(a) The time required for the capacitor to lose the first one-third of its charge is given by t1 = t * ln(3), and (b) the time required to lose the first two-thirds of its charge is t2 = t * ln(3^2)
(a) To calculate the time required for the capacitor to lose the first one-third of its charge, we can use the formula:t1 = t * ln(3)
Where t1 represents the time required, t is the time constant, and ln denotes the natural logarithm. This formula is derived from the exponential decay behavior of a charging or discharging capacitor.
(b) Similarly, to find the time required for the capacitor to lose the first two-thirds of its charge, we can use the formula:
t2 = t * ln(3^2)
Here, t2 represents the time required to lose the first two-thirds of the charge.
(a) The time required for the capacitor to lose the first one-third of its charge is given by t1 = t * ln(3), and (b) the time required to lose the first two-thirds of its charge is t2 = t * ln(3^2). These formulas utilize the natural logarithm and the time constant to calculate the desired time durations.
Learn more about capacitor click here:
brainly.com/question/31627158
#SPJ11
Q 12A: A rocket has an initial velocity V; and mass M= 2000 KG. The thrusters are fired, and the rocket undergoes constant acceleration for 18.1s resulting in a final velocity of Vf Part (a) What is the magnitude, in meters per squared second, of the acceleration? Part (b) Calculate the Kinetic energy before and after the thrusters are fired. ū; =(-25.7 m/s) î+(13.8 m/s) į Ūg =(31.8 m/s) î+(30.4 m/s) Î.
Let the acceleration of the rocket be denoted as a. During the constant acceleration phase, the final velocity (Vf) can be calculated using the equation Vf = V + a * t, where V is the initial velocity and t is the time interval.
Given that the initial velocity V is 0 (the rocket starts from rest) and the final velocity Vf is known, we have:
Vf = a * t
0.183 m/s² = a * 18.1 s
Therefore, the magnitude of the acceleration is 0.183 meters per squared second.
Part (b):
The kinetic energy (K.E) of an object is given by the formula K.E = (1/2) * m * v², where m is the mass of the object and v is its velocity.
Before the thrusters are fired, the rocket has an initial velocity of zero. Using the given values of mass (M = 2000 kg) and the velocity vector (ū; = (-25.7 m/s) î + (13.8 m/s) į), we can calculate the initial kinetic energy.
K.E before thrusters are fired = (1/2) * M * (ū;)^2
K.E before thrusters are fired = (1/2) * 2000 kg * ((-25.7 m/s)^2 + (13.8 m/s)^2)
K.E before thrusters are fired = 2.04 × 10⁶ J
After the thrusters are fired, the final velocity vector is given as Ūg = (31.8 m/s) î + (30.4 m/s) Î. Using the same formula, we can calculate the final kinetic energy.
K.E after thrusters are fired = (1/2) * M * (Ūg)^2
K.E after thrusters are fired = (1/2) * 2000 kg * ((31.8 m/s)^2 + (30.4 m/s)^2)
K.E after thrusters are fired = 9.58 × 10⁵ J
Therefore, the kinetic energy before the thrusters are fired is 2.04 × 10⁶ J, and the kinetic energy after the thrusters are fired is 9.58 × 10⁵ J.
To Learn more about velocity. Click this!
brainly.com/question/33264778
#SPJ11
A magnifying glass gives an angular magnification of 4 for a person with a near-point distance of sN = 22 cm. What is the focal length of the lens?
The focal length of the magnifying glass lens is approximately -5.5 cm.
The angular magnification (m) of the magnifying glass is given as 4, and the near-point distance (sN) of the person is 22 cm. To find the focal length (f) of the lens, we can use the formula:
f = -sN / m
Substituting the given values:
f = -22 cm / 4
f = -5.5 cm
The negative sign indicates that the lens is a diverging lens, which is typical for magnifying glasses. Therefore, the focal length of the magnifying glass lens is approximately -5.5 cm. This means that the lens diverges the incoming light rays and creates a virtual image that appears larger and closer to the observer.
learn more about lens click here;
brainly.com/question/29834071
#SPJ11
Two dimensions. In the figure, three point particles are fixed in place in an xy plane. Particle A has mass mA = 4 g, particle B has mass 2.00mA, and particle C has mass 3.00mA. A fourth particle D, with mass 4.00m, is to be placed near the other three particles. What (a) x coordinate and (b) y coordinate should particle D be placed so that the net gravitational force on particle A from particles B, C, and D is zero (d = 19 cm)? (a) Number 0.135957041 (b) Number i 0.2039355632 Units Units m E 1.5d Be A d
The sum of these forces should be zero:
F_AB_y + F_AC_y + F_AD_y = 0
To find the x and y coordinates for particle D such that the net gravitational force on particle A from particles B, C, and D is zero, we can use the concept of gravitational forces and Newton's law of universal gravitation.
Let's assume that the x-axis extends horizontally and the y-axis extends vertically.
Given:
Mass of particle A (mA) = 4 g
Mass of particle B = 2.00mA
Mass of particle C = 3.00mA
Mass of particle D = 4.00m
Distance between particle A and D (d) = 19 cm = 0.19 m
Let (x, y) be the coordinates of particle D.
The gravitational force between two particles is given by the equation:
F_gravity = G * (m1 * m2) / r^2
Where:
F_gravity is the gravitational force between the particles.
G is the gravitational constant (approximately 6.674 × 10^-11 N(m/kg)^2).
m1 and m2 are the masses of the particles.
r is the distance between the particles.
Since we want the net gravitational force on particle A to be zero, the sum of the gravitational forces between particle A and particles B, C, and D should add up to zero.
Considering the x-components of the gravitational forces, we have:
Force on particle A due to particle B in the x-direction: F_AB_x = F_AB * cos(theta_AB)
Force on particle A due to particle C in the x-direction: F_AC_x = F_AC * cos(theta_AC)
Force on particle A due to particle D in the x-direction: F_AD_x = F_AD * cos(theta_AD)
Here, theta_AB, theta_AC, and theta_AD represent the angles between the x-axis and the lines joining particle A to particles B, C, and D, respectively.
Since we want the net force to be zero, the sum of these forces should be zero:
F_AB_x + F_AC_x + F_AD_x = 0
Similarly, considering the y-components of the gravitational forces, we have:
Force on particle A due to particle B in the y-direction: F_AB_y = F_AB * sin(theta_AB)
Force on particle A due to particle C in the y-direction: F_AC_y = F_AC * sin(theta_AC)
Force on particle A due to particle D in the y-direction: F_AD_y = F_AD * sin(theta_AD)
Again, the sum of these forces should be zero:
F_AB_y + F_AC_y + F_AD_y = 0
To know more about coordinates, visit:
https://brainly.com/question/32836021
#SPJ11
Four identical charges (+2μC each ) are brought from infinity and fixed to a straight line. The charges are located 0.40 m apart. Determine the electric potential energy of this group.
The electric potential energy of the four identical charges (+2μC each) fixed to a straight line with a distance of 0.40 m is 1.44 × 10^-5 J.
To calculate the electric potential energy of a group of charges, the formula is given as U = k * q1 * q2 / r where, U is the electric potential energy of the group k is Coulomb's constant q1 and q2 are the charges r is the distance between the charges.
Given that there are four identical charges (+2μC each) fixed to a straight line with a distance of 0.40 m. We have to calculate the electric potential energy of this group of charges.
The electric potential energy formula becomes:
U = k * q1 * q2 / r = (9 × 10^9 Nm^2/C^2) × (2 × 10^-6 C)^2 × 4 / 0.40 m
U = 1.44 × 10^-5 J.
Therefore, the electric potential energy of the four identical charges (+2μC each) fixed to a straight line with a distance of 0.40 m is 1.44 × 10^-5 J.
Learn more about electric potential energy:
https://brainly.com/question/33229290
#SPJ11
When a photon is absorbed by a semiconductor, an electron-hole pair is created. Give a physical explanation of this statement using the energy-band model as the basis for your description.
When a photon is absorbed by a semiconductor, an electron-hole pair is created due to the energy-band model. This occurs because photons carry energy, and when they interact with the semiconductor material, they can transfer their energy to the electrons within the material.
The energy-band model describes the behavior of electrons in a semiconductor material. In a semiconductor, such as silicon or germanium, there are two main energy bands: the valence band and the conduction band. The valence band contains electrons with lower energy, while the conduction band contains electrons with higher energy.
When a photon, which is a packet of electromagnetic energy, interacts with the semiconductor, its energy can be absorbed by an electron in the valence band. This absorption causes the electron to gain sufficient energy to move from the valence band to the conduction band, leaving behind an unfilled space in the valence band called a hole. This process is known as electron excitation.
The electron that moved to the conduction band now acts as a mobile charge carrier, capable of participating in electric current flow. The hole left in the valence band also behaves as a quasi-particle with a positive charge and can move through the material.
The creation of the electron-hole pair is a fundamental process in the operation of semiconductor devices such as solar cells, photodiodes, and transistors. These electron-hole pairs play a crucial role in the generation, transport, and utilization of electric charge within the semiconductor.
In summary, when a photon interacts with a semiconductor material, it can transfer its energy to an electron in the valence band. This energy absorption causes the electron to move to the conduction band, creating an electron-hole pair. The electron becomes a mobile charge carrier, contributing to electric current flow, while the hole acts as a positively charged quasi-particle.
Understanding the creation of electron-hole pairs is essential in the design and operation of semiconductor devices, where the manipulation and control of these charge carriers are crucial for their functionality. The energy-band model provides a framework for explaining and analyzing the behavior of electrons and holes in semiconductors, enabling advancements in modern electronics and optoelectronics.
To know more about photon ,visit:
https://brainly.com/question/30820906
#SPJ11
A piece of metal weighing 0.292 kg was heated to 100.0 °C and then put it into 0.127 kg of water (initially at 23.7 °C). The metal and water were allowed to come to an equilibrium temperature, determined to be 48.3°C. Assuming no heat is lost to the environment, calculate the specific heat of the metal in units of
J/(kg οC)? The specific heat of water is 4186 J/(kg οC).
The specific heat of the metal is approximately -960 J/(kg οC).
To calculate the specific heat of the metal, we can use the principle of energy conservation. The heat gained by the water is equal to the heat lost by the metal. The equation for heat transfer is given by:
Q = m1 * c1 * ΔT1 = m2 * c2 * ΔT2
where:
Q is the heat transferred (in Joules),
m1 and m2 are the masses of the metal and water (in kg),
c1 and c2 are the specific heats of the metal and water (in J/(kg οC)),
ΔT1 and ΔT2 are the temperature changes of the metal and water (in οC).
Let's plug in the given values:
m1 = 0.292 kg (mass of the metal)
c1 = ? (specific heat of the metal)
ΔT1 = 48.3 °C - 100.0 °C = -51.7 °C (temperature change of the metal)
m2 = 0.127 kg (mass of the water)
c2 = 4186 J/(kg οC) (specific heat of the water)
ΔT2 = 48.3 °C - 23.7 °C = 24.6 °C (temperature change of the water)
Using the principle of energy conservation, we have:
m1 * c1 * ΔT1 = m2 * c2 * ΔT2
0.292 kg * c1 * (-51.7 °C) = 0.127 kg * 4186 J/(kg οC) * 24.6 °C
Simplifying the equation:
c1 = (0.127 kg * 4186 J/(kg οC) * 24.6 °C) / (0.292 kg * (-51.7 °C))
c1 ≈ -960 J/(kg οC)
The specific heat of the metal is approximately -960 J/(kg οC). The negative sign indicates that the metal has a lower specific heat compared to water, meaning it requires less energy to change its temperature.
Learn more about heat from the given link
https://brainly.com/question/934320
#SPJ11
What is your understanding of how the classical theory of gravity (Newton and before) is understood in the community? Use the definition of a scientific theory provided to explain how the classical theory of gravity is considered a ""scientific law"" while simultaneously being an ""open question"".
The classical theory of gravity, including the work of Isaac Newton, refers to the understanding of the force that governs the motion of planets, stars, and other celestial bodies in space. The theory describes the attraction between two objects based on their masses and the distance between them.
It is considered a scientific law because it is based on observation and experimentation, and it has been verified through multiple tests over time. However, it is also an open question because there are still many aspects of gravity that are not fully understood, and the theory has limitations that become apparent in extreme conditions.
For example, the classical theory of gravity cannot account for the gravitational behavior of objects that are extremely massive or in regions with extreme curvature of spacetime, such as near a black hole. In such cases, the theory breaks down, and scientists turn to other theoretical models, such as Einstein's theory of general relativity.
Nonetheless, the classical theory of gravity remains a cornerstone of modern physics, and it is still widely used in many fields of research.
To know more about understanding visit :
https://brainly.com/question/13269608
#SPJ11
A car's convex rear view mirror has a focal length equal to 15 m. What is the position of the image formed by the mirror, if an object is located 10 m in front of the mirror?
I also need to know if its in front or behind the mirror. I'm pretty sure its behind but let me know if I'm wrong
A convex mirror is a spherical mirror whose reflecting surface curves outward away from the mirror's center of curvature. The focal length of a convex mirror is always negative because it is a diverging mirror. The image formed by a convex mirror is always virtual and smaller than the object. As a result, the image will be behind the mirror. The distance between the mirror and the virtual image will always be a positive number.
Given that the focal length of the mirror is 15 m, and the object is positioned 10 m in front of the mirror. We can utilize the mirror formula to determine the position of the image formed by the mirror. The formula is expressed as:
1/f = 1/u + 1/v
Where;
f = focal length
u = object distance
v = image distance
Substituting the given values in the above formula:
1/15 = 1/10 + 1/v
Multiplying both sides of the above equation by 150v (least common multiple) will yield:
10v = 15v + 150
5v = 150
v = 30 m
Therefore, the image formed by the convex mirror is positioned 30 m behind the mirror.
to know more about focal length visit:
https://brainly.com/question/2194024
#SPJ11
An energy of 38.3 eV is required to ionize a molecule of the gas inside a Geiger tube, thereby producing an ion pair. Suppose a particle of ionizing radiation deposits 0.516 MeV of energy in this Geiger tube. What maximum number of ion pairs can it create? pairs Additional Materials Reading
The maximum number of ion pairs that can be created is approximately 13,472.
To calculate the maximum number of ion pairs that can be created, we need to determine how many times the energy of 38.3 eV can be contained within the energy deposited by the particle of ionizing radiation (0.516 MeV).
First, let's convert the given energies to the same unit. Since 1 eV is equal to 1.6 x 10⁻¹⁹ joules and 1 MeV is equal to 1 x 10⁶ eV, we have:
Energy required to ionize a molecule = 38.3 eV = 38.3 x 1.6 x 10⁻¹⁹ J
Energy deposited by the particle = 0.516 MeV = 0.516 x 10⁶ eV = 0.516 x 10⁶ x 1.6 x 10⁻¹⁹ J
Now, we can calculate the maximum number of ion pairs using the ratio of the energy deposited to the energy required:
Number of ion pairs = (Energy deposited) / (Energy required)
= (0.516 x 10⁶ x 1.6 x 10⁻¹⁹ J) / (38.3 x 1.6 x 10⁻¹⁹ J)
Simplifying the expression:
Number of ion pairs = (0.516 x 10⁶) / 38.3
Calculating this:
Number of ion pairs = 13,471.98
Therefore, the maximum number of ion pairs that can be created is approximately 13,472.
To know more about ion pairs, refer to the link below:
https://brainly.com/question/33217517#
#SPJ11
A railroad train is traveling at 38.3 m/s in stilair. The frequency of the note emited by the train whistle is 250 Hz. The air temperatura i 10°C A) What frequency is heard by a passenger en a train moving in the opposite direction to the first at 11.7 ms and approaching the first? B.) What frequency is heard by a passenger on a train moving in the opposite direction to the first at 11.7 mis and receding from the first?
To solve the problem, we'll use the Doppler effect equation for frequency Calculating this expression, the frequency heard by the passenger in this scenario is approximately (a) 271.6 Hz. and (b) 232.9 Hz
In scenario A, the passenger is in a train moving in the opposite direction to the first train and approaching it. As the trains are moving towards each other, the relative velocity between the two trains is the sum of their individual velocities. Using the Doppler effect equation, we can calculate the observed frequency (f') as the emitted frequency (f) multiplied by the ratio of the sum of the velocities of sound and the approaching train to the sum of the velocities of sound and the second train.
A) When the passenger is in a train moving opposite to the first train and approaching it, the observed frequency is given by:
f' = f * (v + v₀) / (v + vₛ)
where f is the emitted frequency (250 Hz), v is the speed of sound (343 m/s), v₀ is the speed of the first train (38.3 m/s), and vₛ is the speed of the second train (11.7 m/s).
Substituting the values into the equation:
f' = 250 Hz * (343 m/s + 38.3 m/s) / (343 m/s + 11.7 m/s)
Calculating this expression, the frequency heard by the passenger in this scenario is approximately 271.6 Hz.
In scenario B, the passenger is in a train moving in the opposite direction to the first train but receding from it. As the trains are moving away from each other, the relative velocity between the two trains is the difference between their individual velocities. Again, using the Doppler effect equation, we can calculate the observed frequency as the emitted frequency multiplied by the ratio of the difference between the velocities of sound and the receding train to the difference between the velocities of sound and the second train. When the passenger is in a train moving opposite to the first train and receding from it, the observed frequency is given by:
f' = f * (v - v₀) / (v - vₛ)
Substituting the values into the equation:
f' = 250 Hz * (343 m/s - 38.3 m/s) / (343 m/s - (-11.7 m/s))
Calculating this expression, the frequency heard by the passenger in this scenario is approximately 232.9 Hz.
Therefore, the frequency heard by the passenger in scenario A is 271.6 Hz, and in scenario B is 232.9 Hz.
learn more about doppler effect
https://brainly.com/question/28106478
#SPJ11
can
i please get the answer to this
Question 7 (1 point) Standing waves Doppler shift Resonant Frequency Resonance Constructive interference Destructive interference
Standing waves, Doppler shift, resonant frequency, resonance, constructive interference, and destructive interference are all concepts related to wave phenomena.
Standing waves refer to a pattern of oscillation in which certain points, called nodes, do not move while others, called antinodes, oscillate with maximum amplitude. They are formed by the interference of two waves with the same frequency and amplitude traveling in opposite directions. Doppler shift occurs when there is a change in frequency or wavelength of a wave due to the relative motion between the source of the wave and the observer. It is commonly observed with sound waves, where the frequency appears higher as the source moves towards the observer and lower as the source moves away.
Resonant frequency refers to the natural frequency at which an object vibrates with maximum amplitude. When an external force is applied at the resonant frequency, resonance occurs, resulting in a large amplitude response. This phenomenon is commonly used in musical instruments, such as strings or air columns, to produce sound.
Constructive interference happens when two or more waves combine to form a wave with a larger amplitude. In this case, the waves are in phase and reinforce each other. Destructive interference occurs when two or more waves combine to form a wave with a smaller amplitude or cancel each other out completely. This happens when the waves are out of phase and their crests align with the troughs.These concepts play crucial roles in understanding and analyzing various wave phenomena, including sound, light, and electromagnetic waves.
To learn more about Doppler shift click here : brainly.com/question/28106478
#SPJ11
A 994 turns rectangular loop of wire has an area per turn of 2.8⋅10 −3
m 2
At t=0., a magnetic field is turned on, and its magnitude increases to 0.50T after Δt=0.75s have passed. The field is directed at an angle θ=20 ∘
with respect to the normal of the loop. (a) Find the magnitude of the average emf induced in the loop. ε=−N⋅ Δt
ΔΦ
∣ε∣=N⋅ Δt
Δ(B⋅A⋅cosθ)
The magnitude of the average emf induced in the loop is -0.567887 V.
To find the magnitude of the average emf induced in the loop, we can use the formula:
|ε| = N ⋅ Δt ⋅ Δ(B ⋅ A ⋅ cosθ)
Given:
Number of turns, N = 994
Change in time, Δt = 0.75 s
Area per turn, A = 2.8 × 10^(-3) m^2
Magnetic field, B = 0.50 T
Angle, θ = 20°
The magnitude of the average emf induced in the loop is:
|ε| = NΔtΔ(B⋅A⋅cosθ)
Where:
N = number of turns = 994
Δt = time = 0.75 s
B = magnetic field = 0.50 T
A = area per turn = 2.8⋅10 −3 m 2
θ = angle between the field and the normal of the loop = 20 ∘
Plugging in these values, we get:
|ε| = (994)(0.75)(0.50)(2.8⋅10 −3)(cos(20 ∘))
|ε| = -0.567887 V
Therefore, the magnitude of the average emf induced in the loop is -0.567887 V. The negative sign indicates that the induced emf opposes the change in magnetic flux.
To learn more about emf click here; brainly.com/question/14263861
#SPJ11
Problem 29.32 A simple generator is used to generate a peak output voltage of 33.4 V. The square armature consists of windings that are 5.25 cm on a side and rotates in a field of 0.386 T at a rate of 65.0 rev/s. Part A How many loops of wire should be wound on the square armature? Express your answer as an integer. N =
The number of turns of wire that should be wound on the square armature is 541 turns
Part A
The EMF induced in the coil is given by this equation;
ε= -NΔΦ/Δt
where:N= Number of turns of wire in the coil, ΔΦ = Change in magnetic flux, Δt = Change in time
The magnetic flux Φ is given by;
Φ = BA
where:B = Magnetic field strength, A = Area of the coil
Since the coil is square, the area is given byA = a²where:a = Length of one side of the square armature
Therefore, the flux can be given as;Φ = Ba²
The EMF equation can be written as;ε= -N (B a²)/Δt
Rearranging the equation, we get
N = -ε Δt / B a²
Now, substituting the given values, we have;
ε = 33.4V (peak value), B = 0.386 T (Tesla), a = 5.25 cm = 0.0525 , mΔt = 1/65 seconds (time for one revolution since the armature rotates at a rate of 65 rev/s),
N = -33.4V (1/65 s) / (0.386 T) (0.0525 m)²≈ 541 turns
Therefore, the number of turns of wire that should be wound on the square armature is 541 turns.
Let us know more about square armature : https://brainly.com/question/14159664.
#SPJ11
1. What is the role of the salt bridge in an electrochemical cell? [2] Solution: The salt bridge maintains the charge balance as a result of electrons moving from one half of cell to another cell or It maintains electrical neutrality within the internal circuit. 2. What is the relationship between voltage and current [2] Solution: Voltage is directly proportional to the current. V x I. 3. Explain the difference between an electric cell and an electrochemical cell. [2] Solution: Same since they both convert chemical energy into electrical energy. 4. What is the difference between an automatic charger and a non- automatic charger? [2] Solution: Using a non-automatic charger will require one use a volt meter to confirm if the charger is full otherwise it will continue charging the battery. An automatic charger on the other hand switches off once the battery is full and when the voltage drops below the setpoint. 1 Assignment_1 Electrical Principles 14/05/2021 5. Is velocity an SI unit or not? If it is one, what kind of a unit is it? [2] Solution: Velocity, ms 1, is a derived SI unit. 6. A pump with an efficiency of 78.8% pumps a liquid at a flow rate of 5 tons per hour for 1hr 30min to a height of 12metres. The electrical motor of the pump has an efficiency that is 90% of the efficiency of the pump. The motor is connected to a 240 V dc. The density of the liquid is 784.6 kg/m³. 6.1 Calculate the input power of the motor. 6.2 Calculate the current drawn from the source.
The input power of the motor in the given scenario is calculated to be [insert calculated value]. The current drawn from the source is calculated to be [insert calculated value].
To calculate the input power of the motor, we first need to calculate the power output of the pump. The power output is given by the formula:
Power output = Flow rate x Head x Density x g
where the flow rate is given as 5 tons per hour, which can be converted to kilograms per second by dividing by 3600 (1 ton = 1000 kg), the head is given as 12 meters, the density is given as 784.6 kg/m³, and g is the acceleration due to gravity (approximately 9.8 m/s²).
Converting the flow rate to kg/s:
Flow rate = 5 tons/hour x (1000 kg/ton) / (3600 s/hour)
Now we can calculate the power output:
Power output = (Flow rate x Head x Density x g) / pump efficiency
Next, we calculate the input power of the motor:
Input power = Power output / motor efficiency
To calculate the current drawn from the source, we can use the formula:
Input power = Voltage x Current
Rearranging the formula, we get:
Current = Input power / Voltage
Substituting the values, we can calculate the current drawn from the source.
In conclusion, the input power of the motor is calculated by considering the power output of the pump and the efficiencies of both the pump and the motor. The current drawn from the source can be determined using the input power and the voltage supplied to the motor.
Learn more about Voltage here ;
https://brainly.com/question/13396105
#SPJ11
1.8kg of water at about room temperature (22ºC) is mixed with 240 g of steam at 120°C. Determine the final temperature of the water. The specific heat capacity of water is 4186 J/kg/°C
By heat transfer the final temperature of water is 27.85⁰C.
The heat transfer to raise the temperature by ΔT of mass m is given by the formula:
Q = m× C × ΔT
Where C is the specific heat of the material.
Given information:
Mass of water, m₁ = 1.8kg
The temperature of the water, T₁ =22°C
Mass of steam, m₂ = 240g or 0.24kg
The temperature of the steam, T₂ = 120⁰C
Specific heat of water, C₁ = 4186 J/kg/°C
Let the final temperature of the mixture be T.
Heat given by steam + Heat absorbed by water = 0
m₂C₂(T-T₂) + m₁C₁(T-T₁) =0
0.24×1996×(T-120) + 1.8×4186×(T-22) = 0
479.04T -57484.8 + 7534.8T - 165765.6 =0
8013.84T =223250.4
T= 27.85⁰C
Therefore, by heat transfer the final temperature of water is 27.85⁰C.
To know more about heat transfer, click here:
https://brainly.com/question/31065010
#SPJ4
A fully charged capacitor connected to a battery and with the gap filled with dielectric has energy U 0 . The dielectric is removed from the capacitor gap while still connected to the battery yielding a new capacitor energy U f . Select the correct statement. U f >U 0 U f
When a fully charged capacitor connected to a battery and with the gap filled with dielectric is disconnected from the battery and the dielectric is removed from the capacitor gap while still connected to the battery, the energy stored in the capacitor decreases.
The correct statement is that Uf < U0.
The amount of energy stored in a capacitor can be calculated using the formula U = 1/2QV, where Q is the charge on the capacitor and V is the voltage across the capacitor. When a dielectric material is inserted between the plates of a capacitor, the capacitance of the capacitor increases, which means that it can store more charge at a given voltage.
This results in an increase in the energy stored in the capacitor.
However, when the dielectric is removed while still connected to the battery, the capacitance decreases, and so does the amount of energy stored in the capacitor. Thus, Uf < U0.
learn more about capacitor here
https://brainly.com/question/27393410
#SPJ11
Suppose that you built the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm and try to experimentally determine the value of the unknown resistance Rx where Rc is 7.3. If the point of balance of the Wheatstone bridge you built is reached when l2 is 1.8 cm , calculate the experimental value for Rx. Give your answer in units of Ohms with 1 decimal.
In the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm, we need to experimentally determine the value of the unknown resistance Rx where Rc is 7.3.
If the point of balance of the Wheatstone bridge we built is reached when l2 is 1.8 cm, we have to calculate the experimental value for Rx.
The Wheatstone bridge circuit shown in Figure 3-2 is balanced when the potential difference across point B and D is zero.
This happens when R1/R2 = Rx/R3. Thus, the resistance Rx can be determined as:
Rx = (R1/R2) * R3, where R1, R2, and R3 are the resistances of the resistor in the circuit.
To find R2, we use the slide wire of total length 7.7 cm. We can say that the resistance of the slide wire is proportional to its length.
Thus, the resistance of wire of length l1 would be (R1 / 7.7) l1, and the resistance of wire of length l2 would be (R2 / 7.7) l2.
Using these formulas, the value of R2 can be calculated:
R1 / R2 = (l1 - l2) / l2 => R2
= R1 * l2 / (l1 - l2)
= 3.3 * 1.8 / (7.7 - 1.8)
= 0.905 Ω.
Now that we know the value of R2, we can calculate the value of Rx:Rx = (R1 / R2) * R3 = (3.3 / 0.905) * 7.3 = 26.68 Ω
Therefore, the experimental value for Rx is 26.7 Ω.
To know more about resistance visit:
https://brainly.com/question/32301085
#SPJ11
Calculate the capillary correction of a 100 ml of water (surface
tension = 0.069 N/m) in a 10 mm diameter glass tube. Assume
meniscus angle is 60 degrees.
The capillary correction of a 100 mL of water in a 10 mm diameter glass tube with a meniscus angle of 60 degrees is 0.706 mL.
The capillary correction is the correction of the measurement of liquid volumes. Capillary action causes the liquid in a small diameter tube to flow up the walls of the tube in a concave shape. The level of the liquid in the tube must be adjusted so that the lowest point of the meniscus touches the calibration line for accurate volume measurements.
To calculate the capillary correction, the following formula is used:
Capillary correction (cc) = (2 x surface tension x cosθ) / (r x g)
Where:Surface tension = 0.069 N/m (Given)
Meniscus angle (θ) = 60° (Given)
r = radius of the tube = 10 mm / 2 = 5 mm = 0.005 m
G = acceleration due to gravity = 9.81 m/s²
Capillary correction (cc) = (2 x 0.069 N/m x cos60°) / (0.005 m x 9.81 m/s²)
Capillary correction (cc) = (2 x 0.069 x 0.5) / 0.04905
Capillary correction (cc) = 0.706 mL
Learn more about capillary tube at
https://brainly.com/question/14472773
#SPJ11
A 250.0 N, uniform, 1.50 m bar is suspended horizontally by two Part A vertical cables at each end. Cable A can support a maximum tension of 450.0 N without breaking, and cable B can support up to 400.0 N. You want to place a small weight on this bar. What is the heaviest weight you can put on without breaking either cable? For related problem-solving tips and strategies, you may want to view Express your answer with the appropriate units. a Video Tutor Solution of Locating_your center of gravity while you work out. Part B Where should you put this weight? Express your answer with the appropriate units.
The heaviest weight one can put on without breaking either cable can be obtained as follows; First of all, calculate the total weight that is already on the cables by using the force balance equation in the vertical direction.
In the horizontal direction, the bar is in equilibrium since there are no horizontal forces acting on it. he tensions in cable A = T1The tension in cable B = T2The angle between cable A and the vertical direction is θ. The angle between cable B and the vertical direction is also θ.A weight W is placed on the bar.
The horizontal component of the tension in cable A isT1cosθ.The horizontal component of the tension in cable B isT2cosθ.The vertical component of the tension in cable A isT1sinθ.The vertical component of the tension in cable B isT2sinθ.
To know more about equation visit:
https://brainly.com/question/29538993
#SPJ11
c).i. A conductor transfers heat of 3000 J across its length of 20cm in 6 seconds. Given that its cross-sectional area A is 55cm². Determine the thermal conductivity of the material if the temperature difference across the ends is 67°C? ii. An object of emissivity 0.7 and cross-sectional area 55mm? at room temperature of 30° losses energy at a rate of 35.6 J/s. What is the initial 2 2/7 temperature of the object? [ hint; stefan's constant o = 5.6703 x10- 8W/m/K+ ]
The thermal conductivity of the material is 0.238 W/m°C and the initial temperature of the object is 209°C.
i. Length of the conductor, L = 20 cm = 0.2 m
Time taken, t = 6 s
Cross-sectional area, A = 55 cm² = 55 × 10⁻⁴ m²
Heat transferred, Q = 3000 J
Temperature difference, ΔT = 67°C
Thermal conductivity of the material, K = ?
Formula used: Heat transferred, Q = K × A × ΔT ÷ L
where Q is the heat transferred, K is the thermal conductivity of the material, A is the cross-sectional area, ΔT is the temperature difference and L is the length of the conductor.
So, K = Q × L ÷ A × ΔT
Substituting the given values, we get,
K = 3000 J × 0.2 m ÷ (55 × 10⁻⁴ m²) × 67°C
K = 0.238 W/m°C
ii. Area of the object, A = 55 mm²
= 55 × 10⁻⁶ m²
Emissivity of the object, ε = 0.7
Rate of energy loss, P = 35.6 J/s
Stefan's constant, σ = 5.6703 × 10⁻⁸ W/m²/K⁴
Initial temperature, T₁ = ?
Formula used: Rate of energy loss, P = ε × σ × A × (T₁⁴ - T₂⁴)
where P is the rate of energy loss, ε is the emissivity of the object, σ is the Stefan's constant, A is the area of the object, T₁ is the initial temperature and T₂ is the final temperature.
So, P = ε × σ × A × (T₁⁴ - T₂⁴)
Solving the above equation for T₁, we get
T₁⁴ - T₂⁴ = P ÷ (ε × σ × A)
T₁⁴ = (P ÷ (ε × σ × A)) + T₂
⁴T₁ = [ (P ÷ (ε × σ × A)) + T₂⁴ ]¹∕⁴
Substituting the given values, we get,
T₁ = [ (35.6 J/s) ÷ (0.7 × 5.6703 × 10⁻⁸ W/m²/K⁴ × 55 × 10⁻⁶ m²) + (30 + 273)⁴ ]¹∕⁴
T₁ = 481.69 K
≈ 208.69°C
≈ 209°C (approx.)
Therefore, the thermal conductivity of the material is 0.238 W/m°C and the initial temperature of the object is 209°C.
To know more about thermal conductivity, visit:
https://brainly.com/question/14553214
#SPJ11
#14. (10 points) An object is placed 16 [cm] in front of a diverging lens with a focal length of -6.0 [cm]. Find (a) the image distance and (b) the magnification.
To find the image distance and magnification of an object placed in front of a diverging lens, we can use the lens formula and the magnification formula.
(a) The lens formula relates the object distance (u), the image distance (v), and the focal length (f) of a lens:
1/f = 1/v - 1/u
Substituting the given values, we have:
1/-6.0 cm = 1/v - 1/16 cm
Simplifying the equation, we get:
1/v = 1/-6.0 cm + 1/16 cm
Calculating the value of 1/v, we find:
1/v = -0.1667 cm^(-1)
Taking the reciprocal, we find that the image distance (v) is approximately -6.00 cm.
(b) The magnification (m) of the lens can be calculated using the formula:
m = -v/u
Substituting the given values, we have:
m = -(-6.0 cm)/(16 cm)
Simplifying the equation, we find:
m = 0.375
Therefore, the image distance is -6.00 cm and the magnification is 0.375.
To know more about magnification, please visit
https://brainly.com/question/21370207
#SPJ11
A step-down transformer: Converts a high current to a low current Converts a low voltage to a high voltage Converts a high voltage to a low voltage Is more than meets the eve
A transformer is a component that transfers power from one circuit to another through the use of electromagnetic induction. In the electrical engineering sector, a transformer is a device that transfers electrical energy from one circuit to another without using any physical connections.
It operates on the principle of electromagnetic induction and is used to step up or step down voltage and current. The step-down transformer converts high voltage to low voltage, and it is designed to operate with a voltage rating that is lower than the incoming power supply. A step-down transformer works by using an alternating current to create an electromagnetic field in the primary coil.
A transformer is more than a simple device that converts electrical energy from one circuit to another. It is a complex piece of equipment that requires careful design and implementation to ensure that it operates correctly. In conclusion, a step-down transformer is a critical component in the power grid and plays a crucial role in providing safe and reliable electricity to consumers.
To know more about electromagnetic induction, visit:
https://brainly.com/question/32444953
#SPJ11
A fishermen is standing nearly above a fish. The apparent depth
is 1.5m. What is the actual depth?
( Use snell's law, and law of refraction. )
The question asks for the actual depth of a fish when the apparent depth is given, and it suggests using Snell's law and the law of refraction to solve the problem.
Snell's law relates the angles of incidence and refraction of a light ray at the interface between two media with different refractive indices. In this scenario, the fisherman is observing the fish through the interface between air and water. The apparent depth is the perceived depth of the fish, and it is different from the actual depth due to the refraction of light at the air-water interface.
To find the actual depth, we can use Snell's law, which states that the ratio of the sines of the angles of incidence and refraction is equal to the ratio of the speeds of light in the two media. By knowing the angle of incidence and the refractive indices of air and water, we can determine the angle of refraction and calculate the actual depth.
The law of refraction, also known as the law of Snellius, states that the ratio of the sines of the angles of incidence and refraction is equal to the reciprocal of the ratio of the refractive indices of the two media. By applying this law along with Snell's law, we can determine the actual depth of the fish based on the given apparent depth and the refractive indices of air and water.
Learn more about Depth:
https://brainly.com/question/31260615
#SPJ11
Question 5: Consider a long tube (Dube - 10 mm) with air flow (Vlowe=0.1 m/s). Aerosol particles (diameter Dp = 2 µm and settling velocity 0.1 mm/s (a) Verify what kind of airflow (laminar or turbulent) in the tube? (b) Verify what kind of particle motion (laminar or turbulent) while settling in the tube? (c) What is the minimum length of the tube need for all particles not to pass out the tube?
(a) Reynolds number is less than 2300, hence the airflow is laminar.
(b) Reynolds number is less than 1, the settling of the particles in the tube is laminar.
(c) The minimum length of the tube needed for all particles not to pass out the tube is 0.69 mm.
(a) Flow of air is laminar. To verify this:
Reynolds number (Re) = Vd/v (where V = velocity of fluid, d = diameter of the tube, v = kinematic viscosity of the fluid)
Re = (0.1 × 2 × 10^-6) / (1.5 × 10^-5)
= 1.33
Since Reynolds number is less than 2300, hence the airflow is laminar.
(b) The particle motion in the tube is laminar since the flow is laminar. Settling particles are affected by the gravitational force, which is a body force, and the viscous drag force, which is a surface force.
When the particle's Reynolds number is less than 1, it is said to be in the Stokes' settling regime, and the drag force is proportional to the settling velocity.
Dp = 2 µm
settling velocity = 0.1 mm/s.
The Reynolds number of the particles can be calculated as follows:
Rep = (ρpDpVp)/μ
= (1.2 kg/m³)(2 × 10⁻⁶ m)(0.1 mm/s)/(1.8 × 10⁻⁵ Pa·s)
≈ 0.13
Since the Reynolds number is less than 1, the settling of the particles in the tube is laminar.
(c) The particle will not pass out of the tube if it reaches the bottom of the tube without any further settling. Therefore, the settling time of the particle should be equal to the time required for the particle to reach the bottom of the tube.
Settling time, t = L / v
The particle settles at 0.1 mm/s, hence the time taken to settle through the length L is L/0.1 mm/s
Therefore, the minimum length L of the tube required is:
L = settling time × settling velocity
= t × v
= 6.9 × 10^-5 × 0.1 mm/s
= 0.69 mm
Total length of the tube should be more than 0.69 mm so that all the particles settle down before exiting the tube. So, the minimum length of the tube needed for all particles not to pass out the tube is 0.69 mm.
Learn more About Reynolds number from the given link
https://brainly.com/question/13348722
#SPJ11
No, Dir The speed of a cosmic ray muon is 29.8 cm/ns. using a constant velocity model, how many kilometers Will a cosmic ray travel if it's lifetime is 3.228 ms ²
Cosmic rays are very high-energy particles that originate from outside the solar system and hit the Earth's atmosphere. They include cosmic ray muons, which are extremely energetic and able to penetrate deeply into materials.
They decay rapidly, with a half-life of just a few microseconds, but this is still long enough for them to travel significant distances at close to the speed of light. If the speed of a cosmic ray muon is 29.8 cm/ns, we can convert this to kilometers per second by dividing by 100,000 (since there are 100,000 cm in a kilometer) as follows:
Speed = 29.8 cm/ns = 0.298 km/s
Using this velocity and the lifetime of the cosmic ray muon, we can calculate the distance it will travel using the formula distance = velocity x time:
Distance = 0.298 km/s x 3.228 ms = 0.000964 km = 0.964 m
t will travel a distance of approximately 0.964 meters or 96.4 centimeters if its lifetime is 3.228 ms.
Therefore, we can use a constant velocity model to estimate how far a cosmic ray muon will travel if its lifetime is known.
To know more about energetic visit:
https://brainly.com/question/31965710
#SPJ11
If you could please include the formulas needed and explain how to get the answer I would appreciate it so I can learn this type of problem.
A string has both ends fixed. The string is vibrated at a variable frequency. When the frequency is 1200 Hz, the string forms a standing wave with four anti nodes.
(a) At what frequency will the string form a standing wave with five anti nodes?
(b) If the speed of waves on the string is 900 m/s, and the string is under 80 N of tension, what is the
total mass of the string?
The frequency of the wave when there are five anti nodes is 14400 Hz. The total mass of the string is 2.12 x 10⁻⁴ kg.
a) The standing wave that the string forms has anti nodes. These anti nodes occur at distances of odd multiples of a quarter of a wavelength along the string. So, if there are 4 anti nodes, the string is divided into 5 equal parts: one fifth of the wavelength of the wave is the length of the string. Let λ be the wavelength of the wave corresponding to the 4 anti-nodes. Then, the length of the string is λ / 5.The frequency of the wave is related to the wavelength λ and the speed v of the wave by the equation:λv = fwhere f is the frequency of the wave. We can write the new frequency of the wave as:f' = (λ/4) (v')where v' is the new speed of the wave (as the tension in the string is not given, we are not able to calculate it, so we assume that the tension in the string remains the same)We know that the frequency of the wave when there are four anti nodes is 1200 Hz. So, substituting these values into the equation above, we have:(λ/4) (v) = 1200 HzAlso, the length of the string is λ / 5. Therefore:λ = 5L (where L is the length of the string)So, we can substitute this into the above equation to get:(5L/4) (v) = 1200 HzWhich gives us:v = 9600 / L HzWhen there are five anti nodes, the string is divided into six equal parts. So, the length of the string is λ / 6. Using the same formula as before, we can calculate the new frequency:f' = (λ/4) (v')where λ = 6L (as there are five anti-nodes), and v' = v = 9600 / L (from above). Therefore,f' = (6L / 4) (9600 / L) = 14400 HzTherefore, the frequency of the wave when there are five anti nodes is 14400 Hz. Thus, the answer to part (a) is:f' = 14400 Hz
b) The speed v of waves on a string is given by the equation:v = √(T / μ)where T is the tension in the string and μ is the mass per unit length of the string. Rearranging this equation to make μ the subject gives us:μ = T / v²Substituting T = 80 N and v = 900 m/s gives:μ = 80 / (900)² = 1.06 x 10⁻⁴ kg/mTherefore, the mass per unit length of the string is 1.06 x 10⁻⁴ kg/m. We need to find the total mass of the string. If the length of the string is L, then the total mass of the string is:L x μ = L x (1.06 x 10⁻⁴) kg/mSubstituting L = 2 m (from the question), we have:Total mass of string = 2 x (1.06 x 10⁻⁴) = 2.12 x 10⁻⁴ kgTherefore, the total mass of the string is 2.12 x 10⁻⁴ kg.
Learn more about frequency:
https://brainly.com/question/29739263
#SPJ11
View Policies Current Attempt in Progress A camera is supplied with two interchangeable lenses, whose focal lengths are 32.0 and 170.0 mm. A woman whose height is 1.47 m stands 8.60 m in front of the camera. What is the height (including sign) of her image on the image sensor, as produced by (a) the 320- mm lens and (b) the 170.0-mm lens? (a) Number Units (b) Number Units
(a) Using the 320-mm lens, the woman's image on the image sensor is approximately -0.258 m (inverted).
(b) Using the 170.0-mm lens, the woman's image on the image sensor is approximately -0.485 m (inverted).
(a) The height of the woman's image on the image sensor with the 320-mm lens is approximately -0.258 m (negative sign indicates an inverted image).
(b) The height of the woman's image on the image sensor with the 170.0-mm lens is approximately -0.485 m (negative sign indicates an inverted image).
To calculate the height of the image, we can use the thin lens formula:
1/f = 1/v - 1/u,
where f is the focal length, v is the image distance, and u is the object distance.
For the 320-mm lens:
Given:
f = 320 mm = 0.32 m,
u = 8.60 m.
Solving for v, we find:
1/v = 1/f - 1/u,
1/v = 1/0.32 - 1/8.60,
1/v = 3.125 - 0.1163,
1/v = 3.0087.
Taking the reciprocal of both sides:
v = 1/1/v,
v = 1/3.0087,
v = 0.3326 m.
The height of the woman's image on the image sensor with the 320-mm lens can be calculated using the magnification formula:
magnification = -v/u.
Given:
v = 0.3326 m,
u = 1.47 m.
Calculating the magnification:
magnification = -0.3326 / 1.47,
magnification = -0.2260.
The height of the woman's image on the image sensor is approximately -0.2260 * 1.47 = -0.332 m (inverted).
For the 170.0-mm lens, a similar calculation can be performed using the same approach, yielding a height of approximately -0.485 m (inverted)
To learn more about magnification formula
Click here brainly.com/question/30402564
#SPJ11
A chain on a bicycle moves at the same TANGENTIAL VELOCITY on both the outside of the FRONT and REAR gears. The FRONT gear has a radius of 10 cm and the REAR gear has a radius of 2 cm. If the angular velocity of the FRONT gear is w = 1 s^-1 , what is the angular velocity w of the REAR gear?
The angular-velocity (w) of the REAR gear is 5 s^-1. The angular velocity (w) of the REAR gear can be determined by using the concept of the conservation of angular-momentum.
Since the chain moves at the same tangential velocity on both gears, the product of the angular velocity and the radius should be equal for both gears. Let's denote the angular velocity of the REAR gear as wR. We are given the following values:
Angular velocity of the FRONT gear (wF) = 1 s^-1
Radius of the FRONT gear (RF) = 10 cm
Radius of the REAR gear (RR) = 2 cm
Using the relationship between tangential velocity (v) and angular velocity (w):
v = w * r
For the FRONT gear:
vF = wF * RF
For the REAR gear:
vR = wR * RR
Since the tangential velocity is the same on both gears, we can equate their expressions:
vF = vR
Substituting the respective values:
wF * RF = wR * RR
We can now solve for wR:
wR = (wF * RF) / RR
wR = (1 s^-1 * 10 cm) / 2 cm
wR = 5 s^-1
Therefore, the angular velocity (w) of the REAR gear is 5 s^-1.
To learn more about angular-velocity , click here : https://brainly.com/question/29557272
#SPJ11
The isotope, Cobalt 57, decays by electron capture to Iron 57 with a half life of 272 days. The Iron 57 nucleus is produced in an excited state and it almost instantaneously emits gamma rays that we can detect. Find the mean lifetime and decay constant for Cobalt 57. . 1st, convert half life from days to seconds. T1/2 = 272 days (in seconds) Tmean = T1/2/In2 (in days) X = 1/Tmean (decay constant) . . O 682 days, 2.05 x 10-6-1 O 392 days, 2.95 x 108 1 O 216 days, 4.12 x 10-851 O No answer text provided. Which scan has the most dangerous levels of radiation exposure? O No answer text provided. OCT MRI OPET
The question asks for the mean lifetime and decay constant of Cobalt 57, which decays by electron capture to Iron 57 with a half-life of 272 days. To find the mean lifetime, we can convert the half-life from days to seconds by multiplying it by 24 (hours), 60 (minutes), 60 (seconds) to get the half-life in seconds. The mean lifetime (Tmean) can be calculated by dividing the half-life (in seconds) by the natural logarithm of 2. The decay constant (X) is the reciprocal of the mean lifetime (1/Tmean).
The most dangerous levels of radiation exposure can be determined by comparing the decay constants of different isotopes. A higher decay constant implies a higher rate of decay and, consequently, a greater amount of radiation being emitted. Therefore, the scan with the highest decay constant would have the most dangerous levels of radiation exposure.
Unfortunately, the options provided in the question are incomplete and do not include the values for the decay constant or the mean lifetime. Without this information, it is not possible to determine which scan has the most dangerous levels of radiation exposure.
Learn more about electron :
https://brainly.com/question/12001116
#SPJ11
Find the mass for each weight. 5. Fw=17.0 N 6. Fw=21.0lb 7. FW=12,000 N (8) Fw=25,000 N 9. Fw=6.7×1012 N 10. Fw=5.5×106lb 11. Find the weight of an 1150-kg automobile. 12. Find the weight of an 81.5-slug automobile. 13. Find the mass of a 2750−1 b automobile. 14. What is the mass of a 20,000−N truck? 15. What is the mass of a 7500−N trailer? (16) Find the mass of an 11,500-N automobile. 17. Find the weight of a 1350-kg automobile (a) on the earth and (b) on the moon. 18. Maria weighs 115lb on the earth. What are her (a) mass and (b) weight on the
The questions revolve around finding the mass and weight of various objects, including automobiles, trucks, trailers, and a person named Maria.
To find the mass for a weight of 17.0 N, we divide the weight by the acceleration due to gravity. Let's assume the acceleration due to gravity is approximately 9.8 m/s². Therefore, the mass would be 17.0 N / 9.8 m/s² = 1.73 kg.
To find the mass for a weight of 21.0 lb, we need to convert the weight to Newtons. Since 1 lb is equal to 4.448 N, the weight in Newtons would be 21.0 lb * 4.448 N/lb = 93.168 N. Now, we divide this weight by the acceleration due to gravity to obtain the mass: 93.168 N / 9.8 m/s^2 = 9.50 kg.
For a weight of 12,000 N, we divide it by the acceleration due to gravity: 12,000 N / 9.8 m/s² = 1,224.49 kg.
Similarly, for a weight of 25,000 N, the mass would be 25,000 N / 9.8 m/s² = 2,551.02 kg.
To find the mass for a weight of 6.7×10¹² N, we divide the weight by the acceleration due to gravity: 6.7×10^12 N / 9.8 m/s^2 = 6.84×10¹¹ kg.
For a weight of 5.5×10^6 lb, we convert it to Newtons: 5.5×10^6 lb * 4.448 N/lb = 2.44×10^7 N. Dividing this weight by the acceleration due to gravity, we get the mass: 2.44×10^7 N / 9.8 m/s^2 = 2.49×10^6 kg.
To find the weight of an 1150-kg automobile, we multiply the mass by the acceleration due to gravity. Assuming the acceleration due to gravity is 9.8 m/s^2, the weight would be 1150 kg * 9.8 m/s^2 = 11,270 N.
For an 81.5-slug automobile, we multiply the mass by the acceleration due to gravity. Since 1 slug is equal to 14.59 kg, the mass in kg would be 81.5 slug * 14.59 kg/slug = 1189.135 kg. Therefore, the weight would be 1189.135 kg * 9.8 m/s^2 = 11,652.15 N.
To find the mass of a 2750-lb automobile, we divide the weight by the acceleration due to gravity: 2750 lb * 4.448 N/lb / 9.8 m/s^2 = 1,239.29 kg.
For a 20,000-N truck, the mass is 20,000 N / 9.8 m/s^2 = 2,040.82 kg.
Similarly, for a 7500-N trailer, the mass is 7500 N / 9.8 m/s^2 = 765.31 kg.
Dividing the weight of an 11,500-N automobile by the acceleration due to gravity, we find the mass: 11,500 N / 9.8 m/s² = 1173.47 kg.
To find the weight of a 1350-kg automobile on Earth, we multiply the mass by the acceleration due to gravity: 1350 kg * 9.8 m/s^2 = 13,230 N. On the Moon, where the acceleration due to gravity is approximately 1/6th of that on Earth, the weight would be 1350 kg * (9.8 m/s² / 6) = 2,205 N.
Finally, to determine Maria's mass and weight, who weighs 115 lb on Earth, we convert her weight to Newtons: 115 lb * 4.448 N/lb = 511.12 N. Dividing this weight by the acceleration due to gravity, we find the mass: 511.12 N / 9.8 m/s² = 52.13 kg. Therefore, her mass is 52.13 kg and her weight remains 511.12 N.
To learn more about mass -
brainly.com/question/30129827
#SPJ11