that the restoring force on the mass can be given by F = -(2T∆y)/l (for small angles) (b) Derive an expression for the frequency of oscillation.
Answer:
ω = √(2T / (mL))
Explanation:
(a) Draw a free body diagram of the mass. There are two tension forces, one pulling down and left, the other pulling down and right.
The x-components of the tension forces cancel each other out, so the net force is in the y direction:
∑F = -2T sin θ, where θ is the angle from the horizontal.
For small angles, sin θ ≈ tan θ.
∑F = -2T tan θ
∑F = -2T (Δy / L)
(b) For a spring, the restoring force is F = -kx, and the frequency is ω = √(k/m). (This is derived by solving a second order differential equation.)
In this case, k = 2T/L, so the frequency is:
ω = √((2T/L) / m)
ω = √(2T / (mL))
What is the wavelength of a wave that has a speed of 3 km/s and a frequency of 12 Hz? A. 36 km B. 3.6 km C. 0.25 km D. 4 km
Answer:
c. 0.25km
Explanation:
v=f x wavelength
3000 = 12 x wavelength
wavelength = 3000/12 = 250m
250m to km
To convert m to km, we divide by 1000
250/1000 =0.25km
wavelength = 0.25km