A body weighing 8 N is supported by two cables whose voltages T1 and T2 form angles of 60 ° and 30 ° with the ceiling. How much are these tensions worth? Choose the correct option. Select one: a. 4N and 7N b. 5N and 7N c. 4N and 10N

Answers

Answer 1

Answer:

a. 4N and 7N

Explanation:

Draw a free body diagram.

Sum of the forces in the x direction:

∑F = ma

T₂ cos 30° − T₁ cos 60° = 0

T₂ cos 30° = T₁ cos 60°

T₂ (½√3) = T₁ (½)

T₁ = T₂ √3

Sum of the forces in the y direction:

∑F = ma

T₂ sin 30° + T₁ sin 60° − mg = 0

T₂ sin 30° + (T₂ √3) sin 60° − mg = 0

½ T₂ + 1.5 T₂ − mg = 0

2 T₂ = mg

T₂ = 4 N

T₁ = 4√3 N

T₁ ≈ 7 N

A Body Weighing 8 N Is Supported By Two Cables Whose Voltages T1 And T2 Form Angles Of 60 And 30 With

Related Questions

If 62.9 cm of copper wire (diameter = 1.15 mm, resistivity = 1.69 × 10-8Ω·m) is formed into a circular loop and placed perpendicular to a uniform magnetic field that is increasing at the constant rate of 8.43 mT/s, at what rate is thermal energy generated in the loop?

Answers

Answer:

The answer is "[tex]\bold{7.30 \times 10^{-6}}[/tex]"

Explanation:

length of the copper wire:

L= 62.9 cm

r is the radius of the loop then:

[tex]r=\frac{L}{2 \pi}\\[/tex]

  [tex]=\frac{62.9}{2\times 3.14}\\\\=\frac{62.9}{6.28}\\\\=10.01\\[/tex]

area of the loop Is:

[tex]A_L= \pi r^2[/tex]

     [tex]=100.2001\times 3.14\\\\=314.628[/tex]

change in magnetic field is:

[tex]=\frac{dB}{dt} \\\\ = 0.01\ \frac{T}{s}[/tex]

then the induced emf is:  [tex]e = A_L \times \frac{dB}{dt}[/tex]

                                              [tex]=314.628 \times 0.01\\\\=3.14\times 10^{-5}V[/tex]

resistivity of the copper wire is: [tex]\rho =[/tex]  1.69 × 10-8Ω·m

diameter d = 1.15mm

radius (r) = 0.5mm

               [tex]= 0.5 \times 10^{-3} \ m[/tex]

hence the resistance of the wire is:

[tex]R=\frac{\rho L}{\pi r^2}\\[/tex]

   [tex]=\frac{1.69 \times 10^{-8}(62.9)}{3.14 \times (0.5 \times 10^{-3})^2}\\\\=\frac{1.69 \times 10^{-8}(62.9)}{3.14 \times 0.5 \times 0.5 \times 10^{-6}}\\\\=\frac{1.69 \times 10^{-8}(62.9)}{3.14 \times 0.25 \times 10^{-6}}\\\\=135.41 \times 10^{-2}\\=1.35\times 10^{-4}\\[/tex]

Power:

[tex]P=\frac{e^2}{R}[/tex]

[tex]=\frac{3.14\times 10^{-5}\times 3.14\times 10^{-5}}{1.35 \times 10^{-4}}\\\\=7.30 \times 10^{-6}[/tex]

The final answer is: [tex]\boxed{7.30 \times 10^{-6} \ W}[/tex]

Please Help!!!! I WILL GIVE BRAINLIEST!!!!!!!!!!!!!

Upon using Thomas Young’s double-slit experiment to obtain measurements, the following data were obtained. Use these data to determine the wavelength of light being used to create the interference pattern. Do this using three different methods.

The angle to the eighth maximum is 1.12°.

The distance from the slits to the screen is 302.0 cm.

The distance from the central maximum to the fifth minimum is 3.33 cm.

The distance between the slits is 0.000250 m.



The 3 equations I used were 1). d sin θ_m =(m)λ 2). delta x =λL/d and 3.) d(x_n)/L=(n-1/2)λ
but all my answers are different.
DID I DO SOMETHING WRONG!!!!!!!

Answers

Given info

d = 0.000250 meters = distance between slits

L = 302 cm = 0.302 meters = distance from slits to screen

[tex]\theta_8 = 1.12^{\circ}[/tex] = angle to 8th max (note how m = 8 since we're comparing this to the form [tex]\theta_m[/tex])

[tex]x_n = x_5 = 3.33 \text{ cm} = 0.0333 \text{ meters}[/tex] (n = 5 as we're dealing with the 5th minimum )

---------------

Method 1

[tex]d\sin(\theta_m) = m\lambda\\\\0.000250\sin(\theta_8) = 8\lambda\\\\8\lambda = 0.000250\sin(1.12^{\circ})\\\\\lambda = \frac{0.000250\sin(1.12^{\circ})}{8}\\\\\lambda \approx 0.000 000 61082633\\\\\lambda \approx 6.1082633 \times 10^{-7} \text{meters}\\\\ \lambda \approx 6.11 \times 10^{-7} \text{ meters}\\\\ \lambda \approx 611 \text{ nm}[/tex]

Make sure your calculator is in degree mode.

-----------------

Method 2

[tex]\Delta x = \frac{\lambda*L*m}{d}\\\\L*\tan(\theta_m) = \frac{\lambda*L*m}{d}\\\\\tan(\theta_m) = \frac{\lambda*m}{d}\\\\\tan(\theta_8) = \frac{\lambda*8}{0.000250}\\\\\tan(1.12^{\circ}) = \frac{\lambda*8}{0.000250}\\\\\lambda = \frac{1}{8}*0.000250*\tan(1.12^{\circ})\\\\\lambda \approx 0.00000061094306 \text{ meters}\\\\\lambda \approx 6.1094306 \times 10^{-7} \text{ meters}\\\\\lambda \approx 611 \text{ nm}\\\\[/tex]

-----------------

Method 3

[tex]\frac{d*x_n}{L} = \left(n-\frac{1}{2}\right)\lambda\\\\\frac{0.000250*3.33}{302.0} = \left(5-\frac{1}{2}\right)\lambda\\\\0.00000275662251 \approx \frac{9}{2}\lambda\\\\\frac{9}{2}\lambda \approx 0.00000275662251\\\\\lambda \approx \frac{2}{9}*0.00000275662251\\\\\lambda \approx 0.00000061258279 \text{ meters}\\\\\lambda \approx 6.1258279 \times 10^{-7} \text{ meters}\\\\\lambda \approx 6.13 \times 10^{-7} \text{ meters}\\\\\lambda \approx 613 \text{ nm}\\\\[/tex]

There is a slight discrepancy (the first two results were 611 nm while this is roughly 613 nm) which could be a result of rounding error, but I'm not entirely sure.

An empty parallel plate capacitor is connected between the terminals of a 9.0-V battery and charged up. The capacitor is then disconnected from the battery, and the spacing between the capacitor plates is doubled. As a result of this change, what is the new voltage between the plates of the capacitor

Answers

Answer:

The new voltage between the plates of the capacitor is 18 V

Explanation:

The charge on parallel plate capacitor is calculated as;

q = CV

Where;

V is the battery voltage

C is the capacitance of the capacitor, calculated as;

[tex]C = \frac{\epsilon _0A}{d} \\\\q =CV = (\frac{\epsilon _0A}{d})V = \frac{\epsilon _0A V}{d}[/tex]

[tex]q = \frac{\epsilon _0A V}{d}[/tex]

where;

ε₀ is permittivity of free space

A is the area of the capacitor

d is the space between the parallel plate capacitors

If only the space between the capacitors is doubled and every other parameter is kept constant, the new voltage will be calculated as;

[tex]q = \frac{\epsilon _0A V}{d} \\\\\frac{\epsilon _0A V}{d} = \frac{\epsilon _0A V}{d} \\\\\frac{V_1}{d_1} = \frac{V_2}{d_2} \\\\V_2 = \frac{V_1d_2}{d_1} \\\\(d_2 = 2d_1)\\\\V_2 = \frac{V_1*2d_1}{d_1} \\\\(V_1 = 9V)\\\\V_2 = \frac{9*2d_1}{d_1} \\\\V_2 = 9*2\\\\V_2 = 18 \ V[/tex]

Therefore, the new voltage between the plates of the capacitor is 18 V

A 5.0-Ω resistor and a 9.0-Ω resistor are connected in parallel. A 4.0-Ω resistor is then connected in series with this parallel combination. An ideal 6.0-V battery is then connected across the series-parallel combination of the three resistors. What is the current through (a) the 4.0-Ω resistor? (b) the 5.0-Ω resistor? (c) the 9.0-Ω resistor?

Answers

Answer:

Explanation:

The current through the  resistor is 0.83 A

.

Part b

The current through  resistor is 0.53 A

.

Part c

The current through  resistor is 0.30 A

Copper wire of diameter 0.289 cm is used to connect a set of appliances at 120 V, which draw 1850 W of power total. The resistivity of copper is 1.68×10−8Ω⋅m.
A. What power is wasted in 26.0 m of this wire?
B. What is your answer if wire of diameter 0.417 cm is used?

Answers

Answer:

(a) The power wasted for 0.289 cm wire diameter is 15.93 W

(b) The power wasted for 0.417 cm wire diameter is 7.61 W

Explanation:

Given;

diameter of the wire, d = 0.289 cm = 0.00289 m

voltage of the wire, V = 120 V

Power drawn, P = 1850 W

The resistivity of the wire, ρ = 1.68 x 10⁻⁸ Ω⋅m

Area of the wire;

A = πd²/4

A = (π x 0.00289²) / 4

A = 6.561 x 10⁻⁶ m²

(a) At 26 m of this wire, the resistance of the is

R = ρL / A

R = (1.68 x 10⁻⁸  x 26) / 6.561 x 10⁻⁶

R = 0.067 Ω

Current in the wire is calculated as;

P = IV

I = P / V

I = 1850 / 120

I = 15.417 A

Power wasted = I²R

Power wasted = (15.417²)(0.067)

Power wasted = 15.93 W

(b) when a diameter of 0.417 cm is used instead;

d = 0.417 cm = 0.00417 m

A = πd²/4

A = (π x 0.00417²) / 4

A = 1.366 x 10⁻⁵ m²

Resistance of the wire at 26 m length of wire and  1.366 x 10⁻⁵ m² area;

R = ρL / A

R = (1.68 x 10⁻⁸  x 26) / 1.366 x 10⁻⁵

R = 0.032 Ω

Power wasted = I²R

Power wasted = (15.417²)(0.032)

Power wasted = 7.61 W

A 100 kg lead block is submerged in 2 meters of salt water, the density of which is 1096 kg / m3. Estimate the value of the hydrostatic pressure.

Answers

Answer:

21,920 Pascals

Explanation:

P = ρgh

P = (1096 kg/m³) (10 m/s²) (2 m)

P = 21,920 Pa

What is unique about the c-ray that is not about other rays? Note: Refer to the concave mirror video Select one: a. only ray whose angle of incidence = angle of reflection b. only ray that reflects back in the same direction it came from c. both the above statements are true d. none of the above

Answers

Answer:

b. only ray that reflects back in the same direction it came from

Explanation:

C-rays can be said to be a ray that comes from the center of the curvature. It is known that any ray that comes from the center of the curvature reflects back in the same direction it came from, this is because the line joining from the center of the curvature to any point in the mirror is perpendicular to the mirror.

Correct answer is option B.

C-ray is the only ray that reflects back in the same direction it came from.

Option A is incorrect because for other rays, angle of incidence = angle of reflection. This is not a property of c-ray.

A lens is designed to work in the visible, near-infrared, and near-ultraviolet. The best resolution of this lens from a diffraction standpoint is

Answers

In the near ultraviolet

The  lens is designed to work in the visible, near-infrared, and near-ultraviolet. The best resolution of this lens from a diffraction standpoint is: in the near-ultraviolet.

What is diffraction?

The act of bending light around corners such that it spreads out and illuminates regions where a shadow is anticipated is known as diffraction of light. In general, since both occur simultaneously, it is challenging to distinguish between diffraction and interference. The diffraction of light is what causes the silver lining we see in the sky. A silver lining appears in the sky when the sunlight penetrates or strikes the cloud.

Longer wavelengths of light are diffracted at a greater angle than shorter ones, with the amount of diffraction being dependent on the wavelength of the light. Hence, among the light waves of  the visible, near-infrared, and near-ultraviolet range, near-ultraviolet waves have the shortest wavelengths. So,  The best resolution of this lens from a diffraction standpoint is in the near-ultraviolet, where diffraction is minimum.

Learn more about diffraction here:

https://brainly.com/question/11176463

#SPJ5

1. In a Millikan type experiment, two horizontal plates are 2.5 cm apart. A latex sphere of
mass 1.5 x 10-15 kg remains stationary when the potential difference between the
plates is 460 V, with the upper plate positive. [2+2+2+2 = 8 marks]
a. Is the sphere charged negatively or positively?
b. What is the magnitude of the electric field intensity between the plates?
C. Calculate the magnitude of the charge on the latex sphere.
d. How many excess or deficit electrons does the sphere have?

Answers

Answer:

Explanation:

a. Is the sphere charged negatively or positively?

The sphere us negatively charged. In a Millikan type experiment, there will be two forces that will be acting on the sphere which are the electric force which acts upward and also the gravity which acts downward.

Because the upper plate is positively charged, there'll what an attractive curve with an upward direction which will be felt by the negatively charged sphere.

b. What is the magnitude of the electric field intensity between the plates?

The magnitude of the electric field intensity between the plates is 18400v/m.

C. Calculate the magnitude of the charge on the latex sphere.

The magnitude of the charge on the latex sphere hae been solved and attached

d. How many excess or deficit electrons does the sphere have?

There are 5 excess electrons that the sphere has.

Check the attachment for further explanation.

A wave with a frequency of 1200 Hz propagates along a wire that is under a tension of 800 N. Its wavelength is 39.1 cm. What will be the wavelength if the tension is decreased to 600 N and the frequency is kept constant

Answers

Answer:

The wavelength will be 33.9 cm

Explanation:

Given;

frequency of the wave, F = 1200 Hz

Tension on the wire, T = 800 N

wavelength, λ = 39.1 cm

[tex]F = \frac{ \sqrt{\frac{T}{\mu} }}{\lambda}[/tex]

Where;

F is the frequency of the wave

T is tension on the string

μ is mass per unit length of the string

λ is wavelength

[tex]\sqrt{\frac{T}{\mu} } = F \lambda\\\\\frac{T}{\mu} = F^2\lambda^2\\\\\mu = \frac{T}{F^2\lambda^2} \\\\\frac{T_1}{F^2\lambda _1^2} = \frac{T_2}{F^2\lambda _2^2} \\\\\frac{T_1}{\lambda _1^2} = \frac{T_2}{\lambda _2^2}\\\\T_1 \lambda _2^2 = T_2\lambda _1^2\\\\[/tex]

when the tension is decreased to 600 N, that is T₂ = 600 N

[tex]T_1 \lambda _2^2 = T_2\lambda _1^2\\\\\lambda _2^2 = \frac{T_2\lambda _1^2}{T_1} \\\\\lambda _2 = \sqrt{\frac{T_2\lambda _1^2}{T_1}} \\\\\lambda _2 = \sqrt{\frac{600* 0.391^2}{800}}\\\\\lambda _2 = \sqrt{0.11466} \\\\\lambda _2 =0.339 \ m\\\\\lambda _2 =33.9 \ cm[/tex]

Therefore, the wavelength will be 33.9 cm

A box with an initial speed of 15 m/s slides along a surface where the coefficient of sliding friction is 0.45. How long does it take for the block to come to rest

Answers

Answer:

t = 3.4 s

The box will come to rest in 3.4 s

Explanation:

For the block to come to rest, the friction force must become equal to the unbalanced force. Therefore:

Unbalanced Force = Frictional Force

but,

Unbalanced Force = ma

Frictional Force = μR = μW = μmg

Therefore,

ma = μmg

a = μg

where,

a = acceleration of box = ?

μ = coefficient of sliding friction = 0.45

g = 9.8 m/s²

Therefore,

a = (0.45)(9.8 m/s²)

a = -4.41 m/s²  (negative sign due to deceleration)

Now, for the time to stop, we use first equation of motion:

Vf = Vi + at

where,

Vf = Final Speed = 0 m/s (since box stops at last)

Vi = Initial Speed = 15 m/s

t = time to stop = ?

Therefore,

0 m/s = 15 m/s + (-4.41 m/s²)t

(-15 m/s)/(-4.41 m/s²) = t

t = 3.4 s

The box will come to rest in 3.4 s

mention two similarities of citizen and aliens​

Answers

Answer:

The main points of difference between a citizen and alien are: (a) A citizen is a permanent resident of a state, while an alien is a temporary resident, who comes for a specific duration of time as a tourist or on diplomatic assignment. ... Aliens do not possess such rights in the state where they reside temporarily

Explanation:

Five identical cylinders are each acted on by forces of equal magnitude. Which force exerts the biggest torque about the central axes of the cylinders

Answers

Answer:

From the image, the force as shown in option A will exert the biggest torque on the cylinder about its central axes.

Explanation:

The image is shown below.

Torque is the product of a force about the center of rotation of a body, and the radius through which the force acts. For a given case such as this, in which the cylinders are identical, and the forces are of equal magnitude, the torque at the maximum radius away from the center will exert the maximum torque. Also, the direction of the force also matters. To generate the maximum torque, the force must be directed tangentially away from the circle formed by the radius through which the force acts away from the center. Option A satisfies both condition and hence will exert the most torque on the cylinder.

A 1500 kg car drives around a flat 200-m-diameter circular track at 25 m/s. What are the magnitude and direction of the net force on the car

Answers

Answer:

9,375

Explanation:

Data provided

The mass of the car m = 1500 Kg.

The diameter of the circular track D = 200 m.

For the computation of magnitude and direction of the net force on the car first we need to find out the radius of the circular path which is shown below:-

The radius of the circular path is

[tex]R = \frac{D}{2}[/tex]

[tex]= \frac{200}{2}[/tex]

= 100 m

after the radius of the circular path we can find the magnitude of the centripetal force with the help of below formula

[tex]Force F = \frac{mv^2}{R}[/tex]

[tex]= \frac{1500\times (25)^2}{100}[/tex]

= 9,375

Therefore for computing the magnitude of the centripetal force we simply applied the above formula.

An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about _____ years.

Answers

Answer:

An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about  2 years.

Explanation:

Given;

orbital period of 3 years, P = 3 years

To calculate the years of an orbital with a semi-major axis, we apply Kepler's third law.

Kepler's third law;

P² = a³

where;

P is the orbital period

a is the orbital semi-major axis

(3)² = a³

9 = a³

a = [tex]a = \sqrt[3]{9} \\\\a = 2.08 \ years[/tex]

Therefore, An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about  2 years.

How does an atom of rubidium-85 become a rubidium ion with a +1 charge?

Answers

Answer:

C. The atom loses 1 electron to have a total of 36.

Explanation:

Cations have a positive charge. Cations lose electrons.

The number of electrons in a Rubidium atom is 37. If the atom loses 1 electron, then it has 36 left.

A uniform thin rod of mass ????=3.41 kg pivots about an axis through its center and perpendicular to its length. Two small bodies, each of mass m=0.249 kg , are attached to the ends of the rod. What must the length L of the rod be so that the moment of inertia of the three-body system with respect to the described axis is ????=0.929 kg·m2 ?

Answers

Answer:

The length of the rod for the condition on the question to be met is [tex]L = 1.5077 \ m[/tex]

Explanation:

The  Diagram for this  question is  gotten from the first uploaded image  

From the question we are told that

          The mass of the rod is [tex]M = 3.41 \ kg[/tex]

           The mass of each small bodies is  [tex]m = 0.249 \ kg[/tex]

           The moment of inertia of the three-body system with respect to the described axis is   [tex]I = 0.929 \ kg \cdot m^2[/tex]

             The length of the rod is  L  

     Generally the moment of inertia of this three-body system with respect to the described axis can be mathematically represented as

        [tex]I = I_r + 2 I_m[/tex]

Where  [tex]I_r[/tex] is the moment of inertia of the rod about the describe axis which is mathematically represented as  

        [tex]I_r = \frac{ML^2 }{12}[/tex]

And   [tex]I_m[/tex] the  moment of inertia of the two small bodies which (from the diagram can be assumed as two small spheres) can be mathematically represented  as

           [tex]I_m = m * [\frac{L} {2} ]^2 = m* \frac{L^2}{4}[/tex]

Thus  [tex]2 * I_m = 2 * m \frac{L^2}{4} = m * \frac{L^2}{2}[/tex]

Hence

       [tex]I = M * \frac{L^2}{12} + m * \frac{L^2}{2}[/tex]

=>   [tex]I = [\frac{M}{12} + \frac{m}{2}] L^2[/tex]

substituting vales  we have  

        [tex]0.929 = [\frac{3.41}{12} + \frac{0.249}{2}] L^2[/tex]

       [tex]L = \sqrt{\frac{0.929}{0.40867} }[/tex]

      [tex]L = 1.5077 \ m[/tex]

     

An 88.0 kg spacewalking astronaut pushes off a 645 kg satellite, exerting a 110 N force for the 0.450 s it takes him to straighten his arms. How far apart are the astronaut and the satellite after 1.40 min?

Answers

Answer:

The astronaut and the satellite are 53.718 m apart.

Explanation:

Given;

mass of spacewalking astronaut, = 88 kg

mass of satellite, = 645 kg

force exerts by the satellite, F = 110N

time for this action, t = 0.45 s

Determine the acceleration of the satellite after the push

F = ma

a = F / m

a = 110 / 645

a = 0.171 m/s²

Determine the final velocity of the satellite;

v = u + at

where;

u is the initial velocity of the satellite = 0

v = 0 + 0.171 x 0.45

v = 0.077 m/s

Determine the displacement of the satellite after 1.4 m

d₁ = vt

d₁ = 0.077 x (1.4 x 60)

d₁ = 6.468 m

According to Newton's third law of motion, action and reaction are equal and opposite;

Determine the backward acceleration of the astronaut after the push;

F = ma

a = F / m

a = 110 / 88

a = 1.25 m/s²

Determine the final velocity of the astronaut

v = u + at

The initial velocity of the astronaut = 0

v = 1.25 x 0.45

v = 0.5625 m/s

Determine the displacement of the astronaut after 1.4 min

d₂ = vt

d₂ = 0.5625 x (1.4 x 60)

d₂ = 47.25 m

Finally, determine the total separation between the astronaut and the satellite;

total separation = d₁ + d₂

total separation = 6.468 m + 47.25 m

total separation = 53.718 m

Therefore, the astronaut and the satellite are 53.718 m apart.

Wind erosion can be reduced by _____.

Answers

Using land according to its capability. protect the soil surface with some form of cover. control runoff before it develops into an erosive force

A 30 L electrical radiator containing heating oil is placed in a 50 m3room. Both the roomand the oil in the radiator are initially at 10◦C. The radiator with a rating of 1.8 kW is nowturned on. At the same time, heat is lost from the room at an average rate of 0.35 kJ/s.After some time, the average temperature is measured to be 20◦C for the air in the room,and 50◦C for the oil in the radiator. Taking the density and the specific heat of the oil to be950 kg/m3and 2.2 kJ/kg◦C, respectively, determine how long the heater is kept on. Assumethe room is well sealed so that there are no air leaks.

Answers

Answer:

Explanation:

Heat absorbed by oil

= mass x specific heat x rise in temperature

= 30 x 10⁻³ x 950 x 2.2 x 10³ x ( 50-10 )

= 25.08 x 10⁵ J  

Heat absorbed by air

= 50 x 1.2 x 1.0054 x 10³ x ( 20-10 )

= 6.03 x 10⁵ J

Total heat absorbed = 31.11 x 10⁵ J

If time required = t

heat lost from room

= .35 x 10³ t

Total heat generated in time t

= 1.8 x 10³ t

Heat generated = heat used

1.8 x 10³ t =  .35 x 10³ t  + 31.11 x 10⁵

1.45 x 10³ t = 31.11 x 10⁵

t = 31.11 x 10⁵ / 1.45 x 10³

t = 2145.5 s

Find acceleration. Will give brainliest!

Answers

Answer:

16200 km/s

270 km/min

4.5 km/h

Explanation:

Acceleration Formula: Average Acceleration = Δv/Δt (change in velocity over change in time)

Simply plug in our known variables and solve:

a = (45.0 - 0)/10

a = 45.0/10

a = 4.5 km/h

Answer:

[tex]\boxed{\mathrm{4.5 \: kmph/s \: or \: 1.25 \: m/s^2 }}[/tex]

Explanation:

[tex]\displaystyle \mathrm{acceleration = \frac{change \: in \: velocity}{time \: taken}}[/tex]

[tex]\displaystyle \mathrm{a = \frac{v - u}{t}}[/tex]

[tex]\displaystyle \mathrm{v=final \: velocity}\\\displaystyle \mathrm{u=initial \: velocity}[/tex]

[tex]\displaystyle \mathrm{a = \frac{45- 0}{10}}[/tex]

[tex]\displaystyle \mathrm{a = \frac{45}{10}}[/tex]

[tex]\displaystyle \mathrm{a = 4.5}[/tex]

[tex]\mathrm{4.5 \: kmph/s = 1.25 \: m/s^2 }[/tex]

In an oscillating LC circuit, the total stored energy is U and the maximum current in the inductor is I. When the current in the inductor is I/2, the energy stored in the capacitor is

Answers

Answer:

The definition of that same given problem is outlined in the following section on the clarification.

Explanation:

The Q seems to be endless (hardly any R on the circuit). So energy equations to describe and forth through the inducer as well as the condenser.  

Presently take a gander at the energy stored in your condensers while charging is Q.

⇒  [tex]U =\frac{Qmax^2}{C}[/tex]

So conclude C doesn't change substantially as well as,

When,

⇒  [tex]Q=\frac{Qmax}{2}[/tex]

⇒  [tex]Q^2=\frac{Qmax^2}{4}[/tex]

And therefore only half of the population power generation remains in the condenser that tends to leave this same inductor energy at 3/4 U.

A commercial diffraction grating has 500 lines per mm. Part A When a student shines a 480 nm laser through this grating, how many bright spots could be seen on a screen behind the grating

Answers

Answer:

The number of bright spot is  m =4

Explanation:

From the question we are told that

    The number of lines is  [tex]s = 500 \ lines / mm = 500 \ lines / 10^{-3} m[/tex]

     The wavelength of the laser is  [tex]\lambda = 480 nm = 480 *10^{-9} \ m[/tex]

Now the the slit is mathematically evaluated as

        [tex]d = \frac{1}{s} = \frac{1}{500} * 10^{-3} \ m[/tex]

Generally the diffraction grating is mathematically represented as

        [tex]dsin\theta = m \lambda[/tex]

Here m is the order of fringes (bright fringes) and at maximum m  [tex]\theta = 90^o[/tex]

    So

          [tex]\frac{1}{500} * sin (90) = m * (480 *10^{-3})[/tex]

=>        [tex]m = 4[/tex]

This  implies that the number of bright spot is  m =4

The voltage between the cathode and the screen of a television set is 30 kV. If we assume a speed of zero for an electron as it leaves the cathode, what is its speed (m/s) just before it hits the screen

Answers

Answer:

The speed is  [tex]v =10.27 *10^{7} \ m/s[/tex]

Explanation:

From the question we are told that

      The  voltage  is  [tex]V = 30 kV = 30*10^{3} V[/tex]

      The  initial velocity of the electron is  [tex]u = 0 \ m/s[/tex]

Generally according to the law of energy conservation

    Electric potential Energy  =  Kinetic energy of the electron

So  

      [tex]PE = KE[/tex]

Where  

      [tex]KE = \frac{1}{2} * m* v^2[/tex]

Here  m is the mass of the electron with a value of  [tex]m = 9.11 *10^{-31} \ kg[/tex]

     and  

         [tex]PE = e * V[/tex]

      Here  e is the charge on the electron with a value  [tex]e = 1.60 *10^{-19} \ C[/tex]

=>    [tex]e * V = \frac{1}{2} * m * v^2[/tex]

=>      [tex]v = \sqrt{ \frac{2 * e * V}{m} }[/tex]

substituting values  

           [tex]v = \sqrt{ \frac{2 * (1.60*10^{-19}) * 30*10^{3}}{9.11 *10^{-31}} }[/tex]

          [tex]v =10.27 *10^{7} \ m/s[/tex]

Monochromatic coherent light shines through a pair of slits. If the wavelength of the light is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.)
a. The distance between the maxima decreases.
b. The distance between the minima decreases.
c. The distance between the maxima stays the same.
d. The distance between the minima increases.
e. The distance between the minima stays the same.

Answers

Answer:

he correct answers are a, b

Explanation:

In the two-slit interference phenomenon, the expression for interference is

          d sin θ= m λ                       constructive interference

          d sin θ = (m + ½) λ             destructive interference

in general this phenomenon occurs for small angles, for which we can write

           tanθ = y / L

           tan te = sin tea / cos tea = sin tea

           sin θ = y / La

un

derestimate the first two equations.

Let's do the calculation for constructive interference

         d y / L = m λ

the distance between maximum clos is and

         y = (me / d) λ

this is the position of each maximum, the distance between two consecutive maximums

         y₂-y₁ = (L   2/d) λ - (L 1 / d) λ₁          y₂ -y₁ = L / d λ

examining this equation if the wavelength decreases the value of y also decreases

the same calculation for destructive interference

         d y / L = (m + ½) κ

         y = [(m + ½) L / d] λ

again when it decreases the decrease the distance

the correct answers are a, b

Which of the following changes will increase the frequency of the lowest frequency standing sound wave on a stretching string?Choose all that apply.A. Replacing the string with a thicker stringB. Plucking the string harderC. Doubling the length of the string

Answers

Answer:

A, C

Explanation:

Since the frequency is inversely proportional to the length of a string, then I want to increase the frequency of the lowest

A. Replacing the string with a thicker string.

Thicker strings have more density. The more density the string has, the lower the sound.

Mathematically, we can see the proportionality (direct and inverse) by looking at those formulas for Frequency and Speed, when combined:

For:

[tex]f=\frac{v}{\lambda}[/tex]

[tex]f=\frac{v}{\lambda}*\sqrt{\frac{T}{D} }[/tex]

See above, how density (D) and [tex](\lambda)[/tex] wave length are inversely proportional.

C. Doubling the length of the string.

Because the length of the string is inversely proportional to the frequency.

The longer the string, the lower the frequency.

So, if we double string, we'll hear lower sounds in any string instrument

--

In short,  for A, and C  We can justify both since length and density are inversely proportional to the Frequency, we need longer or thicker string.

An object attached to a horizontal spring is oscillating back and forth along a frictionless surface. The maximum speed of the object is 1.38 m/s, and its maximum acceleration is 6.83 m/s2. How much time elapses betwen an instant when the object's speed is at a maximum and the next instant when its acceleration is at a maximum

Answers

Answer:

t = 0.31s

Explanation:

In order to calculate the time that the object takes to travel from the point with its maximum speed to the point with the maximum acceleration, you first use the following formulas, for the maximum speed and the maximum acceleration:

[tex]v_{max}=\omega A\\\\a_{max}=\omega^2A[/tex]

A: amplitude

v_max = 1.38m/s

a_max = 6.83m/s^2

w: angular frequency

From the previous equations you can obtain the angular frequency w.

You divide vmax and amax, and solve for w:

[tex]\frac{v_{max}}{a_{max}}=\frac{\omega A}{\omega^2 A}=\frac{1}{\omega}\\\\\omega=\frac{a_{max}}{v_{max}}=\frac{6.83m/s^2}{1.38m/s^2}=4.94\frac{rad}{s}[/tex]

Next, you take into account that the maximum speed is obtained when the object passes trough the equilibrium point, and the maximum acceleration for the maximum elongation, that is, the amplitude. In such a trajectory the time is T/4 being T the period.

You calculate the period  by using the information about the angular frequency:

[tex]T=\frac{2\pi}{\omega}=\frac{2\pi}{4.94rad/s}=1.26s[/tex]

Then the required time is:

[tex]t=\frac{T}{4}=\frac{1.26s}{4}=0.31s[/tex]

Julie is playing with a toy car and is pushing it around on the floor. The little car has a mass of 6.3 g. The car has a velocity of 2.5 m/s. What is the car's momentum?

Answers

Answer:

Momentum of the car = [tex]1.575\times 10^{-2}[/tex] kg meter per second

Explanation:

Julie is playing with a car which has mass = 6.3 g = [tex]6.3\times 10^{-3}[/tex] kg

Velocity of the car is 2.5 meter per second

Since formula to calculate the momentum of an object is,

p = mv

Where, p = momentum of the object

m = mass of the object

v = velocity of the object

By substituting these values in the formula,

p = [tex](6.3\times 10^{-3})\times 2.5[/tex]

  = [tex]1.575\times 10^{-2}[/tex] Kg meter per second

Therefore, momentum of the car will be [tex]1.575\times 10^{-2}[/tex] Kg meter per second.

A helicopter rotor blade is 3.40m long from the central shaft to the rotor tip. When rotating at 550rpm what is the radial acceleration of the blade tip expressed in multiples of g?

Answers

Answer:

  a = 1.15 10³ g

Explanation:

For this exercise we will use the relations of the centripetal acceleration

     a = v² / r

where is the linear speed of the rotor and r is the radius of the rotor

let's use the relationships between the angular and linear variables

          v = w r

       

let's replace

          a = w² r

let's reduce the angular velocity to the SI system

        w = 550 rev / min (2pi rad / 1 rev) (1 min / 60 s)

         w = 57.6 rad / s

let's calculate

       a = 57.6²  3.4

       a = 1.13 10⁴ m / s²

To calculate this value in relation to g, let's find the related

       a / g = 1.13 10⁴ / 9.8

       a = 1.15 10³ g

What is the length (in m) of a tube that has a fundamental frequency of 108 Hz and a first overtone of 216 Hz if the speed of sound is 340 m/s?

Answers

Answer:

Length of a tube = 1.574 m

Explanation:

Given:

Fundamental frequency (f1) = 108 Hz

First overtone (f2) = 216 Hz

Speed of sound (v) = 340 m/s

Find:

Length of a tube

Computation:

We know that,

f = v / λ

f = nv / 2L  [n = number 1,2,3]

So,

f1 = 1(340) / 2L

f1 = 170 / L

L = 170 / 108 = 1.574 m

f2 = 2(340) / 2L

L = 340 / 216

L = 1.574 m

Other Questions
Beth Corbin's regular hourly wage rate is $14, and she receives an hourly rate of $21 for work in excess of 40 hours. During a January pay period, Beth works 50 hours. Beth's federal income tax withholding is $98, she has no voluntary deductions, and the FICA tax rate is 7.65%. Use January 15 for the end of the pay period and the payment date.Prepare the journal entries to record: a. Beth's pay for the period. b. The payment of Beth's wages. The main path of the Internet along which data travels the fastest is known as the Internet ________. Group of answer choices Which of the following best states one effect of advertising?O A. Market research becomes more accurate.B. Consumer behavior is influenced.C. Stockholders have a high level of utility.OD. Media revenues exceed costs. If fx=-4x2-3 please evaluate for f(8), listing the steps you take in order with their result. Find the inverse function f-1(x) Which set of ordered pairs is not a function?OA) (4, -2), (-2, 2), (2, -2), (4, 2)OB, (-4, 2), (-2, 2), (2, 2), (4, 2)OC) (-4, 2), (-2,-2), (2, 2), (4,2)OD) (-4,-2), (-2,-2), (2, 2), (4,2) the picture is the question Which steps would be used to solve the equation? Check all that apply. 2 and two-thirds + r = 8 Subtract 2 and two-thirds from both sides of the equation. Add 2 and two-thirds to both sides of the equation. 8 minus 2 and two-thirds = 5 and one-third 8 + 2 and two-thirds = 10 and two-thirds Substitute the value for r to check the solution. 2. CHEMISTRY How many liters of 15% acid and33% acid should be mixed to make 40 liters of 21%acid solution?Concentrationof SolutionAmount ofSolution (L)Amountof Acid15%33%21%40 Evaluate x^1-x^-1+ x^ for x= 2. HELP! PLEASE I NEED HELP The graph shows a gasoline tank being filled at a rate of 2,500 gallons of gas perhour. How will the graph change if the rate slows? a silver coin is dropped from the top of a building that is 64 feet tall. the position function of the coin at time t seconds is represented by Required1. A man counted his animals, 80 heads and 260 legs (ducks and goats). how many goats are there?30608050 Hodgkiss Mfg., Inc., is currently operating at only 80 percent of fixed asset capacity. Fixed assets are $462,000. Current sales are $550,000 and projected to grow to $790,625. How much in new fixed assets are required to support this growth in sales 13.555 to 1 decimal place Help me please and thank u Look at these details from a paragraph about the same topic: The Asian longhorned beetle can harm maple trees' wood. The forest tent caterpillar can destroy the leaves of maple trees. Direct sunlight can cause maple trees' leaves to droop in warmer climates.Choose the main idea that ties all the details together.A. Maple trees can be damaged in a number of ways.B. The maple tree can catch common tree diseases.C. There are different types of maple trees.D. Insects can hurt maple trees. Describe the purposes of the General Journal, General Ledger, Trial Balance, and Financial Statements, and how they "flow into" each other. 1. El texto se compone bsica mente de a) una pregunta - una respuesta - una explicacin y finalmente una conclusin. b) una introduccin - una ejemplifican y finalmente un cierre. c) una descriptivo - un ejemplo y finalmente una explicacin. d) una explicacin - una pregunta y finalmente una respuesta. Which expression is equivalent to StartFraction (5 a b) cubed Over 30 a Superscript negative 6 Baseline b Superscript negative 7 Baseline EndFraction? Assume a not-equals 0, b not-equals 0.StartFraction a Superscript 7 Baseline b Superscript 10 Baseline Over 6 EndFractionStartFraction 125 a Superscript 18 Baseline b Superscript 21 Baseline Over 30 EndFractionStartFraction 25 a cubed b Superscript 4 Baseline Over 6 EndFractionStartFraction 25 a Superscript 9 Baseline b Superscript 10 Baseline Over 6 EndFraction Bryce orders the following items from a catalog. What is the total price he charges to his credit card if the sales tax is 6 percent and nontaxable shipping costs $5 for the order? Round to the nearest cent if necessary. Item Amount Shorts $14.00 Soccer ball $25.00 Shin guards $10.00 Cleats $60.00 $104.94 $109.94 $115.54 $120.54