A capacitor consists of two 6.0-cm-diameter circular plates separated by 1.0 mm. The plates are charged to 170 V, then the battery is removed.
A. How much energy is stored in the capacitor?
B. How much work must be done to pull the plates apart to where the distance between them is 2.0 mm?

Answers

Answer 1

The energy stored in the capacitor is approximately 0.81 Joules. To calculate the energy stored in a capacitor, we can use the formula:

E = (1/2) * C * V^2

Where:

E is the energy stored in the capacitor,

C is the capacitance of the capacitor, and

V is the voltage across the capacitor.

C = (ε₀ * A) / d

Step 1: Calculate the area of one plate.

The diameter of each plate is 6.0 cm, so the radius (r) is half of that:

r = 6.0 cm / 2 = 3.0 cm = 0.03 m

A = π * r^2

A = π * (0.03 m)^2

Step 2: Calculate the capacitance.

C = (8.85 x 10^-12 F/m) * A / d

Step 3: Calculate the energy stored in the capacitor.

Using the formula for energy stored in a capacitor:

E = (1/2) * C * V^2

A = π * (0.03 m)^2

A = 0.0028274 m^2

C = (8.85 x 10^-12 F/m) * 0.0028274 m^2 / 0.001 m

C ≈ 2.8 x 10^-11 F

V = 170 V

E = (1/2) * (2.8 x 10^-11 F) * (170 V)^2

E ≈ 0.81 J

So, the energy stored in the capacitor is approximately 0.81 Joules.

Learn more about capacitor here : brainly.com/question/31627158

#SPJ11


Related Questions

3. Define or describe each of the following terms. Include a diagram for each. (3 marks each) I. Reflection II. Refraction III. Diffraction IV. Doppler Effect

Answers

We can describe the 1.Reflection II. Refraction III. Diffraction IV. Doppler Effect

I. Reflection:

Reflection is the process by which a wave encounters a boundary or surface and bounces back, changing its direction. It occurs when waves, such as light or sound waves, strike a surface and are redirected without being absorbed or transmitted through the material.

The angle of incidence, which is the angle between the incident wave and the normal (perpendicular) to the surface, is equal to the angle of reflection, the angle between the reflected wave and the normal.

A diagram illustrating reflection would show an incident wave approaching a surface and being reflected back in a different direction, with the angles of incidence and reflection marked.

II. Refraction:

Refraction is the bending or change in direction that occurs when a wave passes from one medium to another, such as light passing from air to water.

It happens because the wave changes speed when it enters a different medium, causing it to change direction. The amount of bending depends on the change in the wave's speed and the angle at which it enters the new medium.

A diagram illustrating refraction would show a wave entering a medium at an angle, bending as it crosses the boundary between the two media, and continuing to propagate in the new medium at a different angle.

III. Diffraction:

Diffraction is the spreading out or bending of waves around obstacles or through openings. It occurs when waves encounter an edge or aperture that is similar in size to their wavelength. As the waves encounter the obstacle or aperture, they diffract or change direction, resulting in a spreading out of the wavefronts.

This phenomenon is most noticeable with waves like light, sound, or water waves.

A diagram illustrating diffraction would show waves approaching an obstacle or passing through an opening and bending or spreading out as they encounter the obstacle or aperture.

IV. Doppler Effect:

The Doppler Effect refers to the change in frequency and perceived pitch or frequency of a wave when the source of the wave and the observer are in relative motion.

It is commonly observed with sound waves but also applies to other types of waves, such as light. When the source and observer move closer together, the perceived frequency increases (higher pitch), and when they move apart, the perceived frequency decreases (lower pitch). This effect is experienced in daily life when, for example, the pitch of a siren seems to change as an emergency vehicle approaches and then passes by.

A diagram illustrating the Doppler Effect would show a source emitting waves, an observer, and the relative motion between them, with wavefronts compressed or expanded depending on the direction of motion.

Learn more about Reflection from the given link

https://brainly.com/question/4070544

#SPJ11

What is the impact speed when a car moving at 95 km/hour runs into the back of another car moving (in the same direction) at 85 km/hour?
A. 10 km/hour B. 20 km/hour C. 5 km/hour D. 0.95 km/hour

Answers

The impact speed when a car moving at 95 km/h runs into the back of another car moving at 85 km/h (in the same direction) is 10 km/h.

The impact speed refers to the velocity at which an object strikes or collides with another object. It is determined by considering the relative velocities of the objects involved in the collision.

In the context of a car collision, the impact speed is the difference between the velocities of the two cars at the moment of impact. If the cars are moving in the same direction, the impact speed is obtained by subtracting the velocity of the rear car from the velocity of the front car.

To calculate the impact speed, we need to find the relative velocity between the two cars. Since they are moving in the same direction, we subtract their velocities.

Relative velocity = Velocity of car 1 - Velocity of car 2

Relative velocity = 95 km/h - 85 km/h

Relative velocity = 10 km/h

Therefore, the impact speed when the cars collide is 10 km/h.

To learn more about impact speed click here:

brainly.com/question/30328110

#SPJ11

Question 15 1 pts A spherical drop of water in air acts as a converging lens. How about a spherical bubble of air in water? It will Act as a converging lens Not act as a lens at all Act as a diverging

Answers

The correct option is "Act as a diverging".

Detail Answer:When a spherical bubble of air is formed in water, it behaves as a diverging lens. As it is a lens made of a convex shape, it diverges the light rays that come into contact with it. Therefore, a spherical bubble of air in water will act as a diverging lens.Lens is a transparent device that is used to refract or bend light.

                                There are two types of lenses, i.e., convex and concave. Lenses are made from optical glasses and are of different types depending upon their applications.Lens works on the principle of refraction, and it refracts the light when the light rays pass through it. The lenses have an axis and two opposite ends.

                                            The lens's curved surface is known as the radius of curvature, and the center of the lens is known as the optical center . The type of lens depends upon the curvature of the surface of the lens. The lens's curvature surface can be either spherical or parabolic, depending upon the type of lens.

Learn more about diverging lens.

brainly.com/question/28348284

#SPJ11

13. A particle vibrates 5 times a second and each time it
vibrates, the energy advances by 50 cm. What is the wave speed? A.
5 m/s B. 2.5 m/s C. 1.25 m/s D. 0.5 m/s
14. Which of the following apply to

Answers

A particle that vibrates 5 times a second and advances energy 50 cm per vibration will create a wave with a wavelength of 10 cm and the wave speed is 0.5 m/s

Therefore, the speed of the wave can be calculated using the following formula:

Wave speed = frequency x wavelength

Substituting in the values gives:

Wave speed = 5 x 10 cm/s = 50 cm/s = 0.5 m/s. Therefore, the answer is option D (0.5 m/s).

When a particle vibrates, it produces a wave, which is defined as a disturbance that travels through space and time. The wave has a certain speed, frequency, and wavelength. The wave speed refers to the distance covered by the wave per unit time. It is determined by multiplying the frequency by the wavelength.

In this problem, a particle vibrates five times a second, and each time it vibrates, the energy advances by 50 cm. The question is to determine the wave speed of the particle's vibration. To determine the wave speed, we need to use the following formula:

Wave speed = frequency x wavelengthThe frequency of the particle's vibration is 5 Hz, and the distance advanced by the energy per vibration is 50 cm. Therefore, the wavelength can be calculated as follows:

Wavelength = distance/number of vibrations = 50 cm/5 = 10 cm.

Substituting these values into the formula for wave speed, we get:

Wave speed = 5 x 10 cm/s = 50 cm/s = 0.5 m/sTherefore, the wave speed of the particle's vibration is 0.5 m/s.

A particle that vibrates five times a second and advances energy 50 cm per vibration will create a wave with a wavelength of 10 cm. The wave speed can be calculated using the formula wave speed = frequency x wavelength, which gives a value of 0.5 m/s.

To know more about frequency visit

brainly.com/question/29739263

#SPJ11

The gravitational force changes with altitude. Find the change in gravitational force for someone who weighs 760 N at sea level as compared to the force measured when on an airplane 1600 m above sea level. You can ignore Earth's rotation for this problem. Use a negative answer to indicate a decrease in force.
For reference, Earth's mean radius (RE) is 6.37 x 106 m and Earth's mass (ME) is 5.972 x 1024 kg. [Hint: take the derivative of the expression for the force of gravity with respect to r, such that Aweight dF dr Ar. Evaluate the derivative at

Answers

Substituting the given values for Earth's mean radius (RE) and Earth's mass (ME), as well as the weight of the individual[tex](m1 = 760 N / 9.8 m/s^2 = 77.55 kg)[/tex], we can calculate the change in gravitational force.

To find the change in gravitational force experienced by an individual weighing 760 N at sea level compared to the force measured when on an airplane 1600 m above sea level, we can use the equation for gravitational force:

[tex]F = G * (m1 * m2) / r^2[/tex]

Where:

F is the gravitational force,

G is the gravitational constant,

and r is the distance between the centers of the two objects.

Let's denote the force at sea level as [tex]F_1[/tex] and the force at 1600 m above sea level as [tex]F_2[/tex]. The change in gravitational force (ΔF) can be calculated as:

ΔF =[tex]F_2 - F_1[/tex]

First, let's calculate [tex]F_1[/tex] at sea level. The distance between the individual and the center of the Earth ([tex]r_1[/tex]) is the sum of the Earth's radius (RE) and the altitude at sea level ([tex]h_1[/tex] = 0 m).

[tex]r_1 = RE + h_1 = 6.37 * 10^6 m + 0 m = 6.37 * 10^6 m[/tex]

Now we can calculate [tex]F_1[/tex] using the gravitational force equation:

[tex]F_1 = G * (m_1 * m_2) / r_1^2[/tex]

Next, let's calculate [tex]F_2[/tex] at 1600 m above sea level. The distance between the individual and the center of the Earth ([tex]r_2[/tex]) is the sum of the Earth's radius (RE) and the altitude at 1600 m ([tex]h_2[/tex] = 1600 m).

[tex]r_2[/tex] = [tex]RE + h_2 = 6.37 * 10^6 m + 1600 m = 6.37 * 10^6 m + 1.6 * 10^3 m = 6.3716 * 10^6 m[/tex]

Now we can calculate [tex]F_2[/tex] using the gravitational force equation:

[tex]F_2[/tex] = G * ([tex]m_1 * m_2[/tex]) /[tex]r_2^2[/tex]

Finally, we can find the change in gravitational force by subtracting [tex]F_1[/tex] from [tex]F_2[/tex]:

ΔF = [tex]F_2 - F_1[/tex]

To know more about Earth's mean radius, here

brainly.com/question/31408822

#SPJ4

The gravitational force acting on the person has decreased by 0.104 N when they are on an airplane 1600 m above sea level as compared to the force measured at sea level.

Gravitational force is given by F = G (Mm / r²), where G is the universal gravitational constant, M is the mass of the planet, m is the mass of the object, and r is the distance between the center of mass of the planet and the center of mass of the object.Given,At sea level, a person weighs 760N.

On an airplane 1600 m above sea level, the weight of the person is different. We need to calculate this difference and find the change in gravitational force.As we know, the gravitational force changes with altitude. The gravitational force acting on an object decreases as it moves farther away from the earth's center.To find the change in gravitational force, we need to first calculate the gravitational force acting on the person at sea level.

Gravitational force at sea level:F₁ = G × (Mm / R)²...[Equation 1]

Here, M is the mass of the earth, m is the mass of the person, R is the radius of the earth, and G is the gravitational constant. Putting the given values in Equation 1:F₁ = 6.674 × 10⁻¹¹ × (5.972 × 10²⁴ × 760) / (6.371 × 10⁶)²F₁ = 7.437 NNow, let's find the gravitational force acting on the person at 1600m above sea level.

Gravitational force at 1600m above sea level:F₂ = G × (Mm / (R+h))²...[Equation 2]Here, M is the mass of the earth, m is the mass of the person, R is the radius of the earth, h is the height of the airplane, and G is the gravitational constant. Putting the given values in Equation 2:F₂ = 6.674 × 10⁻¹¹ × (5.972 × 10²⁴ × 760) / (6.371 × 10⁶ + 1600)²F₂ = 7.333 NNow, we can find the change in gravitational force.ΔF = F₂ - F₁ΔF = 7.333 - 7.437ΔF = -0.104 NThe change in gravitational force is -0.104 N. A negative answer indicates a decrease in force.

Therefore, the gravitational force acting on the person has decreased by 0.104 N when they are on an airplane 1600 m above sea level as compared to the force measured at sea level.

Know more Gravitational Force

https://brainly.com/question/16613634

#SPJ11

GP Q C Review. You can think of the work-kinetic energy theorem as a second theory of motion, parallel to Newton's laws in describing how outside influences affect the motion of an object. In this problem, solve parts (a), (b), and (c) separately from parts (d) and (e) so you can compare the predictions of the two theories. A 15.0-g bullet is accelerated from rest to a speed of 780m/s in a rifle barrel of length 72.0cm. (c) Use your result to part (b) to find the magnitude of the aver-age net force that acted on the bullet. while it was in the barrel.

Answers

The magnitude of the average net force that acted on the bullet while it was in the barrel is approximately 3637 N. The work-kinetic energy theorem provides a useful framework for analyzing the relationship between work, energy, and forces acting on objects during motion .

To find the magnitude of the average net force that acted on the bullet while it was in the barrel, we can use the work-kinetic energy theorem. This theorem states that the net work done on an object is equal to the change in its kinetic energy.

In part (b), we found that the kinetic energy of the bullet is 453.375 J. The work done on the bullet is equal to the change in its kinetic energy:

Work = ΔKE

The work done can be calculated using the formula for work: Work = Force × Distance. In this case, the distance is given as 0.72 m (the length of the barrel), and the force is the average net force we want to find.

Therefore, we have:

Force × Distance = ΔKE

Force = ΔKE / Distance

Substituting the values, we get:

Force = 453.375 J / 0.72 m

Force ≈ 629.375 N

However, it's important to note that the force calculated above is the average force exerted on the bullet during its acceleration in the barrel. The force might vary during the process due to factors such as friction and pressure variations.

The magnitude of the average net force that acted on the bullet while it was in the barrel is approximately 3637 N. This value is obtained by dividing the change in kinetic energy of the bullet by the distance it traveled inside the barrel. It's important to consider that this value represents the average force exerted on the bullet during its acceleration and that the force may not be constant throughout the process.

The work-kinetic energy theorem provides a useful framework for analyzing the relationship between work, energy, and forces acting on objects during motion. By comparing the predictions of the work-kinetic energy theorem with Newton's laws, we can gain a deeper understanding of the factors influencing the motion of objects and the transfer of energy.

To know more about force ,visit:

https://brainly.com/question/12785175

#SPJ11

1. In the Millikan experiment it is assumed that two forces are equal. a) State these two forces. b) Draw a free-body diagram of these two forces acting on a balanced oil drop.

Answers

In the Millikan oil-drop experiment, two forces are assumed to be equal: the gravitational force acting on the oil drop and the electrical force due to the electric field. The experiment aims to determine the charge on an individual oil drop by balancing these two forces. A free-body diagram can be drawn to illustrate these forces acting on a balanced oil drop.

a) The two forces assumed to be equal in the Millikan experiment are:

1. Gravitational force: This force is the weight of the oil drop due to gravity, given by the equation F_grav = m * g, where m is the mass of the drop and g is the acceleration due to gravity.

2. Electrical force: This force arises from the electric field in the apparatus and acts on the charged oil drop. It is given by the equation F_elec = q * E, where q is the charge on the drop and E is the electric field strength.

b) A free-body diagram of a balanced oil drop in the Millikan experiment would show the following forces:

- Gravitational force (F_grav) acting downward, represented by a downward arrow.

- Electrical force (F_elec) acting upward, represented by an upward arrow.

The free-body diagram shows that for a balanced oil drop, the two forces are equal in magnitude and opposite in direction, resulting in a net force of zero. By carefully adjusting the electric field, the oil drop can be suspended in mid-air, allowing for the determination of the charge on the drop.

To learn more about Gravitational force - brainly.com/question/32609171

#SPJ11

In an R−C circuit the resistance is 115Ω and Capacitance is 28μF, what will be the time constant? Give your answer in milliseconds. Question 5 1 pts What will be the time constant of the R−C circuit, in which the resistance =R=5 kilo-ohm, Capacitor C1 =6 millifarad, Capacitor C2=10 millifarad. The two capacitors are in series with each other, and in series with the resistance. Write your answer in milliseconds. Question 6 1 pts What will be the time constant of the R−C circuit, in which the resistance =R=6 kilo-ohm, Capacitor C1 = 7 millifarad, Capacitor C2 = 7 millifarad. The two capacitors are in parallel with each other, and in series with the resistance. Write your answer in milliseconds.

Answers

The time constant of the R−C circuit is 132.98 ms.

1: In an R−C circuit, the resistance is 115Ω and capacitance is 28μF.

The time constant of the R−C circuit is given as:

Time Constant (τ) = RC

where

R = Resistance

C = Capacitance= 115 Ω × 28 μ

F= 3220 μs = 3.22 ms

Therefore, the time constant of the R−C circuit is 3.22 ms.

2: In an R−C circuit, the resistance

R = 5 kΩ, Capacitor

C1 = 6 mF and

Capacitor C2 = 10 mF.

The two capacitors are in series with each other, and in series with the resistance.

The total capacitance in the circuit will be

CT = C1 + C2= 6 mF + 10 mF= 16 mF

The equivalent capacitance for capacitors in series is:

1/CT = 1/C1 + 1/C2= (1/6 + 1/10)×10^-3= 0.0267×10^-3F = 26.7 µF

The total resistance in the circuit is:

R Total = R + R series

The resistors are in series, so:

R series = R= 5 kΩ

The time constant of the R−C circuit is given as:

Time Constant (τ) = RC= (5×10^3) × (26.7×10^-6)= 0.1335 s= 133.5 ms

Therefore, the time constant of the R−C circuit is 133.5 ms.

3: In an R−C circuit, the resistance

R = 6 kΩ,

Capacitor C1 = 7 mF, and

Capacitor C2 = 7 mF.

The two capacitors are in parallel with each other and in series with the resistance.

The equivalent capacitance for capacitors in parallel is:

CT = C1 + C2= 7 mF + 7 mF= 14 mF

The total capacitance in the circuit will be:

C Total = CT + C series

The capacitors are in series, so:

1/C series = 1/C1 + 1/C2= (1/7 + 1/7)×10^-3= 0.2857×10^-3F = 285.7 µFC series = 1/0.2857×10^-3= 3498.6 Ω

The total resistance in the circuit is:

R Total = R + C series= 6 kΩ + 3498.6 Ω= 9498.6 Ω

The time constant of the R−C circuit is given as:

Time Constant (τ) = RC= (9.4986×10^3) × (14×10^-6)= 0.1329824 s= 132.98 ms

Therefore, the time constant of the R−C circuit is 132.98 ms.

To know more about R−C circuit visit:

https://brainly.com/question/32250409

#SPJ11

2. For each pair of systems, circle the one with the larger entropy. If they both have the same entropy, explicitly state it. a. 1 kg of ice or 1 kg of steam b. 1 kg of water at 20°C or 2 kg of water at 20°C c. 1 kg of water at 20°C or 1 kg of water at 50°C d. 1 kg of steam (H₂0) at 200°C or 1 kg of hydrogen and oxygen atoms at 200°C Two students are discussing their answers to the previous question: Student 1: I think that 1 kg of steam and 1 kg of the hydrogen and oxygen atoms that would comprise that steam should have the same entropy because they have the same temperature and amount of stuff. Student 2: But there are three times as many particles moving about with the individual atoms not bound together in a molecule. I think if there are more particles moving, there should be more disorder, meaning its entropy should be higher. Do you agree or disagree with either or both of these students? Briefly explain your reasoning.

Answers

a. 1 kg of steam has the larger entropy. b. 2 kg of water at 20°C has the larger entropy. c. 1 kg of water at 50°C has the larger entropy. d. 1 kg of steam (H2O) at 200°C has the larger entropy.

Thus, the answers to the question are:

a. 1 kg of steam has a larger entropy.

b. 2 kg of water at 20°C has a larger entropy.

c. 1 kg of water at 50°C has a larger entropy.

d. 1 kg of steam (H₂0) at 200°C has a larger entropy.

Student 1 thinks that 1 kg of steam and 1 kg of hydrogen and oxygen atoms that make up the steam should have the same entropy because they have the same temperature and amount of stuff. Student 2, on the other hand, thinks that if there are more particles moving around, there should be more disorder, indicating that its entropy should be higher.I agree with student 2's reasoning. Entropy is directly related to the disorder of a system. Higher disorder indicates a higher entropy value, whereas a lower disorder implies a lower entropy value. When there are more particles present in a system, there is a greater probability of disorder, which results in a higher entropy value.

To know more about entropy:

https://brainly.com/question/20166134

#SPJ11

Coherent light with single wavelength falls on two slits separated by 0.610 mm. In the resulting interference pattern on the screen 1.70 m away, adjacent bright fringes are separated by 2.10 mm. What is the wavelength (in nanometers) of the light that falls on the slits? Use formula for the small angles of diffraction (10 pts.)

Answers

The wavelength of the light falling on the slits is approximately 493 nanometers when adjacent bright fringes are separated by 2.10 mm.

To find the wavelength of the light falling on the slits, we can use the formula for the interference pattern in a double-slit experiment:

λ = (d * D) / y

where λ is the wavelength of the light, d is the separation between the slits, D is the distance between the slits and the screen, and y is the separation between adjacent bright fringes on the screen.

Given:

Separation between the slits (d) = 0.610 mm = 0.610 × 10^(-3) m

Distance between the slits and the screen (D) = 1.70 m

Separation between adjacent bright fringes (y) = 2.10 mm = 2.10 × 10^(-3) m

Substituting these values into the formula, we can solve for the wavelength (λ):

λ = (0.610 × 10^(-3) * 1.70) / (2.10 × 10^(-3))

λ = (1.037 × 10^(-3)) / (2.10 × 10^(-3))

λ = 0.4933 m

To convert the wavelength to nanometers, we multiply by 10^9:

λ = 0.4933 × 10^9 nm

λ ≈ 493 nm

Therefore, the wavelength of the light falling on the slits is approximately 493 nanometers.

To know more about bright fringes please refer:

https://brainly.com/question/29487127

#SPJ11

A long cylindrical wire of radius 4 cm has a current of 8 amps flowing through it. a) Calculate the magnetic field at r = 2, r = 4, and r = 6 cm away from the center of the wire if the current density is uniform. b) Calculate the same things if the current density is non-uniform and equal to J = kr2 c) Calculate the same things at t = 0 seconds, if the current is changing as a function of time and equal to I= .8sin(200t). Assume the wire is made of copper and current density as a function of r is uniform. =

Answers

At the respective distances, the magnetic field is approximate:

At r = 2 cm: 2 ×  10⁻⁵ T

At r = 4 cm: 1 ×  10⁻⁵ T

At r = 6 cm: 6.67 × 10⁻⁶ T

a) When the current density is uniform, the magnetic field at a distance r from the centre of a long cylindrical wire can be calculated using Ampere's law. For a wire with current I and radius R, the magnetic field at a distance r from the centre is given by:

B = (μ₀ × I) / (2πr),

where μ₀ is the permeability of free space (μ₀ ≈ 4π × 10⁻⁷ T m/A).

Substituting the values, we have:

1) At r = 2 cm:

B = (4π × 10⁻⁷  T m/A * 8 A) / (2π × 0.02 m)

B = (8 × 10⁻⁷ T m) / (0.04 m)

B ≈ 2 × 10⁻⁵ T

2) At r = 4 cm:

B = (4π × 10⁻⁷  T m/A * 8 A) / (2π × 0.04 m)

B = (8 × 10⁻⁷  T m) / (0.08 m)

B ≈ 1 × 10⁻⁵ T

3) At r = 6 cm:

B = (4π × 10⁻⁷  T m/A * 8 A) / (2π × 0.06 m)

B = (8 × 10⁻⁷  T m) / (0.12 m)

B ≈ 6.67 × 10⁻⁶ T

Therefore, at the respective distances, the magnetic field is approximately:

At r = 2 cm: 2 ×  10⁻⁵ T

At r = 4 cm: 1 ×  10⁻⁵ T

At r = 6 cm: 6.67 × 10⁻⁶ T

b) When the current density is non-uniform and equal to J = kr², we need to integrate the current density over the cross-sectional area of the wire to find the total current flowing through the wire. The magnetic field at a distance r from the centre of the wire can then be calculated using the same formula as in part a).

The total current (I_total) flowing through the wire can be calculated by integrating the current density over the cross-sectional area of the wire:

I_total = ∫(J × dA),

where dA is an element of the cross-sectional area.

Since the current density is given by J = kr², we can rewrite the equation as:

I_total = ∫(kr² × dA).

The magnetic field at a distance r from the centre can then be calculated using the formula:

B = (μ₀ × I_total) / (2πr),

1) At r = 2 cm:

B = (4π × 10⁻⁷ T m/A) × [(8.988 × 10⁹ N m²/C²) × (0.0016π m²)] / (2π × 0.02 m)

B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.02 m)

B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.02)

B = (0.2296 * 10² × T) / (0.04)

B = 5.74 T

2) At r = 4 cm:

B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.04 m)

B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.04)

B = (0.2296 * 10² × T) / (0.08)

B = 2.87 T

3) At r=6cm

B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.06 m)

B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.06)

B = (0.2296 * 10² × T) / (0.012)

B = 1.91 T

c) To calculate the magnetic field at t = 0 seconds when the current is changing as a function of time (I = 0.8sin(200t)), we need to use the Biot-Savart law. The law relates the magnetic field at a point to the current element and the distance between them.

The Biot-Savart law is given by:

B = (μ₀ / 4π) × ∫(I (dl x r) / r³),

where

μ₀ is the permeability of free space,

I is the current, dl is an element of the current-carrying wire,

r is the distance between the element and the point where the magnetic field is calculated, and

the integral is taken over the entire length of the wire.

The specific form of the wire and the limits of integration are needed to perform the integral and calculate the magnetic field at the desired points.

Learn more about Magnetic Field from the given link:

https://brainly.com/question/16387830

#SPJ11

An ideal gas expands isothermally, performing 5.00×10 3
J of work in the process. Calculate the change in internal energy of the gas. Express your answer with the appropriate units. Calculate the heat absorbed during this expansion. Express your answer with the appropriate units.

Answers

For an isothermal expansion of an ideal gas, the change in internal energy is zero. In this case, the gas performs 5.00×10^3 J of work, and the heat absorbed during the expansion is also 5.00×10^3 J.

An isothermal process involves a change in a system while maintaining a constant temperature. In this case, an ideal gas is expanding isothermally and performing work. We need to calculate the change in internal energy of the gas and the heat absorbed during the expansion.

To calculate the change in internal energy (ΔU) of the gas, we can use the first law of thermodynamics, which states that the change in internal energy is equal to the heat (Q) absorbed or released by the system minus the work (W) done on or by the system. Mathematically, it can be represented as:

ΔU = Q - W

Since the process is isothermal, the temperature remains constant, and the change in internal energy is zero. Therefore, we can rewrite the equation as:

0 = Q - W

Given that the work done by the gas is 5.00×10^3 J, we can substitute this value into the equation:

0 = Q - 5.00×10^3 J

Solving for Q, we find that the heat absorbed during this expansion is 5.00×10^3 J.

To know more about the first law of thermodynamics, refer here:

https://brainly.com/question/32101564#

#SPJ11

When throwing a ball, your hand releases it at a height of 1.0 m above the ground with a velocity of 6.5 m/s in a direction 57° above the horizontal.
A) How high above the ground (not your hand) does the ball go?
B) At the highest point, how far is the ball horizontally from the point of release?

Answers

A) The ball reaches a height of approximately 2.45 meters above the ground.

B) At the highest point, the ball is approximately 4.14 meters horizontally away from the point of release.

The ball's vertical motion can be analyzed separately from its horizontal motion. To determine the height the ball reaches (part A), we can use the formula for vertical displacement in projectile motion. The initial vertical velocity is given as 6.5 m/s * sin(57°), which is approximately 5.55 m/s. Assuming negligible air resistance, at the highest point, the vertical velocity becomes zero.

Using the kinematic equation v_f^2 = v_i^2 + 2ad, where v_f is the final velocity, v_i is the initial velocity, a is the acceleration, and d is the displacement, we can solve for the vertical displacement. Rearranging the equation, we have d = (v_f^2 - v_i^2) / (2a), where a is the acceleration due to gravity (-9.8 m/s^2). Plugging in the values, we get d = (0 - (5.55)^2) / (2 * -9.8) ≈ 2.45 meters.

To determine the horizontal distance at the highest point (part B), we use the formula for horizontal displacement in projectile motion. The initial horizontal velocity is given as 6.5 m/s * cos(57°), which is approximately 3.0 m/s. The time it takes for the ball to reach the highest point is the time it takes for the vertical velocity to become zero, which is v_f / a = 5.55 / 9.8 ≈ 0.57 seconds.

The horizontal displacement is then given by the formula d = v_i * t, where v_i is the initial horizontal velocity and t is the time. Plugging in the values, we get d = 3.0 * 0.57 ≈ 1.71 meters. However, since the ball travels in both directions, the total horizontal distance at the highest point is twice that value, approximately 1.71 * 2 = 3.42 meters.

To learn more about vertical motion, click here:

brainly.com/question/12640444

#SPJ11

If 2 grams of matter could be entirely converted to energy, how
much would the energy produce cost at 25 centavos per kWh?

Answers

if 2 grams of matter could be entirely converted to energy, it would produce energy with a cost of 12.5 million pesos at 25 centavos per kWh.

How do we calculate?

we will make use of the energy  equation developed by Albert Einstein:

E = mc²

E= energy,

m = mass,

c =  speed of light =[tex]3.0 * 10^8[/tex] m/s

E = (0.002 kg) * ([tex]3.0 * 10^8[/tex]m/s)²

E =[tex]1.8 * 10^1^4[/tex] joules

1 kWh = [tex]3.6 * 10^6[/tex] joules

Energy in kWh = ([tex]1.8 * 10^1^4[/tex] joules) / ([tex]3.6 * 10^6[/tex] joules/kWh)

Energy in kWh =[tex]5.0 * 10^7[/tex] kWh

The Cost is then found as = ([tex]5.0 * 10^7[/tex] kWh) * (0.25 pesos/kWh)

Cost =  [tex]1.25 * 10^7[/tex]pesos

Learn more about Energy at:

https://brainly.com/question/13881533

#SPJ4

Find the wavelength of a 10ºHz EM wave.

Answers

The wavelength of the 10 Hz EM wave is 3.00 × 10⁷ meters. The wavelength of an EM wave can be calculated using the formula λ = c / f, where c is the speed of light and f is the frequency of the wave.

To find the wavelength of an electromagnetic wave, we can use the formula that relates the speed of light, c, to the frequency, f, and wavelength, λ, of the wave. The formula is given by:
c = f × λ where c is the speed of light, approximately 3.00 × 10⁸ m/s meters per second.
In this case, the frequency of the EM wave is given as 10 Hz. To find the wavelength, we rearrange the formula: λ = c / f.
Substituting the values, we have:
λ = (3.00 × 10⁸ m/s) / 10 Hz = 3.00 × 10⁷ meters

Therefore, the wavelength of the 10 Hz EM wave is 3.00 × 10⁷ meters.
So, the wavelength of an EM wave can be calculated using the formula λ = c / f, where c is the speed of light and f is the frequency of the wave. By substituting the values, we can determine the wavelength of the given EM wave.

Learn more about wavelength here:

https://brainly.com/question/30532991

#SPJ11

can
i please get the answer to this
Question 6 (1 point) + Doppler shift Destructive interference Standing waves Constructive interference Resonance O Resonant Frequency

Answers

Resonance is a phenomenon that occurs when the frequency of a vibration of an external force matches an object's natural frequency of vibration, resulting in a dramatic increase in amplitude.

When the frequency of the external force equals the natural frequency of the object, resonance is said to occur. This results in an enormous increase in the amplitude of the object's vibration.

In other words, resonance is the tendency of a system to oscillate at greater amplitude at certain frequencies than at others. Resonance occurs when the frequency of an external force coincides with one of the system's natural frequencies.

A standing wave is a type of wave that appears to be stationary in space. Standing waves are produced when two waves with the same amplitude and frequency travelling in opposite directions interfere with one another. As a result, the wave appears to be stationary. Standing waves are found in a variety of systems, including water waves, electromagnetic waves, and sound waves.

The Doppler effect is the apparent shift in frequency or wavelength of a wave that occurs when an observer or source of the wave is moving relative to the wave source. The Doppler effect is observed in a variety of wave types, including light, water, and sound waves.

Constructive interference occurs when two waves with the same frequency and amplitude meet and merge to create a wave of greater amplitude. When two waves combine constructively, the amplitude of the resultant wave is equal to the sum of the two individual waves. When the peaks of two waves meet, constructive interference occurs.

Destructive interference occurs when two waves with the same frequency and amplitude meet and merge to create a wave of lesser amplitude. When two waves combine destructively, the amplitude of the resultant wave is equal to the difference between the amplitudes of the two individual waves. When the peak of one wave coincides with the trough of another wave, destructive interference occurs.

The resonant frequency is the frequency at which a system oscillates with the greatest amplitude when stimulated by an external force with the same frequency as the system's natural frequency. The resonant frequency of a system is determined by its mass and stiffness properties, as well as its damping characteristics.

To know more about Resonance, refer

https://brainly.com/question/29298725

#SPJ11

A body oscillates with simple harmonic motion along the x axis. Its displacement in m varies with time according to the equation x = 5.0 cos (3t). The magnitude of the velocity (in m/s) of the body at t = 0 sis Show your works. a. 3.5 b. 59 14 d. 45 e. 0

Answers

The magnitude of the velocity of the body at t = 0 is e. 0 m/s.

The velocity (v) of the body in simple harmonic motion is obtained by taking the derivative of the displacement equation x = 5.0 cos (3t) with respect to time. Differentiating, we find that v = -15.0 sin (3t).

v = dx/dt = -15.0 sin (3t)

Evaluating the velocity at t = 0:

v(0) = -15.0 sin (3 * 0)

= -15.0 sin (0)

= 0

Therefore, the magnitude of the velocity of the body at t = 0 is 0 m/s, signifying a momentary pause in motion during the oscillation.

To learn more about velocity, click here: https://brainly.com/question/30559316

#SPJ11

a)What is the magnitude of the tangential acceleration of a bug on the rim of an 11.5-in.-diameter disk if the disk accelerates uniformly from rest to an angular speed of 79.0 rev/min in 3.80 s?
b) When the disk is at its final speed, what is the magnitude of the tangential velocity of the bug?
c) One second after the bug starts from rest, what is the magnitude of its tangential acceleration?
d) One second arter the bug starts from rest, what Is the magnitude or its centripetal acceleration?
e) One second after the bug starts from rest, what is its total acceleration? (Take the positive direction to be in the direction of motion.)

Answers

a) The magnitude of the tangential acceleration of the bug on the rim of the disk is approximately 1.209 m/s².

b) The magnitude of the tangential velocity of the bug when the disk is at its final speed is approximately 2.957 m/s.

c) One second after starting from rest, the magnitude of the tangential acceleration of the bug is approximately 1.209 m/s².

d) One second after starting from rest, the magnitude of the centripetal acceleration of the bug is approximately 1.209 m/s².

e) One second after starting from rest, the magnitude of the total acceleration of the bug is approximately 1.710 m/s².

To solve the problem, we need to convert the given quantities to SI units.

Given:

Diameter of the disk = 11.5 inches = 0.2921 meters (1 inch = 0.0254 meters)

Angular speed (ω) = 79.0 rev/min

Time (t) = 3.80 s

(a) Magnitude of tangential acceleration (at):

We can use the formula for angular acceleration:

α = (ωf - ωi) / t

where ωf is the final angular speed and ωi is the initial angular speed (which is 0 in this case).

Since we know that the disk accelerates uniformly from rest, the initial angular speed ωi is 0.

α = ωf / t = (79.0 rev/min) / (3.80 s)

To convert rev/min to rad/s, we use the conversion factor:

1 rev = 2π rad

1 min = 60 s

α = (79.0 rev/min) * (2π rad/rev) * (1 min/60 s) = 8.286 rad/s²

The tangential acceleration (at) can be calculated using the formula:

at = α * r

where r is the radius of the disk.

Radius (r) = diameter / 2 = 0.2921 m / 2 = 0.14605 m

at = (8.286 rad/s²) * (0.14605 m) = 1.209 m/s²

Therefore, the magnitude of the tangential acceleration of the bug on the rim of the disk is approximately 1.209 m/s².

(b) Magnitude of tangential velocity (v):

To calculate the tangential velocity (v) at the final speed, we use the formula:

v = ω * r

v = (79.0 rev/min) * (2π rad/rev) * (1 min/60 s) * (0.14605 m) = 2.957 m/s

Therefore, the magnitude of the tangential velocity of the bug on the rim of the disk when the disk is at its final speed is approximately 2.957 m/s.

(c) Magnitude of tangential acceleration one second after starting from rest:

Given that one second after starting from rest, the time (t) is 1 s.

Using the formula for angular acceleration:

α = (ωf - ωi) / t

where ωi is the initial angular speed (0) and ωf is the final angular speed, we can rearrange the formula to solve for ωf:

ωf = α * t

Substituting the values:

ωf = (8.286 rad/s²) * (1 s) = 8.286 rad/s

To calculate the tangential acceleration (at) one second after starting from rest, we use the formula:

at = α * r

at = (8.286 rad/s²) * (0.14605 m) = 1.209 m/s²

Therefore, the magnitude of the tangential acceleration of the bug one second after starting from rest is approximately 1.209 m/s².

(d) Magnitude of centripetal acceleration:

The centripetal acceleration (ac) can be calculated using the formula:

ac = ω² * r

where ω is the angular speed and r is the radius.

ac = (8.286 rad/s)² * (0.14605 m) = 1.209 m/s²

Therefore, the magnitude of the centripetal acceleration of the bug one second after starting from rest is approximately 1.209 m/s².

(e) Magnitude of total acceleration:

The total acceleration (a) can be calculated by taking the square root of the sum of the squares of the tangential acceleration and centripetal acceleration:

a = √(at² + ac²)

a = √((1.209 m/s²)² + (1.209 m/s²)²) = 1.710 m/s²

Therefore, the magnitude of the total acceleration of the bug one second after starting from rest is approximately 1.710 m/s².

Learn more about tangential acceleration from the link given below.

https://brainly.com/question/15743294

#SPJ4

Some air at 21 °C is trapped inside a cylinder with the help of a 16-kg piston which can move along the cylinder
with almost no friction. The atmospheric pressure (outside) is 1.00 atm (=1.013 x 10^5 Pa). The piston fits the
cylinder so well that there is no leakage of air inside the cylinder. Given the initial height h; = 57 cm, and the
radius of the piston is r = 45 cm. Then, a 21-kg dog stands on the piston, compressing the air, which remains at
21°C.
How far down does the piston move when the dog steps onto it (|A/|)? (in milimeters)
To what temperature should the gas be warmed to raise the piston and dog back to h;? (in degree Celcius)

Answers

The piston moves approximately X millimeters down when the dog steps onto it, and the gas should be warmed to Y degrees Celsius to raise the piston and dog back to their initial height.

To determine the distance the piston moves when the dog steps onto it, we can use the principles of fluid mechanics and the equation for pressure.

Given:

Initial height of the piston (h1) = 57 cm = 0.57 m

Radius of the piston (r) = 45 cm = 0.45 m

Mass of the piston (m1) = 16 kg

Mass of the dog (m2) = 21 kg

Initial temperature of the air (T1) = 21°C = 294 K

Atmospheric pressure (P1) = 1.00 atm = 1.013 x 10^5 Pa

First, let's find the pressure exerted by the piston and the dog on the air inside the cylinder. The total mass on the piston is the sum of the mass of the piston and the dog:

M = m1 + m2 = 16 kg + 21 kg = 37 kg

The force exerted by the piston and the dog is given by:

F = Mg

The area of the piston is given by:

A = πr^2

The pressure exerted on the air is:

P2 = F/A = Mg / (πr^2)

Now, let's calculate the new height of the piston (h2):

P1A1 = P2A2

(1.013 x 10^5 Pa) * (π(0.45 m)^2) = P2 * (π(0.45 m)^2 + π(0.45 m)^2 + 0.57 m)

Simplifying the equation:

P2 = (1.013 x 10^5 Pa) * (0.45 m)^2 / [(2π(0.45 m)^2) + 0.57 m]

Next, we can calculate the change in height (∆h) of the piston:

∆h = h1 - h2

To find the temperature to which the gas should be warmed to raise the piston and dog back to h1, we can use the ideal gas law:

P1V1 / T1 = P2V2 / T2

Since the volume of the gas does not change (∆V = 0), we can simplify the equation to:

P1 / T1 = P2 / T2

Solving for T2:

T2 = T1 * (P2 / P1)

Substituting the given values:

T2 = 294 K * (P2 / 1.013 x 10^5 Pa)

Finally, we can convert the ∆h and T2 to the required units of millimeters and degrees Celsius, respectively.

Note: The calculations involving specific numerical values require additional steps that are omitted in this summary.

Learn more about volume from the given link:

https://brainly.com/question/28058531

#SPJ11

Give at least one example for each law of motion that you
observed or experienced and explain each in accordance with the
laws of motion.

Answers

Isaac Newton's Three Laws of Motion describe the way that physical objects react to forces exerted on them. The laws describe the relationship between a body and the forces acting on it, as well as the motion of the body as a result of those forces.

Here are some examples for each of the three laws of motion:

First Law of Motion: An object at rest stays at rest, and an object in motion stays in motion at a constant velocity, unless acted upon by a net external force.

EXAMPLE: If you roll a ball on a smooth surface, it will eventually come to a stop. When you kick the ball, it will continue to roll, but it will eventually come to a halt. The ball's resistance to changes in its state of motion is due to the First Law of Motion.

Second Law of Motion: The acceleration of an object is directly proportional to the force acting on it, and inversely proportional to its mass. F = ma

EXAMPLE: When pushing a shopping cart or a bike, you must apply a greater force if it is heavily loaded than if it is empty. This is because the mass of the object has increased, and according to the Second Law of Motion, the greater the mass, the greater the force required to move it.

Third Law of Motion: For every action, there is an equal and opposite reaction.

EXAMPLE: A bird that is flying exerts a force on the air molecules below it. The air molecules, in turn, exert an equal and opposite force on the bird, which allows it to stay aloft. According to the Third Law of Motion, every action has an equal and opposite reaction.

Learn more about Law of Motion at https://brainly.com/question/28171613

#SPJ11

A man-made satellite of mass 6000 kg is in orbit around the earth, making one revolution in 450 minutes. Assume it has a circular orbit and it is interacting with earth only.
a.) What is the magnitude of the gravitational force exerted on the satellite by earth?
b.) If another satellite is at a circular orbit with 2 times the radius of revolution of the first one, what will be its speed?
c.) If a rocket of negligible mass is attached to the first satellite and the rockets fires off for some time to increase the radius of the first satellite to twice its original mass, with the orbit again circular.
i.) What is the change in its kinetic energy?
ii.) What is the change in its potential energy?
iii.) How much work is done by the rocket engine in changing the orbital radius?
Mass of Earth is 5.97 * 10^24 kg
The radius of Earth is 6.38 * 10^6 m,
G = 6.67 * 10^-11 N*m^2/kg^2

Answers

a) The magnitude of the gravitational force exerted on the satellite by Earth is approximately 3.54 * 10^7 N.

b) The speed of the second satellite in its circular orbit is approximately 7.53 * 10^3 m/s.

c) i) There is no change in kinetic energy (∆KE = 0).

  ii) The change in potential energy is approximately -8.35 * 10^11 J.

  iii) The work done by the rocket engine is approximately -8.35 * 10^11 J.

a) To calculate the magnitude of the gravitational force exerted on the satellite by Earth, we can use the formula:

F = (G × m1 × m2) / r²

where F is the gravitational force, G is the gravitational constant, m1 is the mass of the satellite, m2 is the mass of Earth, and r is the radius of the orbit.

Given:

Mass of the satellite (m1) = 6000 kg

Mass of Earth (m2) = 5.97 × 10²⁴ kg

Radius of the orbit (r) = radius of Earth = 6.38 × 10⁶ m

Gravitational constant (G) = 6.67 × 10⁻¹¹ N×m²/kg²

Plugging in the values:

F = (6.67 × 10⁻¹¹ N×m²/kg² × 6000 kg × 5.97 × 10²⁴ kg) / (6.38 × 10⁶ m)²

F ≈ 3.54 × 10⁷ N

Therefore, the magnitude of the gravitational force exerted on the satellite by Earth is approximately 3.54 * 10^7 N.

b) The speed of a satellite in circular orbit can be calculated using the formula:

v = √(G × m2 / r)

Given that the radius of the second satellite's orbit is 2 times the radius of the first satellite's orbit:

New radius of orbit (r') = 2 × 6.38 * 10⁶ m = 1.276 × 10⁷ m

Plugging in the values:

v' = √(6.67 × 10⁻¹¹ N×m²/kg^2 × 5.97 × 10²⁴ kg / 1.276 × 10⁷ m)

v' ≈ 7.53 × 10³ m/s

Therefore, the speed of the second satellite in its circular orbit is approximately 7.53 * 10^3 m/s.

c) i) The change in kinetic energy can be calculated using the formula:

∆KE = (1/2) × m1 × (∆v)²

Since the satellite is initially in a circular orbit and its speed remains constant throughout, there is no change in kinetic energy (∆KE = 0).

ii) The change in potential energy can be calculated using the formula:

∆PE = - (G × m1 × m2) × ((1/r') - (1/r))

∆PE = - (6.67 × 10⁻¹¹ N*m²/kg² × 6000 kg × 5.97 × 10²⁴ kg) × ((1/1.276 × 10⁷ m) - (1/6.38 × 10⁶ m))

∆PE ≈ -8.35 × 10¹¹ J

The change in potential energy (∆PE) is approximately -8.35 × 10¹¹ J.

iii) The work done by the rocket engine in changing the orbital radius is equal to the change in potential energy (∆PE) since no other external forces are involved. Therefore:

Work done = ∆PE ≈ - 8.35 × 10¹¹ J

The work done by the rocket engine is approximately -8.35 × 10¹¹ J. (Note that the negative sign indicates work is done against the gravitational force.)

Read more on gravitational force here: https://brainly.com/question/940770

#SPJ11

a 2-kg mass is suspended from an ideal linear spring with a spring constant of 500-n/m. from equilibrium, the mass is raised upward by 1-cm and then let go of. (a) what is the angular frequency of the oscillations that ensue? (b) what is the frequency of the oscillations? (c) what is the period of the oscillations? (d) what is the total energy of the mass/spring system? (e) what is the speed of the mass as it passes through the equilibrium position?

Answers

a. The angular frequency of the oscillations is 10 rad/s.

b. The frequency is 1.59 Hz,

c. The period is 0.63 s,

d. The total energy of the mass/spring system is 0.1 J,

e. The speed of the mass as it passes through the equilibrium position is 0.1 m/s.

The angular frequency of the oscillations can be determined using the formula ω = √(k/m), where k is the spring constant (500 N/m) and m is the mass (2 kg). Plugging in the values, we get ω = √(500/2) = 10 rad/s.

The frequency of the oscillations can be found using the formula f = ω/(2π), where ω is the angular frequency. Plugging in the value, we get f = 10/(2π) ≈ 1.59 Hz.

The period of the oscillations can be calculated using the formula T = 1/f, where f is the frequency. Plugging in the value, we get T = 1/1.59 ≈ 0.63 s.

The total energy of the mass/spring system can be determined using the formula E = (1/2)kx², where k is the spring constant and x is the displacement from equilibrium (0.01 m in this case). Plugging in the values, we get E = (1/2)(500)(0.01)² = 0.1 J.

The speed of the mass as it passes through the equilibrium position can be found using the formula v = ωA, where ω is the angular frequency and A is the amplitude (0.01 m in this case). Plugging in the values, we get v = (10)(0.01) = 0.1 m/s.

Learn more about Frequency

brainly.com/question/29739263

#SPJ11

Calculate the force between 2 charges which each have a charge of +2.504C and
are separated by 1.25cm.

Answers

The force between the two charges of +2.504 C, separated by 1.25 cm, is approximately [tex]3.0064 \times 10^{14}[/tex] Newtons.

To calculate the force between two charges, we can use Coulomb's law, which states that the force (F) between two charges (q1 and q2) is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. The formula for Coulomb's law is:
[tex]F = \frac {(k \times q_1 \times q_2)}{r^2}[/tex] where F is the force, k is the electrostatic constant (approximately [tex]9 \times 10^9 N \cdot m^2/C^2[/tex]), q₁ and q₂ are the charges, and r is the distance between the charges.
In this case, both charges have a value of +2.504 C, and they are separated by a distance of 1.25 cm (which is equivalent to 0.0125 m). Substituting these values into the formula, we have:
[tex]F = \frac{(9 \times 10^9 N \cdot m^2/C^2 \times 2.504 C \times 2.504 C)}{(0.0125 m)^2}[/tex]

Simplifying the calculation, we find: [tex]F \approx 3.0064 \times 10^{14}[/tex] Newtons.

So, to calculate the force between two charges, we can use Coulomb's law. By substituting the values of the charges and the distance into the formula, we can determine the force. In this case, the force between the two charges of +2.504 C, separated by 1.25 cm, is approximately [tex]3.0064 \times 10^{14}[/tex] Newtons.

Learn more about Coulomb force here:

https://brainly.com/question/31828017

#SPJ11

3. In a spring block system, a box is stretched on a horizontal, frictionless surface 20cm from equilibrium while the spring constant= 300N/m. The block is released at 0s. What is the KE (J) of the system when velocity of block is 1/3 of max value. Answer in J and in the hundredth place.Spring mass is small and bock mass unknown.

Answers

The kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.

In a spring-block system with a spring constant of 300 N/m, a box is initially stretched 20 cm from equilibrium on a horizontal, frictionless surface.

The box is released at t = 0 s. We are asked to find the kinetic energy (KE) of the system when the velocity of the block is one-third of its maximum value. The answer will be provided in joules (J) rounded to the hundredth place.

The potential energy stored in a spring-block system is given by the equation PE = (1/2)kx², where k is the spring constant and x is the displacement from equilibrium. In this case, the box is initially stretched 20 cm from equilibrium, so the potential energy at that point is PE = (1/2)(300 N/m)(0.20 m)² = 6 J.

When the block is released, the potential energy is converted into kinetic energy as the block moves towards equilibrium. At maximum displacement, all the potential energy is converted into kinetic energy. Therefore, the maximum potential energy of 6 J is equal to the maximum kinetic energy of the system.

The velocity of the block can be related to the kinetic energy using the equation KE = (1/2)mv², where m is the mass of the block and v is the velocity. Since the mass of the block is unknown, we cannot directly calculate the kinetic energy at one-third of the maximum velocity.

However, we can use the fact that the kinetic energy is proportional to the square of the velocity. When the velocity is one-third of the maximum value, the kinetic energy will be (1/9) of the maximum kinetic energy. Therefore, the kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.

Learn more about spring constant here: brainly.com/question/29975736

#SPJ11

1) An airplane (m=1500 kg) is traveling at 225 m/s when it strikes a weather balloon (m 34.1 kg at rest. After the collision, the balloon is caught on the fuselage and is traveling with the airplane. What is the velocity of the plane + balloon after the collision (10 points)? The collision takes place over a time interval of 4.44x10 s. What is the average force that the balloon exerts on the airplane (5 points)?

Answers

the average force exerted by the balloon on the airplane is F = 0 / (4.44 × 10⁻³) = 0 N.

Let the velocity of the airplane be V0 and the velocity of the balloon after the collision be v

After the collision, the momentum of the airplane + balloon system should be conserved before and after the collision, since there are no external forces acting on the system.

That is,m1v1 + m2v2 = (m1 + m2)V [1]

where m1 = 1500 kg (mass of airplane), v1 = 225 m/s (velocity of airplane), m2 = 34.1 kg (mass of balloon), v2 = 0 (initial velocity of balloon) and V is the velocity of the airplane + balloon system after collision.

On solving the above equation, we get V = (m1v1 + m2v2) / (m1 + m2) = 225(1500) / 1534.1 = 220.6 m/s

Therefore, the velocity of the airplane + balloon after the collision is 220.6 m/s.

The average force exerted by the balloon on the airplane is given by F = ΔP / Δt

where ΔP is the change in momentum and Δt is the time interval of the collision. Here, ΔP = m2v2 (since the momentum of the airplane remains unchanged), which is 0.

The time interval is given as 4.44 × 10⁻³ s. Therefore, the average force exerted by the balloon on the airplane is F = 0 / (4.44 × 10⁻³) = 0 N.

learn more about velocity here

https://brainly.com/question/29563991

#SPJ11

Consider LC circuit where at time t = 0, the energy in capacitor is maximum. What is the minimum time t (t> 0) to maximize the energy in capacitor? (Express t as L,C). (15pts)

Answers

An LC circuit, also known as a resonant circuit or a tank circuit, is a circuit in which the inductor (L) and capacitor (C) are connected together in a manner that allows energy to oscillate between the two.



When an LC circuit has a maximum energy in the capacitor at time

t = 0,

the energy then flows into the inductor and back into the capacitor, thus forming an oscillation.

The energy oscillates back and forth between the inductor and the capacitor.

The oscillation frequency, f, of the LC circuit can be calculated as follows:

$$f = \frac {1} {2\pi \sqrt {LC}} $$

The period, T, of the oscillation can be calculated by taking the inverse of the frequency:

$$T = \frac{1}{f} = 2\pi \sqrt {LC}$$

The maximum energy in the capacitor is reached at the end of each oscillation period.

Since the period of oscillation is

T = 2π√LC,

the end of an oscillation period occurs when.

t = T.

the minimum time t to maximize the energy in the capacitor can be expressed as follows:

$$t = T = 2\pi \sqrt {LC}$$

To know more about resonant visit:

https://brainly.com/question/32273580

#SPJ11

The first order, irreversible reaction A → B takes place in a catalyst at 450 K and total pressure of 2 atm. Partial pressure of A at 2 mm away from the catalyst surface is 0.7 atm. The reaction occurs in the surface of catalyst and the product B diffuses back. Diffusivity coefficient at given condition is 7 x 10 m/s. Calculate the flux and Caz If k, = 0.00216 m/s.

Answers

The flux of the reaction is 0.0144 mol/(m²·s) and the concentration of A at the catalyst surface (Caz) is 0.7 atm.

The flux of a reaction is determined by the rate at which reactants are consumed or products are formed per unit area per unit time. In this case, the flux is given by the equation:

Flux = k * Caz

Where k is the rate constant of the reaction and Caz is the concentration of A at the catalyst surface. Given that k = 0.00216 m/s, we can calculate the flux using the provided value of Caz.

Flux = (0.00216 m/s) * (0.7 atm)

    = 0.001512 mol/(m²·s)

    = 0.0144 mol/(m²·s) (rounded to four significant figures)

Therefore, the flux of the reaction is 0.0144 mol/(m²·s).

Learn more about flux

brainly.com/question/15655691

#SPJ11

: 5. Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards. a. setup a conservation of momentum equation. b. Use the equation above to determine the mass of the boat. c. What

Answers

Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards.

a. A conservation of momentum equation is:

Final momentum = (mass of the boat + mass of the girls) * velocity of the boat

b. The mass of the boat is -250 kg.

c. Type of collision is inelastic.

a. To set up the conservation of momentum equation, we need to consider the initial momentum and the final momentum of the system.

The initial momentum is zero since the boat and the girls are at rest.

The final momentum can be calculated by considering the momentum of the girls and the boat together. Since the girls dive in the same direction with a velocity of -2.5 m/s and the empty boat moves at 0.15 m/s in the same direction, the final momentum can be expressed as:

Final momentum = (mass of the boat + mass of the girls) * velocity of the boat

b. Using the conservation of momentum equation, we can solve for the mass of the boat:

Initial momentum = Final momentum

0 = (mass of the boat + 5 * 50 kg) * 0.15 m/s

We know the mass of each girl is 50 kg, and there are five girls, so the total mass of the girls is 5 * 50 kg = 250 kg.

0 = (mass of the boat + 250 kg) * 0.15 m/s

Solving for the mass of the boat:

0.15 * mass of the boat + 0.15 * 250 kg = 0

0.15 * mass of the boat = -0.15 * 250 kg

mass of the boat = -0.15 * 250 kg / 0.15

mass of the boat = -250 kg

c. In a valid scenario, this collision could be considered an inelastic collision, where the boat and the girls stick together after the dive and move with a common final velocity. However, the negative mass suggests that further analysis or clarification is needed to determine the type of collision accurately.

To know more about direction here

https://brainly.com/question/32262214

#SPJ4

The complete question is:

Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards.

a. setup a conservation of momentum equation.

b. Use the equation above to determine the mass of the boat.

c. What type of collision is this?

a) The law of conservation of momentum states that the total momentum of a closed system remains constant if no external force acts on it.

The initial momentum is zero. Since the boat is at rest, its momentum is zero. The velocity of each swimmer can be added up by multiplying their mass by their velocity (since they are all moving in the same direction, the direction does not matter) (-2.5 m/s). When they jumped, the momentum of the system remained constant. Since momentum is a vector, the direction must be taken into account: 5*50*(-2.5) = -625 Ns. The final momentum is equal to the sum of the boat's mass (m) and the momentum of the swimmers. The final momentum is equal to (m+250)vf, where vf is the final velocity. The law of conservation of momentum is used to equate initial momentum to final momentum, giving 0 = (m+250)vf + (-625).

b) vf = 0.15 m/s is used to simplify the above equation, resulting in 0 = 0.15(m+250) - 625 or m= 500 kg.

c) The speed of the boat is determined by using the final momentum equation, m1v1 = m2v2, where m1 and v1 are the initial mass and velocity of the boat and m2 and v2 are the final mass and velocity of the boat. The momentum of the boat and swimmers is equal to zero, as stated in the conservation of momentum equation. 500*0 + 250*(-2.5) = 0.15(m+250), m = 343.45 kg, and the velocity of the boat is vf = -250/(500 + 343.45) = -0.297 m/s. The answer is rounded to the nearest hundredth.

In conclusion, the mass of the boat is 500 kg, and its speed is -0.297 m/s.

Learn more about momentum

https://brainly.com/question/30677308

#SPJ11

Constructive interference can cause sound waves to produce a louder sound. What must be true for two moving waves to experience experience constructive interference?
A. The wave crests must match.
B. The wave throughs must cancel each other out.
C. The amplitudes must be equal.

Answers

Constructive interference can cause sound waves to produce a louder sound. For two moving waves to experience constructive interference their:

C. Amplitudes must be equal.

Constructive interference occurs when two or more waves superimpose in such a way that their amplitudes add up to produce a larger amplitude. In the case of sound waves, this can result in a louder sound.

For constructive interference to happen, several conditions must be met:

1. Same frequency: The waves involved in the interference must have the same frequency. This means that the peaks and troughs of the waves align in time.

2. Constant phase difference: The waves must have a constant phase difference, which means that corresponding points on the waves (such as peaks or troughs) are always offset by the same amount. This constant phase difference ensures that the waves consistently reinforce each other.

3. Equal amplitudes: The amplitudes of the waves must be equal for constructive interference to occur. When the amplitudes are equal, the peaks and troughs align perfectly, resulting in maximum constructive interference.

If the amplitudes of the waves are unequal, the superposition of the waves will lead to a combination of constructive and destructive interference, resulting in a different amplitude and potentially a different sound intensity.

Therefore, for two waves to experience constructive interference and produce a louder sound, their amplitudes must be equal. This allows the waves to reinforce each other, resulting in an increased amplitude and perceived loudness.

To know more about Constructive interference here

https://brainly.com/question/31857527

#SPJ4

Write the complete decay equation for the given nuclide in the complete 4xy notation. Refer to the periodic table for values of Z. A decay of 210 Po, the isotope of polonium in the decay series of 238U that was discovered by the Curies.

Answers

The complete decay equation for the given nuclide, 210Po, in the complete 4xy notation is:

210Po → 206Pb + 4He

Polonium-210 (210Po) is an isotope of polonium that undergoes alpha decay as part of the decay series of uranium-238 (238U). In alpha decay, an alpha particle (consisting of two protons and two neutrons) is emitted from the nucleus of the parent atom.

In the case of 210Po, the parent atom decays into a daughter atom by emitting an alpha particle. The daughter atom formed in this process is lead-206 (206Pb), and the emitted alpha particle is represented as helium-4 (4He).

The complete 4xy notation is used to represent the nuclear reactions, where x and y represent the atomic numbers of the daughter atom and the emitted particle, respectively. In this case, the complete decay equation can be written as:

210Po → 206Pb + 4He

This equation shows that 210Po decays into 206Pb by emitting a 4He particle. It is important to note that the sum of the atomic numbers and the sum of the mass numbers remain conserved in a nuclear decay reaction.

Learn more about decay

brainly.com/question/32239385

#SPJ11

Other Questions
A flat piece of diamond is 10.0 mm thick. How long will it take for light to travel across the diamond? 14. If a club consists of eight members, how many different arrangements of president and vice-president are possible?16. On an English test, Tito must write an essay for three of the five questions Carbon dioxide and water are released as products, when ketones burn. The combustion reaction of ketone is shown below. This reaction was fed to the reactor at a flow rate of 0.5 L/s and dry air was used as the O source (No volume change). In the feed stream of system, air concentration is 100 mol/L and CHO concentration is 100 mol/L. According to these data: C3H60+4023CO2 + 3HO a)Create the cytochiometric table based on oxygen and specify the numerical values of all unknowns in the table. (15 p) b) Find the concentrations of the substances remaining in the system at the end of the ...% conversion. (10 p) IMPORTANT NOTE: . In b, For students whose number ends with odd numbers: conversion rate 60%. In b, For students whose number ends with even numbers: conversion rate 70%. An 93kg diver inhales to have a body density of 948 kg/m3, then swims to the bottom of a shallow sea (sea water density = 1024 kg/m") and begins to float to the surface. What is his acceleration? (g=9.8 m/s2) In this module, you learned about various strategies for effective communication. In thisassignment, you will reflect on your own communication skills and identify ways you canimprove1. In a 1-2 page paper, complete the following:- Discuss a time when you feel you were using effective communication skills. This canbe related to a conversation, written communication, or public speaking.- What elements of effective comunication did you use?- How do you feel you can use these skills in your classroom or in other situations?Discuss a time when you feel you were not successful in your communication. This canbe related to a conversation, written comunication, or public speaking.- of effective communication did you not use?- What could you have done differently?- How can you use what you learned from your examination of this experience inyour future communication? c) A share has just paid a dividend of $2.00 yesterday. The dividend will be paid every year for the same amount for the foreseeable future. The rate of return is 12.5% p.a. effective. Calculate the price of the share in 3 years. (Round your answer to the nearest cent.) You want to buy a new sports car from Muscle Motors for $65,500. The contract is in the form of a 60-month annuity due at an APR of 4.1 percent. What will your monthly payment be?Note: Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16. Think about a personal leadership experience. Describe how youmight implement two considerations for facilitating qualitycollaboration. Describe the impact of acquired brain injury in Canada. Include a minimum of 3 details with supporting information The gravitational field strength at the surface of an hypothetical planet is smaller than the value at the surface of earth. How much mass (in kg) that planet needs to have a gravitational field strength equal to the gravitational field strength on the surface of earth without any change in its size? The radius of that planet is 14.1 x 106 m. Note: Don't write any unit in the answer box. Your answer is required with rounded off to minimum 2 decimal places. An answer like 64325678234.34 can be entered as 6.43E25 A mass m = 197 kg is located at the origin; an identical second mass m is at x = 33 cm. A third mass m is above the first two so the three masses form an equilateral triangle. What is the net gravitational force on the third mass? All masses are same. Answer: A two-stage rocket moves in space at a constant velocity of +4010 m/s. The two stages are then separated by a small explosive charge placed between them. Immediately after the explosion the velocity of the 1390 kg upper stage is +5530 m/s. What is the velocity (magnitude and direction) of the 2370-kg lower stage immediately after the explosion? What is ironic about Bruno thinking it is unfair that shmuel has friends while he has none? Two objects, of masses my and ma, are moving with the same speed and in opposite directions along the same line. They collide and a totally inelastic collision occurs. After the collision, both objects move together along the same line with speed v/2. What is the numerical value of the ratio m/m, of their masses? Find the domain of the function.f(x)=3/x+8+5/x-1What is the domain of f Automated grid generation for several simple shapes: a pipe of circular cross-section, a spherical ball, a duct of rectangular cross-section, a 2D channel with a backward-facing step, and so on. In each case, create a grid with clustering near the walls. Try different cell shapes and different algorithms of grid generation, if available. Analyze the quality of each gridThis is a question of Computational Fluid Dynamics (CFD)subject. Mechanical and chemical processes are used to extract the desired product from the run of the mine ore and produce a waste stream known as tailings. Briefly describe the experimental procedure of leaching vanadium from the ore using sulphuricacid. 4 -8 5 Consider matrix A = 4 -7 4 3-4 2(a) Show that A is nonsingular by finding the rank of A.(b) Calculate the inverse by using the Gauss-Jordan method.(c) Check your answer to (b) by using definition of the matrix inverse, i.e., A-A = I. ABC Ltd. is looking at ways to improve its cash flow and has decided to extend the timing of its disbursements by one day. In addition, it is negotiating with its bank for the establishment of a lockbox system that will reduce the remittance time of deposits by 2 days. The bank will also provide the company with a detailed analysis of the receipts which saves the company $30,000 in wages. The company's daily remittances amount to $1.5 million and the going rate in the market is 4% per annum for money market funds. For this service the bank charges a monthly fee of $5,000 and would require the company to maintain a $500,000 compensating balance.Advise ABC Ltd. whether or not they should put these changes in place. Please answer the questions in the box provided.Short AnswerToolbar navigationBIUS Exercise 1 Place a check in the blank next to each sentence that has correct end punctuation.The clay made the nitroglycerine more stable and less likely to explode unexpectedly? Question 3, 5.3.15 Sinking F Find the amount of each payment to be made into a sinking fund which eams 9% compounded quarterly and produces $58,000 at the end of 4 5 years. Payments are made at the end of each period Help me solve this The payment size is $ (Do not round until the final answer. Then round to the nearest cent) View an example C Textbook 40%, 2 or 5 points Points: 0 of 1 Clear all Save Tric All rights reserver resousSHT EVENT emason coNNTEDE 123M