A buffer contains 0.220 m of weak acid hy and 0.140 m yâ. what is the ph change after 0.0015 mol of ba(oh)2 is added to 0.240 l of this solution?

Answers

Answer 1

The pH change can be determined by calculating the new pH of the buffer solution using the Henderson-Hasselbalch equation, which relates the pH of a buffer to the pKa of the weak acid and the ratio of its conjugate base (Y-) to the weak acid (HY).

pH = pKa + log ([Y-] final / [HY] final)

To calculate the pH change after adding Ba(OH)2 to the buffer solution, we need to consider the reaction between Ba(OH)2 and the weak acid (HY) in the buffer.

Ba(OH)2 reacts with HY to form BaY2 and water (H2O). Since BaY2 is a salt, it will dissociate in water to form Y- ions. This will affect the concentration of Y- in the buffer solution, and consequently, the pH.

First, we calculate the moles of Y- in the initial buffer solution:

moles of Y- = (0.140 M)(0.240 L) = 0.0336 mol

Next, we determine the change in moles of Y- after adding 0.0015 mol of Ba(OH)2:

change in moles of Y- = 0.0015 mol

The total moles of Y- in the solution after the reaction will be:

total moles of Y- = moles of Y- in initial solution + change in moles of Y-

total moles of Y- = 0.0336 mol + 0.0015 mol = 0.0351 mol

Finally, we can calculate the new concentration of Y-:

new concentration of Y- = total moles of Y- / volume of solution

new concentration of Y- = 0.0351 mol / 0.240 L = 0.146 M

Learn more about  pH here:

brainly.com/question/30656928

#SPJ11


Related Questions

Use the information provided to calculate the heat of reaction for equation: 2 C3H6 (g) 9 O2 (g) --> 6 CO2 (g) 6 H2O (l)

Answers

The heat of reaction for the given equation, you will need the standard enthalpies of formation for each compound involved. The standard enthalpy of formation (∆H°f) represents the change in enthalpy when one mole of a compound is formed from its elements in their standard states.

2 C3H6 (g) + 9 O2 (g) → 6 CO2 (g) + 6 H2O (l)

We can break it down into the formation reactions of the compounds:

2 C3H6 (g) → 6 C (s) + 6 H2 (g)

9 O2 (g) → 18 O (g)

6 CO2 (g) → 6 C (s) + 12 O (g)

6 H2O (l) → 6 H2 (g) + 3 O2 (g)

Now, let's calculate the heat of reaction (∆H°r) using the standard enthalpies of formation (∆H°f):

∆H°r = Σ∆H°f(products) - Σ∆H°f(reactants)

∆H°r = [6∆H°f(CO2) + 6∆H°f(H2O)] - [2∆H°f(C3H6) + 9∆H°f(O2)]

Next, we need to look up the standard enthalpies of formation for each compound from a reliable source. The values are typically given in kilojoules per mole (kJ/mol). Let's assume the following standard enthalpies of formation (these are not actual values):

∆H°f(CO2) = -400 kJ/mol

∆H°f(H2O) = -200 kJ/mol

∆H°f(C3H6) = 100 kJ/mol

∆H°f(O2) = 0 kJ/mol

Substituting these values into the equation:

∆H°r = [6(-400 kJ/mol) + 6(-200 kJ/mol)] - [2(100 kJ/mol) + 9(0 kJ/mol)]

Simplifying:

∆H°r = [-2400 kJ/mol - 1200 kJ/mol] - [200 kJ/mol]

∆H°r = -3600 kJ/mol - 200 kJ/mol

∆H°r = -3800 kJ/mol

Therefore, the heat of reaction for the given equation is -3800 kJ/mol. Note that the actual values for the standard enthalpies of formation may differ from the assumed values used in this example.

learn more about heat click here;

brainly.com/question/13860901

#SPJ11

Class II restorative preparation on the primary molar, the occlusal portion is gently rounded with a depth of:

Answers

The Class II restorative preparation on the primary molar, the occlusal portion is gently rounded with a depth of 0.5-0.75 mm.

What is Class II Restorative Preparation?

Class II Restorative Preparation is the procedure of cutting a tooth to make space for an inlay or onlay that replaces the decayed section of the tooth. It is known as an MO (mesial occlusal), DO (distal occlusal), MOD (mesial occlusal distal), or MOB (mesial occlusal buccal) in dentistry.

It is an operative treatment that consists of the removal of decay and replacement of the missing tooth structure with the restorative material. The preparation is made for the restoration of the mesial and/or distal surfaces of posterior teeth, including premolars and molars.

The occlusal portion is gently rounded with a depth of 0.5-0.75 mm. The cavity is kept to a minimum and confined to the enamel on the occlusal surface.

To know more about  Restorative Preparation click on below link :

https://brainly.com/question/31266626#

#SPJ11

The atoms of elements in the same group or family have similar properties because.

Answers

The atoms of elements in the same group or family have similar properties because they have the same number of valence electrons.

Valence electrons are the electrons in the outermost energy level of an atom. They are responsible for the chemical behavior of an element. Elements in the same group or family have the same number of valence electrons, which means they have similar chemical behavior.

For example, elements in Group 1, also known as the alkali metals, all have 1 valence electron. This gives them similar properties such as being highly reactive and having a tendency to lose that electron to form a positive ion.

In contrast, elements in Group 18, also known as the noble gases, all have 8 valence electrons (except for helium, which has 2). This makes them stable and unreactive because their valence shell is already filled.

So, the similar properties of elements in the same group or family can be attributed to their similar number of valence electrons.

Learn more about valence electrons at https://brainly.com/question/31264554

#SPJ11

The standard molar enthalpy change for this reaction is -1.3 MJ. What is the enthalpy change when 6 moles of octane are combusted

Answers

The enthalpy change when 6 moles of octane are combusted is -7.8 MJ. This value is obtained by multiplying the standard molar enthalpy change (-1.3 MJ/mol) by the number of moles of octane combusted.

The balanced combustion equation for octane (C8H18) is:

C8H18 + 12.5O2 → 8CO2 + 9H2O

According to the balanced equation, the stoichiometric coefficient of octane is 1, which means that the enthalpy change for the combustion of 1 mole of octane is -1.3 MJ.

To find the enthalpy change when 6 moles of octane are combusted, we can multiply the standard molar enthalpy change by the number of moles of octane:

Enthalpy change = -1.3 MJ/mol * 6 mol

Enthalpy change = -7.8 MJ

Therefore, when 6 moles of octane are combusted, the enthalpy change is -7.8 MJ.

The enthalpy change when 6 moles of octane are combusted is -7.8 MJ. This value is obtained by multiplying the standard molar enthalpy change (-1.3 MJ/mol) by the number of moles of octane combusted. The negative sign indicates that the combustion process is exothermic, releasing energy in the form of heat.

To know more about enthalpy visit:

https://brainly.com/question/14047927

#SPJ11

Consider the reaction H3PO4 + 3 NaOH â Na3PO4 + 3 H2O How much Na3PO4 can be prepared by the reaction of 3.92 g of H3PO4 with an excess of NaOH? Answer in units of g.

Answers

The reaction H₃PO₄ + 3 NaOH → Na₃PO₄ + 3 H₂O . 6.46 grams of Na₃PO₄ can be prepared by the reaction of 3.92 grams of H₃PO₄ with an excess of NaOH.

To determine the amount of Na₃PO₄ that can be prepared, we need to consider the balanced chemical equation and the stoichiometric ratio between H₃PO₄ and Na₃PO₄.

The balanced equation is:

H₃PO₄ + 3 NaOH → Na₃PO₄ + 3 H₂O

From the equation, we can see that 1 mole of H₃PO₄ reacts to produce 1 mole of Na₃PO₄. Therefore, the stoichiometric ratio is 1:1.

First, let's calculate the number of moles of H₃PO₄ given its mass:

Mass of H₃PO₄ = 3.92 g

Molar mass of H₃PO₄ = 97.994 g/mol

Moles of H₃PO₄ = Mass / Molar mass = 3.92 g / 97.994 g/mol

Since the stoichiometric ratio is 1:1, the moles of Na₃PO₄ produced will be equal to the moles of H₃PO₄.

Moles of Na₃PO₄ = Moles of H₃PO₄ = 3.92 g / 97.994 g/mol

Now, let's calculate the mass of Na₃PO₄ using the molar mass of Na₃PO₄:

Molar mass of Na₃PO₄ = 163.94 g/mol

Mass of Na₃PO₄ = Moles of Na₃PO₄ * Molar mass of Na₃PO₄

By substituting the calculated values into the equation, we can find the mass of Na₃PO₄ that can be prepared:

Mass of Na₃PO₄ = (3.92 g / 97.994 g/mol) * 163.94 g/mol

Calculating the result:

Mass of Na₃PO₄ ≈ 6.46 g

Therefore, approximately 6.46 grams of Na₃PO₄ can be prepared by the reaction of 3.92 grams of H₃PO₄ with an excess of NaOH.

To know more about reaction here

https://brainly.com/question/16737295

#SPJ4

What are the limitations of litmus paper and phenolphthalein indicators? name two other indicators that can be used that do not have such limitations. source stylesnormal

Answers

Litmus paper and phenolphthalein indicators have pH range limitations and lack precision. Universal indicator and bromothymol blue are alternative indicators that offer a broader range and greater accuracy.

Litmus paper is a pH indicator that changes color in the presence of an acid or a base. However, it can only indicate whether a substance is acidic (turns red) or basic (turns blue), without providing an accurate pH value. Phenolphthalein, on the other hand, is colorless in acidic solutions and pink in basic solutions, but it has a limited pH range of 8.2 to 10.0.

To overcome these limitations, the universal indicator is commonly used. It is a mixture of several indicators that produces a wide range of colors depending on the pH of the solution. The resulting color can be compared to a color chart to determine the approximate pH value of the substance being tested. This allows for a more precise measurement of pH compared to litmus paper or phenolphthalein.

Another alternative indicator is bromothymol blue. It changes color depending on the pH of the solution, from yellow in acidic solutions to blue in basic solutions. Bromothymol blue has a pH range of 6.0 to 7.6, which makes it suitable for a broader range of pH measurements compared to phenolphthalein.

These alternative indicators, universal indicator and bromothymol blue, provide a wider pH range and more precise measurements compared to litmus paper and phenolphthalein. They offer greater versatility and accuracy in determining the acidity or basicity of a solution.

To learn more about Litmus paper click here:

brainly.com/question/29733277

#SPJ11

If the uncertainty associated with the position of an electron is 3.3×10−11 m, what is the uncertainty associated with its momentum?

Answers

The uncertainty associated with the momentum of an electron is given by the Heisenberg uncertainty principle as approximately 5.5×10^(-21) kg·m/s, which is calculated by the uncertainty in position.

According to the Heisenberg uncertainty principle, the product of the uncertainty in position (Δx) and the uncertainty in momentum (Δp) of a particle is always greater than or equal to a constant value, Planck's constant (h), divided by 4π:

Δx * Δp ≥ h / (4π)

In this case, the uncertainty in position (Δx) of the electron is given as 3.3 × 10^(-11) m. To find the uncertainty in momentum (Δp), we rearrange the equation:

Δp ≥ h / (4π * Δx)

Plugging in the values, we have:

Δp ≥ (6.626 × 10^(-34) J*s) / (4π * 3.3 × 10^(-11) m)

Simplifying the expression:

Δp ≥ 5.03 × 10^(-24) kg*m/s

Therefore, the uncertainty associated with the momentum of the electron is 5.03 × 10^(-24) kg*m/s.

To learn more about electron click here:

brainly.com/question/12001116

#SPJ11

calculate the number of nitrate ions present in an 800.0 ml aqueous solution containing 22.5 g of dissolved aluminium nitrate.

Answers

The number of nitrate ions present in an 800.0 ml aqueous solution containing 22.5 g of dissolved aluminium nitrate is 1.91 × 10²³.

To calculate the number of nitrate ions present in an aqueous solution of aluminum nitrate, we first need to determine the number of moles of aluminum nitrate using its molar mass. The molar mass of aluminum nitrate (Al(NO₃)₃) is:

Al: 26.98 g/mol

N: 14.01 g/mol

O: 16.00 g/mol

Molar mass of Al(NO₃)₃ = (26.98 g/mol) + 3 * [(14.01 g/mol) + (16.00 g/mol)] = 26.98 g/mol + 3 * 30.01 g/mol = 213.00 g/mol

Next, we can calculate the number of moles of aluminum nitrate (Al(NO₃)₃) in the solution using its mass:

moles = mass / molar mass

moles = 22.5 g / 213.00 g/mol

moles = 0.1059 mol

Since aluminum nitrate dissociates in water to form one aluminum ion (Al⁺³) and three nitrate ions (NO₃⁻), the number of nitrate ions will be three times the number of moles of aluminum nitrate:

Number of nitrate ions = 3 * moles of Al(NO₃)₃

Number of nitrate ions = 3 * 0.1059 mol

Number of nitrate ions = 0.3177 mol

Finally, to convert the number of moles of nitrate ions to the number of nitrate ions in the solution, we can use Avogadro's number (6.022 × 10²³ ions/mol):

Number of nitrate ions = moles of nitrate ions * Avogadro's number

Number of nitrate ions = 0.3177 mol * 6.022 × 10²³ ions/mol

Number of nitrate ions = 1.91 × 10²³ ions

Therefore, there are approximately 1.91 × 10²³ nitrate ions present in an 800.0 ml aqueous solution containing 22.5 g of dissolved aluminum nitrate.

To know more about aluminium nitrate here

https://brainly.com/question/79967

#SPJ4

why is the change in the enthalpy a meaningful quantity for many chemical processes? enthalpy is said to be a state function. what is it about state functions that makes them particularly useful? during a constant-pressure process the system absorbs heat from the surroundings. does the enthalpy of the system increase or decrease during the process?

Answers

The change in enthalpy is a meaningful quantity for many chemical processes because it represents the heat energy exchanged between the system and its surroundings.

Enthalpy is a state function, meaning it depends only on the initial and final states of the system, not on the path taken. This makes it particularly useful because it allows us to easily calculate and compare energy changes in different processes. During a constant-pressure process, the system absorbs heat from the surroundings. This causes the enthalpy of the system to increase. The enthalpy change (ΔH) is positive when heat is absorbed by the system, indicating an endothermic process. Conversely, if the system releases heat, the enthalpy change is negative, indicating an exothermic process.

In summary, the change in enthalpy is meaningful for chemical processes as it represents energy changes, and its state function nature allows for easy calculations and comparisons. During a constant-pressure process, the system absorbs heat, leading to an increase in enthalpy. The change in enthalpy is meaningful for chemical processes as it represents the heat energy exchanged between the system and surroundings. Enthalpy is a state function, allowing for easy calculations and comparisons. During a constant-pressure process, the system absorbs heat from the surroundings, resulting in an increase in enthalpy.

To know more about enthalpy visit:

https://brainly.com/question/7510619

#SPJ11

The gold foil experiment performed in Rutherford's lab ________. Group of answer choices proved the law of multiple proportions

Answers

The gold foil experiment performed in Rutherford's lab did not prove the law of multiple proportions.

The gold foil experiment, also known as the Rutherford scattering experiment, was conducted by Ernest Rutherford in 1911 to investigate the structure of the atom. In this experiment, alpha particles were directed at a thin gold foil, and their scattering patterns were observed.

The main conclusion drawn from the gold foil experiment was the discovery of the atomic nucleus. Rutherford observed that most of the alpha particles passed through the gold foil with minimal deflection, indicating that atoms are mostly empty space. However, a small fraction of alpha particles were deflected at large angles, suggesting the presence of a concentrated positive charge in the center of the atom, which he called the nucleus.

The law of multiple proportions, on the other hand, is a principle in chemistry that states that when two elements combine to form multiple compounds, the ratio of masses of one element that combine with a fixed mass of the other element can be expressed in small whole numbers. This law was formulated by John Dalton and is unrelated to Rutherford's gold foil experiment.

The gold foil experiment performed in Rutherford's lab did not prove the law of multiple proportions. Its main contribution was the discovery of the atomic nucleus and the proposal of a new atomic model, known as the Rutherford model or planetary model.

To read more about gold foil, visit:

https://brainly.com/question/730256

#SPJ11

An electron jumps to a more distant orbit when an atom: Group of answer choices emits light absorbs light

Answers

An electron jumps to a more distant orbit when an atom absorbs light. An atom is composed of a nucleus and electrons. The electrons in the atom revolve around the nucleus in orbits. When the electrons gain energy, they jump from one orbit to another distant orbit. This is known as the excitation of an electron. When the electron is excited, it gains potential energy that is equal to the energy difference between the higher and lower levels.

The excitation energy can be supplied by light, heat, or chemical reactions. However, we will discuss the excitation of an electron due to light in this answer. When an atom absorbs light, its electrons absorb the energy of the light wave. The energy of the wave corresponds to the difference in the potential energy of the electron between the initial and final orbits. If the absorbed energy is equal to or greater than the excitation energy required for the electron to jump to a higher energy level, then the electron jumps to the more distant orbit.

The atom then becomes unstable, and the electron returns to the lower energy state by releasing the extra energy in the form of light photons. This process is known as emission. The frequency of the emitted light corresponds to the difference in energy between the two energy levels. The larger the energy difference, the higher the frequency and the shorter the wavelength of the emitted light. The opposite process of absorption is emission, where an electron jumps down from a higher energy level to a lower energy level and emits light in the process.

To know more about potential energy visit

https://brainly.com/question/24284560

#SPJ11

Other Questions
Cognitive appraisal refers to the ability to interpret a situation generally, while ______ refers to the evaluation of resources to determine their effectiveness in coping with the challenge. Which of the following items are you typically required to configure during a Linux server installation An array is defined as follows: dim intnumbers(3) as integer how many elements does the array have? Roberto Designers was organized on January 1, 2021. The firm was authorized to issue 130,000 shares of $7 par value common stock. During 2021, Roberto had the following transactions relating to stockholders' equity: Issued 13,000 shares of common stock at $9 per share. Issued 26,000 shares of common stock at $10 per share. Reported a net income of $130,000. Paid dividends of $65,000. Purchased 3,000 shares of treasury stock at $12 (part of the 26,000 shares issued at $10). What is total stockholders' equity at the end of 2021 heat-em-up is the only firm producing grills. it costs $430 to produce a grill, and heat-em-up sells each grill for $950. after well done, a new firm with the same costs as heat-em-up, enters the market for grills, heat-em-up starts selling its grills for a price of $330. Residence education staff are trained in various safety protocols. when tori felt threatened by ian in her dorm, her ra jj called for help. who arrived to provide backup? The rate of economic growth, given flexible prices and the existing real factors of capital, labor, and technology, is known as the: A treaty is said to be _____ when those who have drafted it agree that it is in final form. What are the competing professional obligations? identify the relevant ethical standards (nasw code of ethics) and possible dilemma formulations. ______ service is provided by television companies using existing hardware and is considerably faster than dsl. Humanists believed that europe suffered from the barbaric influences of _______ tribes. consider a right cone (pointed downwards) that is leaking water. the dimensions of the conical tank are a height of 14 ft and a radius of 5 ft. how fast (in ft/min) does the depth of the water change when the water is 11 ft high if the cone leaks water at a rate of 11 ft3/min? In the us economy, nearly half of all the workers employed by private firms work at? In cultures that emphasize relationships rather than tasks, emails are likely to Question 8 options: a) present information that American managers omit. b) avoid any mention of family. c) get right to the point. d) be shorter than emails from task-oriented cultures. e) begin with a list of deliverables. Question Mode Multiple Choice Question Dr. Brandon has to decide what form of research would work best with his research study. Since he hopes to complete his research within 6 months and is planning to assess different age groups of participants only once, he chooses the ______ research approach. A member of a minority race applies for a promotion to a position advertised as available at his company. The minority applicant, who is qualified for the position, is rejected by the company which hires a nonminority applicant for the position. The minority applicant can sue under ________. rank the change in electric potential from most positive (increase in electric potential) to most negative (decrease in electric potential). to rank items as equivalent, overlap them. Action potentials occur only where there are voltage-gated ion channels. True or false calculate the following pmf and cdf using the given probability distribution: x -10 -5 0 10 18 100 f(x) 0.01 0.2 0.28 0.3 0.8 1.00 a) p(x < 0) b) p(x 0) c) p(x > 0) d) p(x 0) e) p(x The internal document prepared by a department manager that informs the purchasing department of its needs is the: