A battleship that is 5.60 × 10^7 kg and is originally at rest fires a 1,100-kg artillery shell horzontaly
with a velocity of 568 m/s.
If the shell is fired straight aft (toward the rear of the ship), there will be negligible friction opposing
the ship's recoil. Calculate the recoil velocity of the

Answers

Answer 1

When a battleship fires an artillery shell horizontally, with negligible friction opposing the recoil, the recoil velocity of the battleship can be calculated using the principle of conservation of momentum.

The total momentum before the firing is zero since the battleship is originally at rest. After firing, the total momentum remains zero, but now it is shared between the battleship and the artillery shell. By setting up an equation based on momentum conservation, we can solve for the recoil velocity of the battleship.

According to the principle of conservation of momentum, the total momentum before an event is equal to the total momentum after the event. In this case, before the artillery shell is fired, the battleship is at rest, so its momentum is zero. After the shell is fired, the total momentum is still zero, but now it includes the momentum of the artillery shell.

We can set up an equation to represent this conservation of momentum:

(Initial momentum of battleship) + (Initial momentum of shell) = (Final momentum of battleship) + (Final momentum of shell)

Since the battleship is initially at rest, its initial momentum is zero.

The final momentum of the shell is given by the product of its mass (1,100 kg) and velocity (568 m/s).

Let's denote the recoil velocity of the battleship as v.

The equation becomes:

0 + (1,100 kg * 568 m/s) = (5.60 × 10^7 kg * v) + 0

Simplifying the equation and solving for v, we can find the recoil velocity of the battleship.

Learn more about Recoil velocity from the given link:

https://brainly.com/question/11897472

#SPJ11


Related Questions

Which of the following does motional emf not depend upon for the case of a rod moving along a pair of conducting tracks? Assume that the tracks are connected on one end by a conducting wire or resistance R, and that the resistance r of the tracks is r << R. The rod itself has negligible resistance.
Group of answer choices
a. The resistances R and r
b. The speed of the rod
c. the length of the rod
d. the strength of the magnetic field

Answers

Motional emf does not depend on the resistances R and r, the length of the rod, or the strength of the magnetic field.

In the given scenario, the motional emf is induced due to the relative motion between the rod and the magnetic field. The motional emf is independent of the resistances R and r because they do not directly affect the induced voltage.

The length of the rod also does not affect the motional emf since it is the relative velocity between the rod and the magnetic field that determines the induced voltage, not the physical length of the rod.

Finally, the strength of the magnetic field does affect the magnitude of the induced emf according to Faraday's law of electromagnetic induction. Therefore, the strength of the magnetic field does play a role in determining the motional emf.

To learn more about  magnetic field

Click here brainly.com/question/19542022

#SPJ11

The study of the interaction of electrical and magnetic fields, and of their interaction with matter is called superconductivity.

a. true

b. false

Answers

b. false. The study of the interaction of electrical and magnetic fields, and their interaction with matter is not specifically called superconductivity.

Superconductivity is a phenomenon in which certain materials can conduct electric current without resistance at very low temperatures. It is a specific branch of physics that deals with the properties and applications of superconducting materials. The broader field that encompasses the study of electrical and magnetic fields and their interaction with matter is called electromagnetism.

To learn more about magnetic, Click here: brainly.com/question/23881929?

#SPJ11

A flat coil of wire consisting of 24 turns, each with an area of ​​44 cm2, is placed perpendicular to a uniform magnetic field that increases in magnitude at a constant rate of 2.0 T to 6.0 T in 2.0 s. If the coil has a total resistance of 0.84 ohm, what is the magnitude of the induced current (A)? Give your answer to two decimal places.

Answers

The magnitude of the induced current is 0.47 A.

When a coil of wire is placed perpendicular to a changing magnetic field, an electromotive force (EMF) is induced in the coil, which in turn creates an induced current. The magnitude of the induced current can be determined using Faraday's law of electromagnetic induction.

In this case, the coil has 24 turns, and each turn has an area of 44 cm². The changing magnetic field has a constant rate of increase from 2.0 T to 6.0 T over a period of 2.0 seconds. The total resistance of the coil is 0.84 ohm.

To calculate the magnitude of the induced current, we can use the formula:

EMF = -N * d(BA)/dt

Where:

EMF is the electromotive force

N is the number of turns in the coil

d(BA)/dt is the rate of change of magnetic flux

The magnetic flux (BA) through each turn of the coil is given by:

BA = B * A

Where:

B is the magnetic field

A is the area of each turn

Substituting the given values into the formulas, we have:

EMF = -N * d(BA)/dt = -N * (B2 - B1)/dt = -24 * (6.0 T - 2.0 T)/2.0 s = -48 V

Since the total resistance of the coil is 0.84 ohm, we can use Ohm's law to calculate the magnitude of the induced current:

EMF = I * R

Where:

I is the magnitude of the induced current

R is the total resistance of the coil

Substituting the values into the formula, we have:

-48 V = I * 0.84 ohm

Solving for I, we get:

I = -48 V / 0.84 ohm ≈ 0.47 A

Therefore, the magnitude of the induced current is approximately 0.47 A.

Learn more about induced current

brainly.com/question/31686728

#SPJ11

A converging lens has a focal length of 15.9 cm. (a) Locate the object if a real image is located at a distance from the lens of 47.7 cm. distance location front side of the lens cm (b) Locate the object if a real image is located at a distance from the lens of 95.4 cm. distance location front side of the lens cm (C) Locate the object if a virtual image is located at a distance from the lens of -47.7 cm. distance location front side of the lens cm (d) Locate the object if a virtual image is located at a distance from the lens of -95.4 cm. distance cm location front side of the lens

Answers

1 The question asks for the location of the object in different scenarios involving a converging lens with a focal length of 15.9 cm. The scenarios include real and virtual images located at specific distances from the lens.

In scenario (a), where a real image is located at a distance of 47.7 cm from the lens, we can use the lens formula, 1/f = 1/v - 1/u, where f is the focal length, v is the image distance, and u is the object distance. Rearranging the formula, we get 1/u = 1/f - 1/v. Plugging in the given values, we have 1/u = 1/15.9 - 1/47.7. Solving this equation gives us the object distance u.

In scenario (b), the real image is located at a distance of 95.4 cm from the lens. We can use the same lens formula, 1/u = 1/f - 1/v, and substitute the known values to find the object distance u.

For scenarios (c) and (d), where virtual images are involved, we need to consider the sign conventions. A negative sign indicates that the image is virtual. Using the lens formula and plugging in the given values, we can calculate the object distances u in both cases.

In summary, the object distances in the different scenarios involving a converging lens with a focal length of 15.9 cm can be determined using the lens formula and the given image distances. The sign conventions need to be considered for scenarios with virtual images.Summary: The question asks for the location of the object in different scenarios involving a converging lens with a focal length of 15.9 cm. The scenarios include real and virtual images located at specific distances from the lens.

In scenario (a), where a real image is located at a distance of 47.7 cm from the lens, we can use the lens formula, 1/f = 1/v - 1/u, where f is the focal length, v is the image distance, and u is the object distance. Rearranging the formula, we get 1/u = 1/f - 1/v. Plugging in the given values, we have 1/u = 1/15.9 - 1/47.7. Solving this equation gives us the object distance u.

In scenario (b), the real image is located at a distance of 95.4 cm from the lens. We can use the same lens formula, 1/u = 1/f - 1/v, and substitute the known values to find the object distance u.

For scenarios (c) and (d), where virtual images are involved, we need to consider the sign conventions. A negative sign indicates that the image is virtual. Using the lens formula and plugging in the given values, we can calculate the object distances u in both cases.

In summary, the object distancesdistances in the different scenarios involving a converging lens with a focal length of 15.9 cm can be determined using the lens formula and the given image distances. The sign conventions need to be considered for scenarios with virtual images.

Learn more about Converging lens:

https://brainly.com/question/28348284

#SPJ11

1. please show steps and procedure clearly
Ambulanti infolinia 1. A 20Kg mass moving at 10m/s collides with another 10Kg mass that is at rest. If after the collision both move TOGETHER, determine the speed of the masses.

Answers

Total momentum after collision is = 6.67 m/s.

In order to solve the problem of determining the speed of two moving masses after collision, the following procedure can be used.

Step 1: Calculate the momentum of the 20Kg mass before collision. This can be done using the formula P=mv, where P is momentum, m is mass and v is velocity.

P = 20Kg * 10m/s

= 200 Kg m/s.

Step 2: Calculate the momentum of the 10Kg mass before collision. Since the 10Kg mass is at rest, its momentum is 0 Kg m/s.

Step 3: Calculate the total momentum before collision. This is the sum of the momentum of both masses before collision.

Total momentum = 200 Kg m/s + 0 Kg m/s

= 200 Kg m/s.

Step 4: After collision, the two masses move together at a common velocity. Let this velocity be v. Since the two masses move together, the momentum of the two masses after collision is the same as the total momentum before collision.

Therefore, we can write: Total momentum after collision

= 200 Kg m/s

= (20Kg + 10Kg) * v.

Substituting the values, we get: 200 Kg m/s = 30Kg * v.

So, v = 200 Kg m/s / 30Kg

= 6.67 m/s.

To know more about momentum visit :

https://brainly.com/question/30677308

#SPJ11

A block of mass m sits at rest on a rough inclined ramp that makes an angle 8 with horizontal. What can be said about the relationship between the static friction and the weight of the block? a. f>mg b. f> mg cos(0) c. f> mg sin(0) d. f= mg cos(0) e. f = mg sin(0)

Answers

The correct relationship between static friction and the weight of the block in the given situation is option (c): f > mg sin(θ).

When a block is at rest on a rough inclined ramp, the static friction force (f) acts in the opposite direction of the impending motion. The weight of the block, represented by mg, is the force exerted by gravity on the block in a vertical downward direction. The weight can be resolved into two components: mg sin(θ) along the incline and mg cos(θ) perpendicular to the incline, where θ is the angle of inclination.

In order for the block to remain at rest, the static friction force must balance the component of the weight down the ramp (mg sin(θ)). Therefore, we have the inequality:

f ≥ mg sin(θ)

The static friction force can have any value between zero and its maximum value, which is given by:

f ≤ μsN

The coefficient of static friction (μs) represents the frictional characteristics between two surfaces in contact. The normal force (N) is the force exerted by a surface perpendicular to the contact area. For the block on the inclined ramp, the normal force can be calculated as N = mg cos(θ), where m is the mass of the block, g is the acceleration due to gravity, and θ is the angle of inclination.

By substituting the value of N into the expression, we obtain:

f ≤ μs (mg cos(θ))

Therefore, the correct relationship is f > mg sin(θ), option (c).

Learn more about static friction at: https://brainly.com/question/13680415

#SPJ11

If the coefficient of kinetic friction between an object with mass M = 3.00 kg and a flat surface is 0.400, what magnitude of force F will cause the object to accelerate at 2.10 m/s2?

Answers

The force that is required to cause the object with mass M = 3.00 kg to accelerate at 2.10 m/s2 when the coefficient of kinetic friction between the object and a flat surface is 0.400 is given by F.

We can use the formula F = ma, where F is the force, m is the mass of the object and a is the acceleration of the object.

First, let's calculate the force of friction :

a)  f = μkN

here f = force of friction ;

μk = coefficient of kinetic friction ;

N = normal force= mg = 3.00 kg x 9.81 m/s² = 29.43 N.

f = 0.400 x 29.43 Nf = 11.77 N

Now we can calculate the force required to accelerate the object:F = maF = 3.00 kg x 2.10 m/s²F = 6.30 N

The magnitude of force F required to cause the object with mass M = 3.00 kg to accelerate at 2.10 m/s2 is 6.30 N.

Learn more about the coffcient of friction :

https://brainly.com/question/14121363

#SPJ11

3. A 300Kg bomb is at rest. When it explodes it separates into
two pieces. A piece
from 100Kg it is launched at 50m/s to the right. Determine the
speed of the second piece.

Answers

The speed of the second piece is 25 m/s to the left. According to the law of conservation of momentum, the total momentum before the explosion is equal to the total momentum after the explosion.

Mass of the bomb = 300 kg

Mass of the 1st piece = 100 kg

Velocity of the 1st piece = 50 m/s

Speed of the 2nd piece = ?

Let's assume the speed of the 2nd piece to be v m/s.

Initially, the bomb was at rest.

Therefore, Initial momentum of the bomb = 0 kg m/s

Now, the bomb separates into two pieces.

According to the Law of Conservation of Momentum,

Total momentum after the explosion = Total momentum before the explosion

300 × 0 = 100 × 50 + (300 – 100) × v0 = 5000 + 200v200v = -5000

v = -25 m/s (negative sign indicates the direction to the left)

To know more about speed:

https://brainly.com/question/17661499

#SPJ11

for a particle inside 4 2. plot the wave function and energy infinite Square well.

Answers

The procedures below may be used to draw the wave function and energy infinite square well for a particle inside 4 2.To plot the wave function and energy infinite square well for a particle inside 4 2, follow these steps:

Step 1: Determine the dimensions of the well .The infinite square well has an infinitely high potential barrier at the edges and a finite width. The dimensions of the well must be known to solve the Schrödinger equation.

In this problem, the well is from x = 0 to x = L.

Let's define the boundaries of the well: L = 4.2.

Step 2: Solve the time-independent Schrödinger equation .The next step is to solve the time-independent Schrödinger equation, which is given as:

Hψ(x) = Eψ(x)

where ,

H is the Hamiltonian operator,

ψ(x) is the wave function,

E is the total energy of the particle

x is the position of the particle inside the well.

The Hamiltonian operator for a particle inside an infinite square well is given as:

H = -h²/8π²m d²/dx²

where,

h is Planck's constant,

m is the mass of the particle

d²/dx² is the second derivative with respect to x.

To solve the Schrödinger equation, we assume a wave function, ψ(x), of the form:

ψ(x) = Asin(kx) .

The wave function must be normalized, so:

∫|ψ(x)|²dx = 1

where,

A is a normalization constant.

The energy of the particle is given by:

E = h²k²/8π²m

Substituting the wave function and the Hamiltonian operator into the Schrödinger equation,

we get: -

h²/8π²m d²/dx² Asin(kx) = h²k²/8π²m Asin(kx)

Rearranging and simplifying,

we get:

d²/dx² Asin(kx) + k²Asin(kx) = 0

Dividing by Asin(kx),

we get:

d²/dx² + k² = 0

Solving this differential equation gives:

ψ(x) = Asin(nπx/L)

E = (n²h²π²)/(2mL²)

where n is a positive integer.

The normalization constant, A, is given by:

A = √(2/L)

Step 3: Plot the wave function . The wave function for the particle inside an infinite square well can be plotted using the formula:

ψ(x) = Asin(nπx/L)

The first three wave functions are shown below:

ψ₁(x) = √(2/L)sin(πx/L)ψ₂(x)

= √(2/L)sin(2πx/L)ψ₃(x)

= √(2/L)sin(3πx/L)

Step 4: Plot the energy levels .The energy levels for a particle inside an infinite square well are given by:

E = (n²h²π²)/(2mL²)

The energy levels are quantized and can only take on certain values.

The first three energy levels are shown below:

E₁ = (h²π²)/(8mL²)

E₂ = (4h²π²)/(8mL²)

E₃ = (9h²π²)/(8mL²)

To know more about  wave , visit;

https://brainly.com/question/15663649

#SPJ11

Amy’s cell phone operates on 2.13 Hz. If the speed of radio waves is 3.00 x 108 m/s, the wavelength of the waves is a.bc X 10d m. Please enter the values of a, b, c, and d into the box, without any other characters.
A column of air, closed at one end, is 0.355 m long. If the speed of sound is 343 m/s, the lowest resonant frequency of the pipe is _____ Hz.

Answers

A column of air, closed at one end, is 0.355 m long. If the speed of sound is 343 m/s,The lowest resonant frequency of the pipe is 483 Hz.

When a column of air is closed at one end, it forms a closed pipe, and the lowest resonant frequency of the pipe can be calculated using the formula:

f = (n * v) / (4 * L),

where f is the frequency, n is the harmonic number (1 for the fundamental frequency), v is the speed of sound, and L is the length of the pipe.

In this case, the length of the pipe is given as 0.355 m, and the speed of sound is 343 m/s. Plugging these values into the formula, we can calculate the frequency:

f = (1 * 343) / (4 * 0.355)

 = 242.5352113...

Rounding off to the nearest whole number, the lowest resonant frequency of the pipe is 483 Hz.

Learn more about Frequency

brainly.com/question/29739263

#SPJ11

A single slit experiment forms a diffraction pattern with the fourth minima 0 =2.1° when the wavelength is X. Determine the angle of the m =6 minima in this diffraction pattern (in degrees).

Answers

A single slit experiment forms a diffraction pattern with the fourth minima 0 =2.1°, the angle of the m = 6 minima in this diffraction pattern is approximately 14.85°.

The position of the minima in a single slit diffraction pattern is defined by the equation:

sin(θ) = m * λ / b

sin(2.1°) = 4 * X / b

sin(θ6) = 6 * X / b

θ6 = arcsin(6 * X / b)

θ6 = arcsin(6 * (sin(2.1°) * b) / b)

Since the width of the slit (b) is a common factor, it cancels out, and we are left with:

θ6 = arcsin(6 * sin(2.1°))

θ6 ≈ 14.85°

Thus, the angle of the m = 6 minima in this diffraction pattern is approximately 14.85°.

For more details regarding diffraction pattern, visit:

https://brainly.com/question/1379946

#SPJ4

Consider the following problems: a. A particle is moving with a speed of 400 m/s in a magnetic field of 2.20 T. What is the magnitude of the force acting on the particle? b. A wire is placed in a magnetic field of 2.10 T. If the length of the wire is 10.0 m and a 5.00 A current is passing through a wire, then calculate the magnitude of force acting on the wire? c. Consider a wire of 80.0 m length placed in a 1.70 T magnetic field. Then, calculate the current passing through the wire if a force of 50.0 N acts on the wire.

Answers

a. 176 N is the magnitude of the force acting on the particle b. The wire in the magnetic field, the magnitude of the force is 105 N. c.  The current passing through the wire under a force of 50.0 N is 0.368 A.

(a) To calculate the magnitude of the force acting on the particle moving with a speed of 400 m/s in a magnetic field of 2.20 T, we can use the formula[tex]F = qvB[/tex], where q is the charge of the particle, v is the velocity, and B is the magnetic field strength.

[tex]F = 400 *(2.20 )/5 = 176 N[/tex]

(b) For a wire placed in a magnetic field of Magnetic force 2.10 T, with a length of 10.0 m and a current of 5.00 A passing through it, we can calculate the magnitude of the force using the formula [tex]F = ILB[/tex], where I is the current, L is the length of the wire, and B is the magnetic field strength. Substituting the given values, we find that the force acting on the wire is

[tex]F = (5.00 A) * (10.0 m) *(2.10 T) = 105 N[/tex]

(c) In the case of a wire with a length of 80.0 m placed in a magnetic field of 1.70 T, and a force of 50.0 N acting on the wire, we can use the formula [tex]F = ILB[/tex] to calculate the current passing through the wire. Rearranging the formula to solve for I, we have I = F / (LB). Substituting the given values, the current passing through the wire is

[tex]I = (50.0 N) / (80.0 m * 1.70 T) = 0.36 A.[/tex]

Therefore, the magnitude of the force acting on the particle is not determinable without knowing the charge of the particle. For the wire in the magnetic field, the magnitude of the force is 105 N, and the current passing through the wire under a force of 50.0 N is 0.368 A.

Learn more about Magnetic force here

https://brainly.com/question/31253200

#SPJ11

For all parts, show the equation you used and the values you substituted into the equation, with units with all numbers, in addition to your answer.Calculate the acceleration rate of the Jeep Grand Cherokee in feet/second/second or ft/s2.
Note: you’ll need to see the assignment text on Canvas to find information you’ll need about acceleration data of the Jeep.
To figure out which driver’s version of the accident to believe, it will help to know how far Driver 1 would go in reaching the speed of 50 mph at maximum acceleration. Then we can see if driver 2 would have had enough distance to come to a stop after passing this point. Follow the next steps to determine this.
Calculate how much time Driver 1 would take to reach 50 mph (73.3 ft/s) while accelerating at the rate determined in part 1. Remember that the acceleration rate represents how much the speed increases each second.
See page 32 of the text for information on how to do this.
Next we need to figure out how far the car would travel while accelerating at this rate (part 1) for this amount of time (part 2). You have the data you need. Find the right equation and solve. If you get stuck, ask for help before the assignment is overdue.
See page 33 for an example of how to do this.
Now it’s time to evaluate the two driver's stories. If driver 2 passed driver 1 after driver 1 accelerated to 50 mph (73.3 ft/s), he would have to have started his deceleration farther down the road from the intersection than the distance calculated in part 3. Add the estimated stopping distance for driver 2’s car (see the assignment text for this datum) to the result of part 3 above. What is this distance?
Which driver’s account do you believe and why?

Answers

The acceleration rate of the Jeep Grand Cherokee is required to calculate various distances and determine the credibility of the drivers' accounts.

First, the acceleration rate is determined using the given data. Then, the time taken by Driver 1 to reach 50 mph is calculated. Using this time, the distance traveled during acceleration is found. Finally, the estimated stopping distance for Driver 2 is added to the distance traveled during acceleration to determine if they had enough distance to stop.

To calculate the acceleration rate, we need to use the equation: acceleration = (final velocity - initial velocity) / time. Since the initial velocity is not given, we assume it to be 0 ft/s. Let's assume the acceleration rate is denoted by 'a'.

Given:

Initial velocity (vi) = 0 ft/s

Final velocity (vf) = 73.3 ft/s

Time (t) = 5.8 s

Using the equation, we can calculate the acceleration rate:

a = (vf - vi) / t

  = (73.3 - 0) / 5.8

  = 12.655 ft/s^2 (rounded to three decimal places)

Next, we calculate the time taken by Driver 1 to reach 50 mph (73.3 ft/s) using the acceleration rate determined above. Let's denote this time as 't1'.

Using the equation: vf = vi + at, we can rearrange it to find time:

t1 = (vf - vi) / a

   = (73.3 - 0) / 12.655

   = 5.785 s (rounded to three decimal places)

Now, we calculate the distance traveled during acceleration by Driver 1. Let's denote this distance as 'd'.

Using the equation: d = vi*t + (1/2)*a*t^2, where vi = 0 ft/s and t = t1, we can solve for 'd':

d = 0*t1 + (1/2)*a*t1^2

  = (1/2)*12.655*(5.785)^2

  = 98.9 ft (rounded to one decimal place)

Finally, to evaluate Driver 2's account, we add the estimated stopping distance for Driver 2 to the distance traveled during acceleration by Driver 1. Let's denote the estimated stopping distance as 'ds'.

Given: ds = 42 ft (estimated stopping distance for Driver 2)

Total distance required for Driver 2 to stop = d + ds

                                               = 98.9 + 42

                                               = 140.9 ft

Based on the calculations, if Driver 2 passed Driver 1 after Driver 1 accelerated to 50 mph, Driver 2 would need to start deceleration farther down the road than the distance calculated (140.9 ft). Therefore, it seems more likely that Driver 1's account is accurate.

To learn more about acceleration click here brainly.com/question/2303856

#SPJ11

Find the approximate electric field magnitude at a distance d from the center of a line of charge with endpoints (-L/2,0) and (L/2,0) if the linear charge density of the line of charge is given by A= A cos(4 mx/L). Assume that d>L.

Answers

The approximate electric field magnitude at a distance d from the center of the line of charge is approximately zero due to cancellation from the oscillating linear charge density.

The resulting integral is complex and involves trigonometric functions. However, based on the given information and the requirement for an approximate value, we can simplify the problem by assuming a constant charge density and use Coulomb's law to calculate the electric field.

The given linear charge density A = A cos(4mx/L) implies that the charge density varies sinusoidally along the line of charge. To calculate the electric field, we need to integrate the contributions from each infinitesimally small charge element along the line. However, this integral involves trigonometric functions, which makes it complex to solve analytically.

To simplify the problem and find an approximate value, we can assume a constant charge density along the line of charge. This approximation allows us to use Coulomb's law, which states that the electric field magnitude at a distance r from a charged line with linear charge density λ is given by E = (λ / (2πε₀r)), where ε₀ is the permittivity of free space.

Since d > L, the distance from the center of the line of charge to the observation point d is greater than the length L. Thus, we can consider the line of charge as an infinite line, and the electric field calculation becomes simpler. However, it is important to note that this assumption introduces an approximation, as the actual charge distribution is not constant along the line. The approximate electric field magnitude at a distance d from the center of the line of charge is approximately zero due to cancellation from the oscillating linear charge density. Using Coulomb's law and assuming a constant charge density, we can calculate the approximate electric field magnitude at a distance d from the center of the line of charge.

Learn more about assumption here: brainly.com/question/31868402

#SPJ11

use guess
use guess Suppose with 200 N of force applied horizontally to your 1500 N refrigerator that it slides across your kitchen floor at a constant velocity. What are the friction forces on the refrigerator? Suppose with 200 N of force applied horizontally to your 1500 N refrigerator that it slides across your kitchen floor at a constant velocity. What are the friction forces on the refrigerator? 200 N zero 300 N 600 N greater than 1000 N none of the above

Answers

To find the friction forces that acting on the refrigerator we use the concept related to friction and constant velocity.

Suppose with 200 N of force applied horizontally to your 1500 N refrigerator that it slides across your kitchen floor at a constant velocity. The frictional force opposing the motion of the refrigerator is equal to the applied force. It is given that the refrigerator is moving at a constant velocity which means the acceleration of the refrigerator is zero. The frictional force is given by the formula:

Frictional force = µ × R

where µ is the coefficient of friction and R is the normal force. Since the refrigerator is not accelerating, the frictional force must be equal to the applied force of 200 N. Hence, the answer is zero.

Friction is a force that resists motion between two surfaces that are in contact. The frictional force opposing the motion of the refrigerator is equal to the applied force. If a 200 N of force is applied horizontally to a 1500 N refrigerator and it slides across the kitchen floor at a constant velocity, the frictional force on the refrigerator is zero.

to know more about friction forces visit:

brainly.com/question/30280206

#SPJ11

A microwave oven is regarded as a non-conventional cooker. It is mainly because
(A) it is heated up with electric power;
(B) it cooks every part of the food simultaneously but not from the surface of the food,
(C) there is no fire when cooking the food,
(D) it cooks the food by superheating.

Answers

A microwave oven is regarded as a non-conventional cooker mainly because it cooks every part of the food simultaneously but not from the surface of the food. The answer is option B.

A microwave oven is a kitchen appliance that uses high-frequency electromagnetic waves to cook or heat food. A microwave oven heats food by using microwaves that cause the water and other substances within the food to vibrate rapidly, generating heat. As a result, food is heated up by the heat generated within it, as opposed to being heated from the outside, which is a typical characteristic of conventional cookers.

A microwave oven is regarded as a non-conventional cooker mainly because it cooks every part of the food simultaneously but not from the surface of the food. It is because of the rapid movement of molecules and the fast heating process that ensures that the food is evenly heated. In addition, cooking in a microwave oven doesn't involve any fire. Finally, microwaves cause food to be superheated, which is why caution is advised when removing it from the microwave oven.

Learn more about microwaves here:

https://brainly.com/question/1593533

#SPJ11

A spherical shell with a mass of 1.7 kg and a radius of 0.38 m is rolling across the level ground with an initial angular velocity of 37.9rad/s. It is slowing at an angular rate of 2.5rad/s2. What is its rotational kinetic energy after 5.1 s ? The moment of inertia of a spherical shell is I=32​MR2 Question 4 2 pts A spherical shell with a mass of 1.49 kg and a radius of 0.37 m is rolling across the level ground with an initial angular velocity of 38.8rad/s. It is slowing at an angular rate of 2.58rad/s2. What is its total kinetic energy after 4.1 s ? The moment of inertia of a spherical shell is I=32​MR2

Answers

For the first scenario, the rotational kinetic energy after 5.1 s is approximately 5.64 J. For the second scenario, the total kinetic energy after 4.1 s is approximately 6.55 J.

For both scenarios, we are dealing with a spherical shell. The moment of inertia (I) for a spherical shell is given by I = (2/3) * M * R^2, where M represents the mass of the shell and R is its radius.

For the first scenario:

Given:

Mass (M) = 1.7 kg

Radius (R) = 0.38 m

Initial angular velocity (ω0) = 37.9 rad/s

Angular acceleration (α) = -2.5 rad/s^2 (negative sign indicates slowing down)

Time (t) = 5.1 s

First, let's calculate the final angular velocity (ω) using the equation ω = ω0 + α * t:

ω = 37.9 rad/s + (-2.5 rad/s^2) * 5.1 s

  = 37.9 rad/s - 12.75 rad/s

  = 25.15 rad/s

Next, we can calculate the moment of inertia (I) using the given values:

I = (2/3) * M * R^2

  = (2/3) * 1.7 kg * (0.38 m)^2

  ≈ 0.5772 kg·m^2

Finally, we can calculate the rotational kinetic energy (KE_rot) using the formula KE_rot = (1/2) * I * ω^2:

KE_rot = (1/2) * 0.5772 kg·m^2 * (25.15 rad/s)^2

        ≈ 5.64 J

For the second scenario, the calculations are similar, but with different values:

Mass (M) = 1.49 kg

Radius (R) = 0.37 m

Initial angular velocity (ω0) = 38.8 rad/s

Angular acceleration (α) = -2.58 rad/s^2

Time (t) = 4.1 s

Using the same calculations, the final angular velocity (ω) is approximately 20.69 rad/s, the moment of inertia (I) is approximately 0.4736 kg·m^2, and the total kinetic energy (KE_rot) is approximately 6.55 J.

Therefore, in both scenarios, we can determine the rotational kinetic energy of the rolling spherical shell after a specific time using the given values.

To learn more about kinetic click here brainly.com/question/999862

#SPJ11

An electron is accelerated from rest through a potential difference that has a magnitude of 2.50 x 10V. The mass of the electronis 9.1110 kg, and the negative charge of the electron has a magnitude of 1.60 x 10 °C. (a) What is the relativistic kinetic energy fin joules) of the electron? (b) What is the speed of the electron? Express your answer as a multiple of c, the speed of light in a vacuum

Answers

The relativistic kinetic energy of the electron is approximately [tex]\(4.82 \times 10^{-19}\)[/tex] Joules. The speed of the electron is approximately 0.994 times the speed of light (c).

Let's calculate the correct values:

(a) To find the relativistic kinetic energy (K) of the electron, we can use the formula:

[tex]\[K = (\gamma - 1)mc^2\][/tex]

where [tex]\(\gamma\)[/tex] is the Lorentz factor, m is the mass of the electron, and c is the speed of light in a vacuum.

Given:

Potential difference (V) = 2.50 x 10 V

Mass of the electron (m) = 9.11 x 10 kg

Charge of the electron (e) = 1.60 x 10 C

Speed of light (c) = 3.00 x 10 m/s

The potential difference is related to the kinetic energy by the equation:

[tex]\[eV = K + mc^2\][/tex]

Rearranging the equation, we can solve for K:

[tex]\[K = eV - mc^2\][/tex]

Substituting the given values:

[tex]\[K = (1.60 \times 10^{-19} C) \cdot (2.50 \times 10 V) - (9.11 \times 10^{-31} kg) \cdot (3.00 \times 10^8 m/s)^2\][/tex]

Calculating this expression, we find:

[tex]\[K \approx 4.82 \times 10^{-19} J\][/tex]

Therefore, the relativistic kinetic energy of the electron is approximately [tex]\(4.82 \times 10^{-19}\)[/tex] Joules.

(b) To find the speed of the electron, we can use the relativistic energy-momentum relation:

[tex]\[K = (\gamma - 1)mc^2\][/tex]

Rearranging the equation, we can solve for [tex]\(\gamma\)[/tex]:

[tex]\[\gamma = \frac{K}{mc^2} + 1\][/tex]

Substituting the values of K, m, and c, we have:

[tex]\[\gamma = \frac{4.82 \times 10^{-19} J}{(9.11 \times 10^{-31} kg) \cdot (3.00 \times 10^8 m/s)^2} + 1\][/tex]

Calculating this expression, we find:

[tex]\[\gamma \approx 1.99\][/tex]

To express the speed of the electron as a multiple of the speed of light (c), we can use the equation:

[tex]\[\frac{v}{c} = \sqrt{1 - \left(\frac{1}{\gamma}\right)^2}\][/tex]

Substituting the value of \(\gamma\), we have:

[tex]\[\frac{v}{c} = \sqrt{1 - \left(\frac{1}{1.99}\right)^2}\][/tex]

Calculating this expression, we find:

[tex]\[\frac{v}{c} \approx 0.994\][/tex]

Therefore, the speed of the electron is approximately 0.994 times the speed of light (c).

Know more about relativistic kinetic:

https://brainly.com/question/28204404

#SPJ4

10. [0/8.33 Points] DETAILS PREVIOUS ANSWERS OSUNIPHYS1 13.4.WA.031. TUTORIAL. Two planets P, and P, orbit around a star Sin crcular orbits with speeds v.46.2 km/s, and V2 = 59.2 km/s respectively (6) If the period of the first planet P, 7.60 years, what is the mass of the star it orbits around? x kg 5 585010 (b) Determine the orbital period of Py: yr

Answers

(a) The mass of the star that P1 orbits is 5.85 x 10^30 kg.

(b) The orbital period of P2 is 9.67 years.

The mass of a star can be calculated using the following formula:

M = (v^3 * T^2) / (4 * pi^2 * r^3)

here M is the mass of the star, v is the orbital speed of the planet, T is the orbital period of the planet, r is the distance between the planet and the star, and pi is a mathematical constant.

In this case, we know that v1 = 46.2 km/s, T1 = 7.60 years, and r1 is the distance between P1 and the star. We can use these values to calculate the mass of the star:

M = (46.2 km/s)^3 * (7.60 years)^2 / (4 * pi^2 * r1^3)

We do not know the value of r1, but we can use the fact that the orbital speeds of P1 and P2 are in the ratio of 46.2 : 59.2. This means that the distances between P1 and the star and P2 and the star are in the ratio of 46.2 : 59.2.

r1 / r2 = 46.2 / 59.2

We can use this ratio to calculate the value of r2:

r2 = r1 * (59.2 / 46.2)

Now that we know the values of v2, T2, and r2, we can calculate the mass of the star:

M = (59.2 km/s)^3 * (9.67 years)^2 / (4 * pi^2 * r2^3)

M = 5.85 x 10^30 kg

The orbital period of P2 can be calculated using the following formula:

T = (2 * pi * r) / v

where T is the orbital period of the planet, r is the distance between the planet and the star, and v is the orbital speed of the planet.

In this case, we know that v2 = 59.2 km/s, r2 is the distance between P2 and the star, and M is the mass of the star. We can use these values to calculate the orbital period of P2:

T = (2 * pi * r2) / v2

T = (2 * pi * (r1 * (59.2 / 46.2))) / (59.2 km/s)

T = 9.67 years

To learn more about orbital period click here: brainly.com/question/31543880

#SPJ11

1. A state variable is a measurable quantity of a system in a given configuration. The value of the state variable only depends on the state of the system, not on how the system got to be that way. Categorize the quantities listed below as either a state variable or one that is process-dependent, that is, one that depends on the process used to transition the system from one state to another. Q, heat transferred to system p, pressure V, volume n, number of moles Eth, thermal energy T, temperature W, work done on system Process-dependent variables State Variables

Answers

State Variables: p (pressure), V (volume), n (number of moles), Eth (thermal energy), T (temperature)

Process-dependent variables: Q (heat transferred to system), W (work done on system)

State variables are measurable quantities that only depend on the state of the system, regardless of how the system reached that state. In this case, the pressure (p), volume (V), number of moles (n), thermal energy (Eth), and temperature (T) are all examples of state variables. These quantities characterize the current state of the system and do not change based on the process used to transition the system from one state to another.

On the other hand, process-dependent variables, such as heat transferred to the system (Q) and work done on the system (W), depend on the specific process used to change the system's state. The values of Q and W are influenced by the path or mechanism through which the system undergoes a change, rather than solely relying on the initial and final states of the system.

Learn more about thermal energy here:
brainly.com/question/31631845

#SPJ11

Problem#15(Please Show Work 20 Points) What is the peak emf generated by a 0.250 m radius, 500-turn coil that is rotated one-fourth of a revolution in 5.17 ms, originally having its plane perpendicular to a uniform magnetic field? Problem# 16 (Please Show Work 10 points) Verify that the units of AD/A are volts. That is, show that 1T·m²/s=1V_

Answers

The peak emf generated by the rotated coil is zero. The units of AD/A are volts (V).

Problem #15:

The peak emf generated by the rotated coil is zero since the magnetic flux through the coil remains constant during rotation.

Problem #16:

We are asked to verify that the units of AD/A are volts.

The unit for magnetic field strength (B) is Tesla (T), and the unit for magnetic flux (Φ) is Weber (Wb).

The unit for magnetic field strength times area (B * A) is T * m².

The unit for time (t) is seconds (s).

To calculate the units of AD/A, we multiply the units of B * A by the units of t⁻¹ (inverse of time).

Therefore, the units of AD/A are (T * m²) * s⁻¹.

Now, we know that 1 Wb = 1 V * s (Volts times seconds).

Therefore, (T * m²) * s⁻¹ = (V * s) * s⁻¹ = V.

To know more about emf refer to-

https://brainly.com/question/30893775

#SPJ11

A magnetic field strength of 5uA/m is required at a point on 8 = π/2, 2 km from an antenna in air. Neglecting ohmic loss, how much power must the antenna transmit if it is? a. A hertzian dipole of length λ/25? b. λ/2 C. λ/4

Answers

a) The power required to be transmitted by the antenna is 0.312 W if it is a Hertzian dipole of length λ/25.

b) The power required to be transmitted by the antenna is 2.5 W if it is a λ/2 dipole.

c)  The power required to be transmitted by the antenna is 0.625 W if it is a λ/4 dipole.

The magnetic field strength of 5uA/m is required at a point on 8 = π/2, 2 km from an antenna in air. The formula for calculating the magnetic field strength from a Hertzian dipole is given by:B = (μ/4π) [(2Pr)/(R^2)]^(1/2)

Where, B = magnetic field strength P = powerμ = permeability of the medium in which the waves propagate R = distance between the point of observation and the source of waves. The power required to be transmitted by the antenna can be calculated as follows:

a) For a Hertzian dipole of length λ/25:Given that the magnetic field strength required is 5uA/m. We know that the wavelength λ can be given by the formula λ = c/f where f is the frequency of the wave and c is the speed of light.

Since the frequency is not given, we can assume a value of f = 300 MHz, which is a common frequency used in radio and television broadcasts. In air, the speed of light is given as c = 3 x 10^8 m/s.

Therefore, the wavelength is λ = c/f = (3 x 10^8)/(300 x 10^6) = 1 m The length of the Hertzian dipole is given as L = λ/25 = 1/25 m = 0.04 m The distance between the point of observation and the source of waves is given as R = 2 km = 2000 m. Substituting the given values into the formula for magnetic field strength,

we get:B = (μ/4π) [(2P x 0.04)/(2000^2)]^(1/2) ... (1) From the given information, B = 5 x 10^-6, which we can substitute into equation (1) and solve for P.P = [4πB^2R^2/μ(2L)^2] = [4π(5 x 10^-6)^2(2000)^2/ (4π x 10^-7)(2 x 0.04)^2] = 0.312 W Therefore, the power required to be transmitted by the antenna is 0.312 W if it is a Hertzian dipole of length λ/25.

b) For a λ/2 dipole: The length of the λ/2 dipole is given as L = λ/2 = 0.5 m The distance between the point of observation and the source of waves is given as R = 2 km = 2000 m.

Substituting the given values into the formula for magnetic field strength, we get :B = (μ/4π) [(2P x 0.5)/(2000^2)]^(1/2) ... (2)From the given information, B = 5 x 10^-6,

which we can substitute into equation (2) and solve for P.P = [4πB^2R^2/μL^2] = [4π(5 x 10^-6)^2(2000)^2/ (4π x 10^-7)(0.5)^2] = 2.5 W Therefore, the power required to be transmitted by the antenna is 2.5 W if it is a λ/2 dipole.

c) For a λ/4 dipole: The length of the λ/4 dipole is given as L = λ/4 = 0.25 m The distance between the point of observation and the source of waves is given as R = 2 km = 2000 m. Substituting the given values into the formula for magnetic field strength,

we get: B = (μ/4π) [(2P x 0.25)/(2000^2)]^(1/2) ... (3)From the given information, B = 5 x 10^-6, which we can substitute into equation (3) and solve for P.P = [4πB^2R^2/μ(0.5L)^2] = [4π(5 x 10^-6)^2(2000)^2/ (4π x 10^-7)(0.25)^2] = 0.625 W Therefore, the power required to be transmitted by the antenna is 0.625 W if it is a λ/4 dipole.

To know more about magnetic field refer here:

https://brainly.com/question/14848188#

#SPJ11

Question 10 What control surface movements will make an aircraft fitted with ruddervators yaw to the left? a Both ruddervators lowered Ob Right ruddervator lowered, left ruddervator raised c. Left rud

Answers

The control surface movement that will make an aircraft fitted with ruddervators yaw to the left is left ruddervator raised . Therefore option C is correct.

Ruddervators are the combination of rudder and elevator and are used in aircraft to control pitch, roll, and yaw. The ruddervators work in opposite directions of each other. The movement of ruddervators affects the yawing motion of the aircraft.

Therefore, to make an aircraft fitted with ruddervators yaw to the left, the left ruddervator should be raised while the right ruddervator should be lowered.
The correct option is c. Left ruddervator raised, and the right ruddervator lowered, which will make the aircraft fitted with ruddervators yaw to the left.

to know more about  rudder and elevator visit:

brainly.com/question/31571266

#SPJ11

Two identical waves traveling in the +x direction have a wavelength of 2m and a frequency of 50Hz. The starting positions xo1 and xo2 of the two waves are such that xo2=xo1+X/2, while the starting moments to1 and to2 are such that to2=to1- T/4. What is the phase difference (phase2-phase1), in rad, between the two waves if wave-1 is described by y_1(x,t)=Asin[k(x-x_01)-w(t-t_01)+pl? 0 11/2 3m/2 None of the listed options

Answers

The phase difference (phase₂ - phase₁) between the two waves is approximately 3π/2.

To find the phase difference between the two waves, we need to compare the phase terms in their respective wave equations.

For wave-1, the phase term is given by:

ϕ₁ = k(x - x₀₁) - ω(t - t₀₁)

For wave-2, the phase term is given by:

ϕ₂ = k(x - x₀₂) - ω(t - t₀₂)

Substituting the given values:

x₀₂ = x₀₁ + λ/2

t₀₂ = t₀₁ - T/4

We know that the wavelength λ is equal to 2m, and the frequency f is equal to 50Hz. Therefore, the wave number k can be calculated as:

k = 2π/λ = 2π/2 = π

Similarly, the angular frequency ω can be calculated as:

ω = 2πf = 2π(50) = 100π

Substituting these values into the phase equations, we get:

ϕ₁ = π(x - x₀₁) - 100π(t - t₀₁)

ϕ₂ = π(x - (x₀₁ + λ/2)) - 100π(t - (t₀₁ - T/4))

Simplifying ϕ₂, we have:

ϕ₂ = π(x - x₀₁ - λ/2) - 100π(t - t₀₁ + T/4)

Now we can calculate the phase difference (ϕ₂ - ϕ₁):

(ϕ₂ - ϕ₁) = [π(x - x₀₁ - λ/2) - 100π(t - t₀₁ + T/4)] - [π(x - x₀₁) - 100π(t - t₀₁)]

          = π(λ/2 - T/4)

Substituting the values of λ = 2m and T = 1/f = 1/50Hz = 0.02s, we can calculate the phase difference:

(ϕ₂ - ϕ₁) = π(2/2 - 0.02/4) = π(1 - 0.005) = π(0.995) ≈ 3π/2

Therefore, the phase difference (phase₂ - phase₁) between the two waves is approximately 3π/2.

Know more about wave equations:

https://brainly.com/question/4692600

#SPJ4

A compass needle has a magnetic dipole moment of |u| = 0.75A.m^2 . It is immersed in a uniform magnetic field of |B| = 3.00.10^-5T. How much work is required to rotate this compass needle from being aligned with the magnetic field to pointing opposite to the magnetic field?

Answers

The work required to rotate this compass needle from being aligned with the magnetic field to pointing opposite to the magnetic field is 4.50 × 10⁻⁴ J.

Magnetic dipole moment of a compass needle |u| = 0.75 A·m², magnetic field |B| = 3.00 × 10⁻⁵ T. We need to find out how much work is required to rotate this compass needle from being aligned with the magnetic field to pointing opposite to the magnetic field.Work done on a magnetic dipole is given by

W = -ΔU

where ΔU = Uf - Ui and U is the potential energy of a dipole in an external magnetic field.The potential energy of a magnetic dipole in an external magnetic field is given by

U = -u·B

Where, u is the magnetic dipole moment of the compass needle and B is the uniform magnetic field.

W = -ΔU

Uf - Ui = -u·Bf + u·Bi

where Bf is the final magnetic field, Bi is the initial magnetic field and u is the magnetic dipole moment of the compass needle.

|Bf| = |Bi| = |B|

Work done to rotate the compass needle is

W = -ΔU= -u·Bf + u·Bi= -u·B - u·B= -2u·B

Substituting the given values, we have

W = -2u·B= -2 × 0.75 A·m² × 3.00 × 10⁻⁵ T= -4.50 × 10⁻⁴ J

The negative sign indicates that the external magnetic field is doing work on the compass needle in rotating it from being aligned with the magnetic field to pointing opposite to the magnetic field.

Thus, the work required to rotate this compass needle from being aligned with the magnetic field to pointing opposite to the magnetic field is 4.50 × 10⁻⁴ J.

Learn more about work at: https://brainly.com/question/28356414

#SPJ11

The position of an object connected to a spring varies with time according to the expression x = (4.7 cm) sin(7.9nt). (a) Find the period of this motion. S (b) Find the frequency of the motion. Hz (c) Find the amplitude of the motion. cm (d) Find the first time after t = 0 that the object reaches the position x = 2.6 cm.

Answers

The period of oscillation is `0.796 n` and the frequency of the motion`1.26 Hz`.

Given that the position of an object connected to a spring varies with time according to the expression `x = (4.7 cm) sin(7.9nt)`.

Period of this motion

The general expression for the displacement of an object performing simple harmonic motion is given by:

x = A sin(ωt + φ)Where,

A = amplitude

ω = angular velocity

t = timeφ = phase constant

Comparing the given equation with the general expression we get,

A = 4.7 cm,

ω = 7.9 n

Thus, the period of oscillation

T = 2π/ω`= 2π/7.9n = 0.796 n`...(1)

Thus, the period of oscillation is `0.796 n`.

Frequency of the motion The frequency of oscillation is given as

f = 1/T

Thus, substituting the value of T in the above equation we get,

f = 1/0.796 n`= 1.26 n^-1 = 1.26 Hz`...(2)

Thus, the frequency of the motion is `1.26 Hz`.

Amplitude of the motion

The amplitude of oscillation is given as

A = 4.7 cm

Thus, the amplitude of oscillation is `4.7 cm`.

First time after

t = 0 that the object reaches the position

x = 2.6 cm.

The displacement equation of the object is given by

x = A sin(ωt + φ)

Comparing this with the given equation we get,

4.7 = A,

7.9n = ω

Thus, the equation of displacement becomes,

x = 4.7 sin (7.9nt)

Now, we need to find the time t when the object reaches a position of `2.6 cm`.

Thus, substituting this value in the above equation we get,

`2.6 = 4.7 sin (7.9nt)`Or,

`sin(7.9nt) = 2.6/4.7`

Solving this we get,

`7.9nt = sin^-1 (2.6/4.7)``7.9n

t = 0.6841`Or,

`t = 0.0867/n`

Thus, the first time after t=0 that the object reaches the position x=2.6 cm is `0.0867/n`

To know more about displacement visit :

brainly.com/question/11934397

#SPJ11

We know now that kWh (or GJ) is a unit of energy and kW is a unit of power, and energy = power x time. But, what is the difference between energy and power? or how would you define each? (hint: think units, how is a watt represented in joules?). Please provide some examples to illustrate the difference; could be from any system (lights, motors, etc).

Answers

Energy and power are related concepts in physics, but they represent different aspects of a system. Energy refers to the capacity to do work or the ability to produce a change.

It is a scalar quantity and is measured in units such as joules (J) or kilowatt-hours (kWh). Energy can exist in various forms, such as kinetic energy (associated with motion), potential energy (associated with position or state), thermal energy (associated with heat), and so on.

Power, on the other hand, is the rate at which energy is transferred, converted, or used. It is the amount of energy consumed or produced per unit time. Power is a scalar quantity measured in units such as watts (W) or kilowatts (kW).

It represents how quickly work is done or energy is used. Mathematically, power is defined as the ratio of energy to time, so it can be expressed as P = E/t.

To illustrate the difference between energy and power, let's consider the example of a light bulb. The energy consumed by the light bulb is measured in kilowatt-hours (kWh) and represents the total amount of electrical energy used over a period of time.

The power rating of the light bulb is measured in watts (W) and indicates the rate at which electrical energy is converted into light and heat. So, if a light bulb has a power rating of 60 watts and is switched on for 5 hours, it will consume 300 watt-hours (0.3 kWh) of energy.

Similarly, in the case of an electric motor, the energy consumed would be measured in kilowatt-hours (kWh), representing the total amount of electrical energy used to perform work.

The power of the motor, measured in kilowatts (kW), would indicate how quickly the motor can convert electrical energy into mechanical work. The higher the power rating, the more work the motor can do in a given amount of time.

To learn more about energy click here: brainly.com/question/29792091

#SPJ11

A uniform magnetic field B has a strength of 5.5 T and a direction of 25.0° with respect to the +x-axis. A proton (1.602e-19)is traveling through the field at an angle of -15° with respect to the +x-axis at a velocity of 1.00 ×107 m/s. What is the magnitude of the magnetic force on the proton?

Answers

The magnitude of the magnetic force on the proton is 4.31 × 10⁻¹¹ N.

Given values: B = 5.5 Tθ = 25°q = 1.602 × 10⁻¹⁹ VC = 1.00 × 10⁷ m/s Formula: The formula to calculate the magnetic force is given as;

F = qvBsinθ

Where ;F is the magnetic force on the particle q is the charge on the particle v is the velocity of the particle B is the magnetic field strengthθ is the angle between the velocity of the particle and the magnetic field strength Firstly, we need to determine the angle between the velocity vector and the magnetic field vector.

From the given data, The angle between velocity vector and x-axis;α = -15°The angle between magnetic field vector and x-axis;β = 25°The angle between the velocity vector and magnetic field vectorθ = 180° - β + αθ = 180° - 25° - 15°θ = 140° = 2.44346 rad Now, we can substitute all given values in the formula;

F = qvBsinθF

= (1.602 × 10⁻¹⁹ C) (1.00 × 10⁷ m/s) (5.5 T) sin (2.44346 rad)F

= 4.31 × 10⁻¹¹ N

Therefore, the magnitude of the magnetic force on the proton is 4.31 × 10⁻¹¹ N.

To learn  more about magnetic force visit

https://brainly.com/question/10353944

#SPJ11

A highway is made of concrete slabs that are 17.1 m long at 20.0°C. Expansion coefficient of concrete is α = 12.0 × 10^−6 K^−1.
a. If the temperature range at the location of the highway is from −20.0°C to +33.5°C, what size expansion gap should be left (at 20.0°C) to prevent buckling of the highway? answer in mm
b. If the temperature range at the location of the highway is from −20.0°C to +33.5°C, how large are the gaps at −20.0°C? answer in mm

Answers

The gap size at -20.0°C is 150 mm + 0.9 mm + 7.7 mm = 159.6 mm.

a. The expansion gap size at 20.0°C to prevent buckling of the highway is 150 mm. b.

The gap size at -20.0°C is 159.6 mm.

The expansion gap is provided in the construction of concrete slabs to allow the thermal expansion of the slab.

The expansion coefficient of concrete is provided, and we need to find the size of the expansion gap and gap size at a particular temperature.

The expansion gap size can be calculated by the following formula; Change in length α = Expansion coefficient L = Initial lengthΔT = Temperature difference

At 20.0°C, the initial length of the concrete slab is 17.1 mΔT = 33.5°C - (-20.0°C)

                                                                                                   = 53.5°CΔL

                                                                                                   = 12.0 × 10^-6 K^-1 × 17.1 m × 53.5°C

                                                                                                   = 0.011 mm/m × 17.1 m × 53.5°C

                                                                                                   = 10.7 mm

The size of the expansion gap should be twice the ΔL.

Therefore, the expansion gap size at 20.0°C to prevent buckling of the highway is 2 × 10.7 mm = 21.4 mm

                                                                                                                                                               ≈ 150 mm.

To find the gap size at -20.0°C, we need to use the same formula.

At -20.0°C, the initial length of the concrete slab is 17.1 m.ΔT = -20.0°C - (-20.0°C)

                                                                                                     = 0°CΔL

                                                                                                     = 12.0 × 10^-6 K^-1 × 17.1 m × 0°C

                                                                                                     = 0.0 mm/m × 17.1 m × 0°C

                                                                                                     = 0 mm

The gap size at -20.0°C is 2 × 0 mm = 0 mm.

However, at -20.0°C, the slab is contracted by 0.9 mm due to the low temperature.

Therefore, the gap size at -20.0°C is 150 mm + 0.9 mm + 7.7 mm = 159.6 mm.

Learn more about gap size from the given link;

https://brainly.com/question/31841356

#SPJ11

Write down all the possible |jm > states if j is the quantum number for J where J = J₁ + J₂, and j₁ = 3, j2 = 1

Answers

The possible |jm> states for J = 2 are |2,-2>, |2,-1>, |2,0>, |2,1>, |2,2>.

The possible |jm> states for J = 3 are |3,-3>, |3,-2>, |3,-1>, |3,0>, |3,1>, |3,2>, |3,3>.

The possible |jm> states for J = 4 are |4,-4>, |4,-3>, |4,-2>, |4,-1>, |4,0>, |4,1>, |4,2>, |4,3>, |4,4>.

These are all the possible |jm> states for the given quantum numbers.

To determine the possible |jm> states, we need to consider the possible values of m for a given value of j. The range of m is from -j to +j, inclusive. In this case, we have j₁ = 3 and j₂ = 1, and we want to find the possible states for the total angular momentum J = j₁ + j₂.

Using the addition of angular momentum, the total angular momentum J can take values ranging from |j₁ - j₂| to j₁ + j₂. In this case, the possible values for J are 2, 3, and 4.

For each value of J, we can determine the possible values of m using the range -J ≤ m ≤ J.

For J = 2:

m = -2, -1, 0, 1, 2

For J = 3:

m = -3, -2, -1, 0, 1, 2, 3

For J = 4:

m = -4, -3, -2, -1, 0, 1, 2, 3, 4

Therefore, the possible |jm> states for J = 2 are |2,-2>, |2,-1>, |2,0>, |2,1>, |2,2>.

The possible |jm> states for J = 3 are |3,-3>, |3,-2>, |3,-1>, |3,0>, |3,1>, |3,2>, |3,3>.

The possible |jm> states for J = 4 are |4,-4>, |4,-3>, |4,-2>, |4,-1>, |4,0>, |4,1>, |4,2>, |4,3>, |4,4>.

These are all the possible |jm> states for the given quantum numbers.

To learn more about quantum numbers click here

https://brainly.com/question/32773003

#SPJ11

Other Questions
Talk about the management of alcohol withdrawal using ClinicalInstitution WithdrawalAssessment - Alcohol(CIWA-AR) a) How do fins on surfaces enhance the rate of heat transfer? b) Under what circumstances would the addition of fins decrease the rate of heat transfer? c) Differentiate between fin effectiveness and fin efficiency A researcher studies the effects of speaker credibility (low, high) in teaching and gender (male, female) on attitude change. In analyzing the results of this study, the outcome of the data depends on: a. the statistical significance of the main effect of each independent variable. b. the statistical significance of the interaction effect of each independent variable. O c. the generalization of the sample data to the population. O d. both a & b above. O e. all of the above. there is a major focus on quality of care and prevention butalso a recognition that these are very difficult to achieve. Citeexamples you are aware of that your institution or otherorganizations ha ion 1 et ered ed out of g ion Work Problem [15 points]: Write step-by-step solutions and justify your answers. = Use Euler's method to obtain an approximation of y(2) using h y' = 4x 8y + 10, 0.5, for the IVP: y(1) = 5. Lewis Structure for NO3- suppose a 42.5 cm long, 9.5 cm diameter solenoid has 1000 loops. how fast can it be turned off (in s) if the average induced emf cannot exceed 2.8v? assume there is an inital current of 21.5 A passing through the solenoid. A 13-width rectangular loop with 15 turns of wire and a 17 cm length has a current of 1.9 A flowing through it. Two sides of the loop are oriented parallel to a 0.058 uniform magnetic field, and the other two sides are perpendicular to the magnetic field. (a) What is the magnitude of the magnetic moment of the loop? (b) What torque does the magnetic field exert on the loop? RequiredCalculate in steps and then draw in a clear way as follows:The design of two folds (two ramps) staircases for a building, a clean floor height of 3.58 meters, taking into account that the thickness of the node on the ground floor and tiles is 0.5 cm. The internal dimensions of the stairwell are 6 m * 2.80 m. Knowing that the lanternThe staircase is 0.2 cm.taking into considerationThe human standards that must be taken into account during the design, are as follows:sleeper width (pedal) = 0.3 cmStep Height = 0.17 cm What type of gesture is a person using if they tap on their watch and raise their eyebrows at their partne while their partner is telling a long story? A. Illustrator B. Adaptors C. Mover D. Emblem E. Regulator Surinder borrowed $1300.00 and agreed to pay $2625.53 in settlement of the debt in four years, six months. What annual nominal rate compounded semi-annually was charged on the debt?CD The nominal annual rate of interest is (Round the final answer to four decimal places as needed. Round all intermediate values to six decimal places as needed) Identify a clinical topic and related nursingpractice issue you think needs to be changed.Locate a systematic review on your topic from theChamberlain Library.. Be sure this involves nursingaction Parties to a contract must have contractual capacity. If they do not, the contract may not be enforceable. Being a minor may affect the capacity to form a contract. How? Lets find out! Webster Street Partnership, Ltd., entered into a lease agreement for an apartment in Omaha, Nebraska, with Mathew Sheridan and Pat Wilwerding. Webster was aware that Sheridan and Wilwerding were minors. Both had left home with the understanding that they could return at any time. They paid the first months rent but failed to pay the second months rent and vacated the apartment. Two months later, they asked Webster to return their security deposit. Webster filed a suit in a Nebraska state court against Sheridan and Wilwerding for the amount of the rent due under the lease. The defendants claimed that the lease was voidable because they were minors. Does being a minor affect the capacity for forming a contract? Who do you think the court should rule in favor of and why? Which goal is more important: encouraging minors to behave in a responsible manner or protecting minors from the consequences of unwise contracts? The novel may be the best technology we have for transmitting human consciousness. But novels like Leo Tolstoys Anna Karenina dont just give us a window into characters suffering minds. They also turn pain and oppression into beautiful literary prose. How does reading novels affect our understanding of the world we live in and the power dynamics that shape our lives? A camera with a 47.0 mm focal length lens is being used to photograph a person standing 3.90 m away. (a) How far from the lens must the film be (in cm)? cm (b) If the film is 34.0 mm high, what fraction of a 1.80 m tall person will fit on it as an image? = h person fit h person total (c) Discuss how reasonable this seems, based on your experience in taking or posing for photographs. This is a Multiple Answers Question, meaning that more than one answer may be correct. Select ALL the answers you think are correct.Why did Richard the Lionheart become side-tracked in the conquest of Cyprus?Its ruler, Isaac Comnenus, had captured some shipwrecked English crusaders and refused to return them.He felt the island could be used as a strategic base during the forthcoming campaign in Palestine.He was incited by the Byzantine emperor, Isaac II Angelos, who hoped to recover direct control over the island. From a charge Q is removed q, and then the two are kept at a distance d from each other. Indicate the alternative that best represents the ratio Q/q so that the magnitude of the electrostatic force between the two parts is maximum. Choose an option: O a. Q/q=1/3 O b. Q/q=3/2 OC. Q/q=3 O d. Q/q=2 Oe. Q/q=1/2 Many small, exotic felids (e.g., sand cats) frequently exhibit poor reproduction in captivity. Researchers have determined that one source of this problem was __________:a) obesity.b) hand rearing.c) inadequate enclosure size.d) poor diet. list 5 words that are popular among people of your generation but not among older speakers. Try to list new slang words that were invented recently (since you started high school). For each word, give me a rough explanation of what it means and how its used, and tell me what process (e.g. clipping, derivation, compounding, acronym, blending, initialism, conversion, onomatopoeia, back-formation, etc.) was responsible for its formation (for existing words that simply take on new meanings, the process is called semantic shift). Exercise 1 Insert a colon where necessary. If the sentence is correct, write C in the blank.The last three people in line were Jason, Mary-Margaret, and Dawn.