A ball is thrown into the air by a baby allen on a planet in the system of Apha Centaur with a velocity of 36 ft/s. Its height in feet after f seconds is given by y=36t−16t^2
a) Find the tvenge velocity for the time period beginning when f_0=3 second and lasting for the given time. t=01sec
t=.005sec
t=.002sec
t=.001sec

Answers

Answer 1

The tvenge velocity for the time period beginning when f_0=3 second and lasting for t=0.1 sec is - 28.2 ft/s. Answer: - 28.2 ft/s.

The height of a ball thrown into the air by a baby allen on a planet in the system of Alpha Centaur with a velocity of 36 ft/s is given by the function y

=36t−16t^2 where f is measured in seconds. To find the tvenge velocity for the time period beginning when f_0

=3 second and lasting for the given time. t

=0.1 sec, t
=0.005 sec, t

=0.002 sec, t

=0.001 sec. We can differentiate the given function with respect to time (t) to find the tvenge velocity, `v` which is the rate of change of height with respect to time. Then, we can substitute the values of `t` in the expression for `v` to find the tvenge velocity for different time periods.t given;

= 0.1 sec The tvenge velocity for t

=0.1 sec can be found by differentiating y

=36t−16t^2 with respect to t. `v

=d/dt(y)`

= 36 - 32 t Given, f_0

=3 sec, t

=0.1 secFor time period t

=0.1 sec, we need to find the average velocity of the ball between 3 sec and 3.1 sec. This is given by,`v_avg

= (y(3.1)-y(3))/ (3.1 - 3)`Substituting the values of t in the expression for y,`v_avg

= [(36(3.1)-16(3.1)^2) - (36(3)-16(3)^2)] / (3.1 - 3)`v_avg

= - 28.2 ft/s.The tvenge velocity for the time period beginning when f_0

=3 second and lasting for t

=0.1 sec is - 28.2 ft/s. Answer: - 28.2 ft/s.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11


Related Questions

Determine limx→[infinity]​f(x) and limx→−[infinity]​f(x) for the following function. Then give the horizontal asymptotes of f, if any. f(x)=36x+66x​ Evaluate limx→[infinity]​f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. limx→[infinity]​36x+66x​=( Simplify your answer. ) B. The limit does not exist and is neither [infinity] nor −[infinity]. Evaluate limx→−[infinity]​f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. limx→−[infinity]​36x+66x​= (Simplify your answer.) B. The limit does not exist and is neither [infinity] nor −[infinity]. Give the horizontal asymptotes of f, if any. Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. A. The function has one horizontal asymptote, (Type an equation.) B. The function has two horizontal asymptotes. The top asymptote is and the bottom asymptote is (Type equations.) C. The function has no horizontal asymptotes.

Answers

The limit limx→[infinity]​f(x) = 36, limx→−[infinity]​f(x) = 36. The function has one horizontal asymptote, y = 36. Option (a) is correct.

Given function is f(x) = 36x + 66x⁻¹We need to evaluate limx→∞​f(x) and limx→-∞​f(x) and find horizontal asymptotes, if any.Evaluate limx→∞​f(x):limx→∞​f(x) = limx→∞​(36x + 66x⁻¹)= limx→∞​(36x/x + 66/x⁻¹)We get  ∞/∞ form and hence we apply L'Hospital's rulelimx→∞​f(x) = limx→∞​(36 - 66/x²) = 36

The limit exists and is finite. Hence the correct choice is A) limx→∞​36x+66x​=36.Evaluate limx→−∞​f(x):limx→-∞​f(x) = limx→-∞​(36x + 66x⁻¹)= limx→-∞​(36x/x + 66/x⁻¹)

We get -∞/∞ form and hence we apply L'Hospital's rulelimx→-∞​f(x) = limx→-∞​(36 + 66/x²) = 36

The limit exists and is finite. Hence the correct choice is A) limx→−∞​36x+66x​=36.  Hence the horizontal asymptote is y = 36. Hence the correct choice is A) The function has one horizontal asymptote, y = 36.

The limit limx→[infinity]​f(x) = 36, limx→−[infinity]​f(x) = 36. The function has one horizontal asymptote, y = 36.

To know more about function visit :

https://brainly.com/question/30594198

#SPJ11

Problem 5. Imagine it is the summer of 2004 and you have just started your first (sort-of) real job as a (part-time) reservations sales agent for Best Western Hotels & Resorts 1
. Your base weekly salary is $450, and you receive a commission of 3% on total sales exceeding $6000 per week. Let x denote your total sales (in dollars) for a particular week. (a) Define the function P by P(x)=0.03x. What does P(x) represent in this context? (b) Define the function Q by Q(x)=x−6000. What does Q(x) represent in this context? (c) Express (P∘Q)(x) explicitly in terms of x. (d) Express (Q∘P)(x) explicitly in terms of x. (e) Assume that you had a good week, i.e., that your total sales for the week exceeded $6000. Define functions S 1

and S 2

by the formulas S 1

(x)=450+(P∘Q)(x) and S 2

(x)=450+(Q∘P)(x), respectively. Which of these two functions correctly computes your total earnings for the week in question? Explain your answer. (Hint: If you are stuck, pick a value for x; plug this value into both S 1

and S 2

, and see which of the resulting outputs is consistent with your understanding of how your weekly salary is computed. Then try to make sense of this for general values of x.)

Answers

(a) function P(x) represents the commission you earn based on your total sales x.

(b) The function Q(x) represents the amount by which your total sales x exceeds $6000.

(c) The composition (P∘Q)(x) represents the commission earned after the amount by which total sales exceed $6000 has been determined.

(d) The composition (Q∘P)(x) represents the amount by which the commission is subtracted from the total sales.

(e) S1(x) = 450 + 0.03(x − 6000) correctly computes your total earnings for the week by considering both the base salary and the commission earned on sales exceeding $6000.

(a) In this context, the function P(x) represents the commission you earn based on your total sales x. It is calculated as 3% of the total sales amount.

(b) The function Q(x) represents the amount by which your total sales x exceeds $6000. It calculates the difference between the total sales and the threshold of $6000.

(c) The composition (P∘Q)(x) represents the commission earned after the amount by which total sales exceed $6000 has been determined. It can be expressed as (P∘Q)(x) = P(Q(x)) = P(x − 6000) = 0.03(x − 6000).

(d) The composition (Q∘P)(x) represents the amount by which the commission is subtracted from the total sales. It can be expressed as (Q∘P)(x) = Q(P(x)) = Q(0.03x) = 0.03x − 6000.

(e) The function S1(x) = 450 + (P∘Q)(x) correctly computes your total earnings for the week. It takes into account the base salary of $450 and adds the commission earned after subtracting $6000 from the total sales. This is consistent with the understanding that your total earnings include both the base salary and the commission.

Function S2(x) = 450 + (Q∘P)(x) does not correctly compute your total earnings for the week. It adds the commission first and then subtracts $6000 from the total sales, which would result in an incorrect calculation of earnings.

To learn more about functions: https://brainly.com/question/11624077

#SPJ11

Graph the quadratic function of y=-4x^2-4x-1y=−4x 2 −4x−1

Answers

The graph of the quadratic function y = -4x^2 - 4x - 1 is a downward-opening parabola. To graph the quadratic function, we can analyze its key features, such as the vertex, axis of symmetry, and the direction of the parabola.

Vertex: The vertex of a quadratic function in the form y = ax^2 + bx + c is given by the coordinates (-b/2a, f(-b/2a)). In this case, a = -4 and b = -4. So, the x-coordinate of the vertex is -(-4)/(2(-4)) = 1/2. Substituting this x-value into the equation, we can find the y-coordinate:

f(1/2) = -4(1/2)^2 - 4(1/2) - 1 = -4(1/4) - 2 - 1 = -1.

Therefore, the vertex is (1/2, -1).

Axis of symmetry: The axis of symmetry is a vertical line passing through the vertex. In this case, the axis of symmetry is x = 1/2.

Direction of the parabola: Since the coefficient of the x^2 term is -4 (negative), the parabola opens downward.

With this information, we can plot the graph of the quadratic function.

The graph of the quadratic function y = -4x^2 - 4x - 1 is a downward-opening parabola. The vertex is located at (1/2, -1), and the axis of symmetry is the vertical line x = 1/2.

To know more about parabola , visit;

https://brainly.com/question/11911877

#SPJ11

3 of 25 After running a coiled tubing unit for 81 minutes, Tom has 9,153 feet of coiled tubing in the well. After running the unit another 10 minutes, he has 10,283 feet of tubing in the well. His call sheet shows he needs a total of 15,728 feet of tubing in the well. How many more feet of coiled tubing does he need to run into the well? feet 4 of 25 Brendan is running coiled tubing in the wellbore at a rate of 99.4 feet a minute. At the end of 8 minutes he has 795.2 feet of coiled tubing inside the wellbore. After 2 more minutes he has run an additional 198.8 feet into the wellbore. How many feet of coiled tubing did Brendan run in the wellbore altogether? 5 of 25 Coiled tubing is being run into a 22,000 foot wellbore at 69.9 feet per minute. It will take a little more than 5 hours to reach the bottom of the well. After the first four hours, how deep, in feet, is the coiled tubing? feet

Answers

3) The extra number of feet of coiled tubing Tom needs to run into the well is: 5445 ft

4) The total length of coiled tubing Brendan ran in the wellbore is: 994 ft

5) The distance that the coiled tubing has reached after the first four hours is:  a depth of 16,776 feet in the well.

How to solve Algebra Word Problems?

3) Initial amount of coiled tubing he had after 81 minutes = 9,153 feet

Amount of tubing after another 10 minutes = 10,283 feet

The total tubing required = 15,728 feet.

The extra number of feet of coiled tubing Tom needs to run into the well is: Needed tubing length - Current tubing length

15,728 feet - 10,283 feet = 5,445 feet

4) Speed at which Brendan is running coiled tubing = 99.4 feet per minute.

Coiled tubing inside the wellbore after 8 minutes is: 795.2 feet

Coiled tubing inside the wellbore after 2 more minutes is: 198.8 feet

The total length of coiled tubing Brendan ran in the wellbore is:

Total length = Initial length + Additional length

Total length =  795.2 feet + 198.8 feet

Total Length = 994 feet

5) Rate at which coiled tubing is being run into a 22,000-foot wellbore = 69.9 feet per minute. After the first four hours, we need to determine how deep the coiled tubing has reached.

A time of 4 hours is same as 240 minutes

Thus, the distance covered in the first four hours is:

Distance = Rate * Time

Distance = 69.9 feet/minute * 240 minutes

Distance = 16,776 feet

Read more about Algebra Word Problems at: https://brainly.com/question/21405634

#SPJ4

Consider an inverted conical tank (point down) whose top has a radius of 3 feet and that is 2 feet deep. The tank is initially empty and then is filled at a constant rate of 0.75 cubic feet per minute. Let V = f(t) denote the volume of water (in cubic feet) at time t in minutes, and let h = g(t) denote the depth of the water (in feet) at time t. It turns out that the formula for the function g is g(t) = (t/π)1/3
a. In everyday language, describe how you expect the height function h = g(t) to behave as time increases.
b. For the height function h = g(t) = (t/π)1/3, compute AV(0,2), AV[2,4], and AV4,6). Include units on your results.
c. Again working with the height function, can you determine an interval [a, b] on which AV(a,b) = 2 feet per minute? If yes, state the interval; if not, explain why there is no such interval.
d. Now consider the volume function, V = f(t). Even though we don't have a formula for f, is it possible to determine the average rate of change of the volume function on the intervals [0,2], [2, 4], and [4, 6]? Why or why not?

Answers

a. As time increases, the height function h = g(t) is expected to increase gradually. Since the formula for g(t) is (t/π)^(1/3), it indicates that the depth of the water is directly proportional to the cube root of time. Therefore, as time increases, the cube root of time will also increase, resulting in a greater depth of water in the tank.

b. To compute the average value of V(t) on the given intervals, we need to find the change in volume divided by the change in time. The average value AV(a, b) is given by AV(a, b) = (V(b) - V(a))/(b - a).

AV(0,2):

V(0) = 0 (initially empty tank)

V(2) = 0.75 * 2 = 1.5 cubic feet (constant filling rate)

AV(0,2) = (1.5 - 0)/(2 - 0) = 0.75 cubic feet per minute

AV[2,4]:

V(2) = 1.5 cubic feet (end of previous interval)

V(4) = 0.75 * 4 = 3 cubic feet

AV[2,4] = (3 - 1.5)/(4 - 2) = 0.75 cubic feet per minute

AV[4,6]:

V(4) = 3 cubic feet (end of previous interval)

V(6) = 0.75 * 6 = 4.5 cubic feet

AV[4,6] = (4.5 - 3)/(6 - 4) = 0.75 cubic feet per minute

c. To determine an interval [a, b] on which AV(a,b) = 2 feet per minute, we need to find a range of time during which the volume increases by 2 cubic feet per minute. However, since the volume function is not explicitly given and we only have the height function, we cannot directly compute the average rate of change of volume. Therefore, we cannot determine an interval [a, b] where AV(a, b) = 2 feet per minute based solely on the height function.

d. Although we don't have a formula for the volume function f(t), we can still determine the average rate of change of volume on the intervals [0, 2], [2, 4], and [4, 6]. This can be done by calculating the change in volume divided by the change in time, similar to how we computed the average value for the height function. The average rate of change of volume represents the average filling rate of the tank over a specific time interval.

Learn more about average value click here: brainly.com/question/28123159

#SPJ11

How many ways can you create words using the letters U,S,C where (i) each letter is used at least once; (ii) the total length is 6 ; (iii) at least as many U 's are used as S 's; (iv) at least as many S ′
's are used as C ′
's; (v) and the word is lexicographically first among all of its rearrangements.

Answers

We can create 19 words using the letters U, S, and C where each letter is used at least once and the total length is 6, and at least as many Us as Ss and at least as many Ss as Cs

The given letters are U, S, and C. There are 4 different cases we can create words using the letters U, S, and C.

All letters are distinct: In this case, we have 3 letters to choose from for the first letter, 2 letters to choose from for the second letter, and only 1 letter to choose from for the last letter.

So the total number of ways to create words using the letters U, S, and C is 3 x 2 x 1 = 6.

Two letters are the same and one letter is different: In this case, there are 3 ways to choose the letter that is different from the other two letters.

There are 3C2 = 3 ways to choose the positions of the two identical letters. The total number of ways to create words using the letters U, S, and C is 3 x 3 = 9.

Two letters are the same and the third letter is also the same: In this case, there are only 3 ways to create the word USC, USU, and USS.

All three letters are the same: In this case, we can only create one word, USC.So, the total number of ways to create words using the letters U, S, and C is 6 + 9 + 3 + 1 = 19

Therefore, we can create 19 words using the letters U, S, and C where each letter is used at least once and the total length is 6, and at least as many Us as Ss and at least as many Ss as Cs, and the word is lexicographically first among all of its rearrangements.

To know more about number of ways visit:

brainly.com/question/30649502

#SPJ11

public class BinarySearch \{ public static void main(Stringll args) f int [1]yl ist ={1,2,3,7,10,12,20}; int result = binarysearch ( inylist, 20); if (result =−1 ) System, out, println("Not found:"); else System.out.println("The index of the input key is " + result+ ". "): y public static int binarysearch(int]l List, int key) \{ int low =0; int high = iist. length −1 while (high >= low) \& int mid =( low + high )/2; if (key < List [mid] high = mid −1; else if (key =1 ist [ mid ] ) return inid; else low = mid +1; return −1; // Not found \} l TASK 4: Binary Search in descending order We have learned and practiced the implementation of the binary search approach that works on an array in ascending order. Now let's think about how to modify the above code to make it work on an array in descending order. Name your new binary search method as "binarysearch2". Implement your own code in Eclipse, and ensure it runs without errors. Submit your source code file (.java file) and your console output screenshot. Hint: In the ascending order case, our logic is as follows: int mid =( low + high )/2 if ( key < list [mid] ) else if (key = ist [mid]) return mid; In the descending order case; what should our logic be like? (Swap two lines in the above code.)

Answers

The task involves modifying the given code to implement binary search on an array in descending order. The logic of the code needs to be adjusted accordingly.

The task requires modifying the existing code to perform binary search on an array sorted in descending order. In the original code, the logic for the ascending order was based on comparing the key with the middle element of the list. However, in the descending order case, we need to adjust the logic.

To implement binary search on a descending array, we need to swap the order of the conditions in the code. Instead of checking if the key is less than the middle element, we need to check if the key is greater than the middle element. Similarly, the condition for equality also needs to be adjusted.

The modified code for binary search in descending order would look like this:

public static int binarysearch2(int[] list, int key) {

   int low = 0;

   int high = list.length - 1;

   while (high >= low) {

       int mid = (low + high) / 2;

       if (key > list[mid])

           high = mid - 1;

       else if (key < list[mid])

           low = mid + 1;

       else

           return mid;

   }

   return -1; // Not found

}

By swapping the conditions, we ensure that the algorithm correctly searches for the key in a descending ordered array.

For more information on array visit: brainly.com/question/30891254

#SPJ11

A United Nations report shows the mean family income for Mexican migrants to the United States is $26,450 per year. A FLOC (Farm Labor Organizing Committee) evaluation of 23 Mexican family units reveals a mean to be $37,190 with a sample standard deviation of $10,700. Does this information disagree with the United Nations report? Apply the 0.01 significance level.

(a) State the null hypothesis and the alternate hypothesis.

H0: µ = ________

H1: µ ? _________

(b) State the decision rule for .01 significance level. (Round your answers to 3 decimal places.)

Reject H0 if t is not between_______ and __________.

(c) Compute the value of the test statistic. (Round your answer to 2 decimal places.)

Value of the test statistic __________

(d) Does this information disagree with the United Nations report? Apply the 0.01 significance level.

Answers

(a) Null hypothesis (H₀): µ = $26,450

Alternate hypothesis (H1): µ ≠ $26,450

Reject H₀ if t is not between -2.807 and 2.807.

(c) Value of the test statistic 3.184.

(d) The information disagrees with the United Nations report at the 0.01 significance level since the calculated t-value falls outside the critical value range.

(a) State the null hypothesis and the alternate hypothesis:

The mean family income for Mexican migrants is $26,450 per year

H₀: µ = $26,450

The mean family income for Mexican migrants is not equal to $26,450 per year.

H₁: µ ≠ $26,450.

(b)

Reject H₀ if t is not between -2.807 and 2.807 (critical values for a two-tailed t-test with 22 degrees of freedom and a significance level of 0.01).

(c) Compute the value of the test statistic:

To compute the test statistic (t-value), we need the sample mean, the hypothesized population mean, the sample standard deviation, and the sample size.

Sample mean (X) = $37,190

Hypothesized population mean (µ) = $26,450

Sample standard deviation (s) = $10,700

Sample size (n) = 23

t-value = (X - µ) / (s / √n)

= ($37,190 - $26,450) / ($10,700 / √23)

= ($37,190 - $26,450) / ($10,700 / √23)

= $10,740 / ($10,700 / √23)

= 3.184

The calculated t-value is approximately 3.184.

d.  To determine if this information disagrees with the United Nations report, we compare the calculated t-value with the critical values for a two-tailed t-test with 22 degrees of freedom and a significance level of 0.01.

The critical values for a two-tailed t-test with a significance level of 0.01 and 22 degrees of freedom are approximately -2.807 and 2.807.

Since the calculated t-value of 3.184 falls outside the range -2.807 to 2.807, we reject the null hypothesis (H0) and conclude that there is evidence to suggest a disagreement with the United Nations report.

Therefore, based on the provided data and significance level, the information disagrees with the United Nations report.

To learn more on Statistics click:

https://brainly.com/question/30218856

#SPJ4

Consider the ODE dxdy​=2sech(4x)y7−x4y,x>0,y>0. Using the substitution u=y−6, the ODE can be written as dxdu​ (give your answer in terms of u and x only).

Answers

This equation represents the original ODE after the substitution has been made. dx/du = 2sech(4x)((u + 6)^7 - x^4(u + 6))

To find the ODE in terms of u and x using the given substitution, we start by expressing y in terms of u:

u = y - 6

Rearranging the equation, we get:

y = u + 6

Next, we differentiate both sides of the equation with respect to x:

dy/dx = du/dx

Now, we substitute the expressions for y and dy/dx back into the original ODE:

dx/dy = 2sech(4x)(y^7 - x^4y)

Replacing y with u + 6, we have:

dx/dy = 2sech(4x)((u + 6)^7 - x^4(u + 6))

Finally, we substitute dy/dx = du/dx back into the equation:

dx/du = 2sech(4x)((u + 6)^7 - x^4(u + 6))

Thus, the ODE in terms of u and x is:

dx/du = 2sech(4x)((u + 6)^7 - x^4(u + 6))

This equation represents the original ODE after the substitution has been made.

Learn more about ODE

https://brainly.com/question/31593405

#SPJ11

Assume a Poisson distribution. a. If λ=2.5, find P(X=3). b. If λ=8.0, find P(X=9). c. If λ=0.5, find P(X=4). d. If λ=3.7, find P(X=1).

Answers

The probability that X=1 for condition

λ=3.7 is 0.0134.

Assuming a Poisson distribution, to find the probability of a random variable X, that can take values from 0 to infinity, for a given parameter λ of the Poisson distribution, we use the formula

P(X=x) = ((e^-λ) * (λ^x))/x!

where x is the random variable value, e is the Euler's number which is approximately equal to 2.718, and x! is the factorial of x.

Using these formulas, we can calculate the probabilities of the given values of x for the given values of λ.

a. Given λ=2.5, we need to find P(X=3).

Using the formula for Poisson distribution

P(X=3) = ((e^-2.5) * (2.5^3))/3!

P(X=3) = ((e^-2.5) * (15.625))/6

P(X=3) = 0.0667 (rounded to 4 decimal places)

Therefore, the probability that X=3 when

λ=2.5 is 0.0667.

b. Given λ=8.0,

we need to find P(X=9).

Using the formula for Poisson distribution

P(X=9) = ((e^-8.0) * (8.0^9))/9!

P(X=9) = ((e^-8.0) * 262144.0))/362880

P(X=9) = 0.1054 (rounded to 4 decimal places)

Therefore, the probability that X=9 when

λ=8.0 is 0.1054.

c. Given λ=0.5, we need to find P(X=4).

Using the formula for Poisson distribution

P(X=4) = ((e^-0.5) * (0.5^4))/4!

P(X=4) = ((e^-0.5) * 0.0625))/24

P(X=4) = 0.0111 (rounded to 4 decimal places)

Therefore, the probability that X=4 when

λ=0.5 is 0.0111.

d. Given λ=3.7, we need to find P(X=1).

Using the formula for Poisson distribution

P(X=1) = ((e^-3.7) * (3.7^1))/1!

P(X=1) = ((e^-3.7) * 3.7))/1

P(X=1) = 0.0134 (rounded to 4 decimal places)

Therefore, the probability that X=1 when

λ=3.7 is 0.0134.

To know more about probability visit

https://brainly.com/question/32004014

#SPJ11


Flip a coin that results in Heads with prob. 1/4, and Tails with
probability 3/4.
If the result is Heads, pick X to be Uniform(5,11)
If the result is Tails, pick X to be Uniform(10,20). Find
E(X).

Answers

Option (C) is correct.

Given:

- Flip a coin that results in Heads with a probability of 1/4 and Tails with a probability of 3/4.

- If the result is Heads, pick X to be Uniform(5,11).

- If the result is Tails, pick X to be Uniform(10,20).

We need to find E(X).

Formula used:

Expected value of a discrete random variable:

X: random variable

p: probability

f(x): probability distribution of X

μ = ∑[x * f(x)]

Case 1: Heads

If the coin flips Heads, then X is Uniform(5,11).

Therefore, f(x) = 1/6, 5 ≤ x ≤ 11, and 0 otherwise.

Using the formula, we have:

μ₁ = ∑[x * f(x)]

Where x varies from 5 to 11 and f(x) = 1/6

μ₁ = (5 * 1/6) + (6 * 1/6) + (7 * 1/6) + (8 * 1/6) + (9 * 1/6) + (10 * 1/6) + (11 * 1/6)

μ₁ = 35/6

Case 2: Tails

If the coin flips Tails, then X is Uniform(10,20).

Therefore, f(x) = 1/10, 10 ≤ x ≤ 20, and 0 otherwise.

Using the formula, we have:

μ₂ = ∑[x * f(x)]

Where x varies from 10 to 20 and f(x) = 1/10

μ₂ = (10 * 1/10) + (11 * 1/10) + (12 * 1/10) + (13 * 1/10) + (14 * 1/10) + (15 * 1/10) + (16 * 1/10) + (17 * 1/10) + (18 * 1/10) + (19 * 1/10) + (20 * 1/10)

μ₂ = 15

Case 3: Both of the above cases occur with probabilities 1/4 and 3/4, respectively.

Using the formula, we have:

E(X) = μ = μ₁ * P(Heads) + μ₂ * P(Tails)

E(X) = (35/6) * (1/4) + 15 * (3/4)

E(X) = (35/6) * (1/4) + (270/4)

E(X) = (35/24) + (270/24)

E(X) = (305/24)

Therefore, E(X) = 305/24.

Learn more about probability

https://brainly.com/question/31828911

#SPJ11

Find a degree 3 polynomial having zeros 1,-1 and 2 and leading coefficient equal to 1 . Leave the answer in factored form.

Answers

A polynomial of degree 3 having zeros at 1, -1 and 2 and leading coefficient 1 is required. Let's begin by finding the factors of the polynomial.

Explanation Since 1, -1 and 2 are the zeros of the polynomial, their respective factors are:

[tex](x-1), (x+1) and (x-2)[/tex]

Multiplying all the factors gives us the polynomial:

[tex]p(x)= (x-1)(x+1)(x-2)[/tex]

Expanding this out gives us:

[tex]p(x) = (x^2 - 1)(x-2)[/tex]

[tex]p(x) = x^3 - 2x^2 - x + 2[/tex]

To know more about polynomial visit:

https://brainly.com/question/26227783

#SPJ11

Latifa opens a savings account with AED 450. Each month, she deposits AED 125 into her account and does not withdraw any money from it. Write an equation in slope -intercept form of the total amount y

Answers

Therefore, the equation in slope-intercept form for the total amount, y, as a function of the number of months, x, is y = 125x + 450.

To write the equation in slope-intercept form, we need to express the total amount, y, as a function of the number of months, x. Given that Latifa opens her savings account with AED 450 and deposits AED 125 each month, the equation can be written as:

y = 125x + 450

In this equation: The coefficient of x, 125, represents the slope of the line. It indicates that the total amount increases by AED 125 for each month. The constant term, 450, represents the y-intercept. It represents the initial amount of AED 450 in the savings account.

To know more about equation,

https://brainly.com/question/29027288

#SPJ11

Wendy's cupcakes cost P^(10) a box. If the cupcakes are sold for P^(16), what is the percent of mark -up based on cost?

Answers

The percent markup based on cost is (P^(6) - 1) x 100%.

To calculate the percent markup based on cost, we need to find the difference between the selling price and the cost, divide that difference by the cost, and then express the result as a percentage.

The cost of a box of Wendy's cupcakes is P^(10). The selling price is P^(16). So the difference between the selling price and the cost is:

P^(16) - P^(10)

We can simplify this expression by factoring out P^(10):

P^(16) - P^(10) = P^(10) (P^(6) - 1)

Now we can divide the difference by the cost:

(P^(16) - P^(10)) / P^(10) = (P^(10) (P^(6) - 1)) / P^(10) = P^(6) - 1

Finally, we can express the result as a percentage by multiplying by 100:

(P^(6) - 1) x 100%

Therefore, the percent markup based on cost is (P^(6) - 1) x 100%.

learn more about percent markup here

https://brainly.com/question/5189512

#SPJ11

If matrix A has det(A)=−2, and B is the matrix foed when two elementary row operations are perfoed on A, what is det(B) ? det(B)=−2 det(B)=4 det(B)=−4 More infoation is needed to find the deteinant. det(B)=2

Answers

The determinant of the matrix B is (a) det(A) = -2

How to calculate the determinant of the matrix B

from the question, we have the following parameters that can be used in our computation:

det(A) = -2

We understand that

B is the matrix formed when two elementary row operations are performed on A

By definition;

The determinant of a matrix is unaffected by elementary row operations.

using the above as a guide, we have the following:

det(B) = det(A) = -2.

Hence, the determinant of the matrix B is -2

Read more about matrix at

https://brainly.com/question/11989522

#SPJ1

1. Which of the following are differential cquations? Circle all that apply. (a) m dtdx =p (c) y ′ =4x 2 +x+1 (b) f(x,y)=x 2e 3xy (d) dt 2d 2 z​ =x+21 2. Determine the order of the DE:dy/dx+2=−9x.

Answers

The order of the given differential equation dy/dx + 2 = -9x is 1.

The differential equations among the given options are:

(a) m dtdx = p

(c) y' = 4x^2 + x + 1

(d) dt^2 d^2z/dx^2 = x + 2

Therefore, options (a), (c), and (d) are differential equations.

Now, let's determine the order of the differential equation dy/dx + 2 = -9x.

The order of a differential equation is determined by the highest order derivative present in the equation. In this case, the highest order derivative is dy/dx, which is a first-order derivative.

Learn more about differential equation here

https://brainly.com/question/32645495

#SPJ11

The cost of operating a Frisbee company in the first year is $10,000 plus $2 for each Frisbee. Assuming the company sells every Frisbee it makes in the first year for $7, how many Frisbees must the company sell to break even? A. 1,000 B. 1,500 C. 2,000 D. 2,500 E. 3,000

Answers

The revenue can be calculated by multiplying the selling price per Frisbee ($7) , company must sell 2000 Frisbees to break even. The answer is option C. 2000.

In the first year, a Frisbee company's operating cost is $10,000 plus $2 for each Frisbee.

The company sells each Frisbee for $7.

The number of Frisbees the company must sell to break even is the point where its revenue equals its expenses.

To determine the number of Frisbees the company must sell to break even, use the equation below:

Revenue = Expenseswhere, Revenue = Price of each Frisbee sold × Number of Frisbees sold

Expenses = Operating cost + Cost of producing each Frisbee

Using the values given in the question, we can write the equation as:

To break even, the revenue should be equal to the cost.

Therefore, we can set up the following equation:

$7 * x = $10,000 + $2 * x

Now, we can solve this equation to find the value of x:

$7 * x - $2 * x = $10,000

Simplifying:

$5 * x = $10,000

Dividing both sides by $5:

x = $10,000 / $5

x = 2,000

7x = 2x + 10000

Where x represents the number of Frisbees sold

Multiplying 7 on both sides of the equation:7x = 2x + 10000  

5x = 10000x = 2000

For more related questions on revenue:

https://brainly.com/question/29567732

#SPJ8

Write the balanced net ionic equation for the reaction that occurs in the following case: {Cr}_{2}({SO}_{4})_{3}({aq})+({NH}_{4})_{2} {CO}_{

Answers

The balanced net ionic equation for the reaction between Cr₂(SO₄)3(aq) and (NH₄)2CO₃(aq) is Cr₂(SO₄)3(aq) + 3(NH4)2CO₃(aq) -> Cr₂(CO₃)3(s). This equation represents the chemical change where solid Cr₂(CO₃)3 is formed, and it omits the spectator ions (NH₄)+ and (SO₄)2-.

To write the balanced net ionic equation, we first need to write the complete balanced equation for the reaction, and then eliminate any spectator ions that do not participate in the overall reaction.

The balanced complete equation for the reaction between Cr₂(SO₄)₃(aq) and (NH₄)2CO₃(aq) is:

Cr₂(SO₄)₃(aq) + 3(NH₄)2CO₃(aq) -> Cr₂(CO₃)₃(s) + 3(NH₄)2SO₄(aq)

To write the net ionic equation, we need to eliminate the spectator ions, which are the ions that appear on both sides of the equation without undergoing any chemical change. In this case, the spectator ions are (NH₄)+ and (SO₄)₂-.

The net ionic equation for the reaction is:

Cr₂(SO₄)3(aq) + 3(NH₄)2CO₃(aq) -> Cr₂(CO₃)3(s)

In the net ionic equation, only the species directly involved in the chemical change are shown, which in this case is the formation of solid Cr₂(CO₃)₃.

To know more about net ionic equation refer here:

https://brainly.com/question/13887096#

#SPJ11

Give three examples of Bernoulli rv's (other than those in the text). (Select all that apply.) X=1 if a randomly selected lightbulb needs to be replaced and X=0 otherwise. X - the number of food items purchased by a randomly selected shopper at a department store and X=0 if there are none. X= the number of lightbulbs that needs to be replaced in a randomly selected building and X=0 if there are none. X= the number of days in a year where the high temperature exceeds 100 degrees and X=0 if there are none. X=1 if a randomly selected shopper purchases a food item at a department store and X=0 otherwise. X=1 if a randomly selected day has a high temperature of over 100 degrees and X=0 otherwise.

Answers

A Bernoulli distribution represents the probability distribution of a random variable with only two possible outcomes.

Three examples of Bernoulli rv's are as follows:

X = 1 if a randomly selected lightbulb needs to be replaced and X = 0 otherwise X = 1 if a randomly selected shopper purchases a food item at a department store and X = 0 otherwise X = 1 if a randomly selected day has a high temperature of over 100 degrees and X = 0 otherwise. These are the Bernoulli random variables. A Bernoulli trial is a random experiment that has two outcomes: success and failure. These trials are used to create Bernoulli random variables (r.v. ) that follow a Bernoulli distribution.

In Bernoulli's distribution, p denotes the probability of success, and q = 1 - p denotes the probability of failure. It's a type of discrete probability distribution that describes the probability of a single Bernoulli trial. the above three Bernoulli rv's that are different from those given in the text.

A Bernoulli distribution represents the probability distribution of a random variable with only two possible outcomes.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

Assuming the population has an approximate normal distribution, if a sample size n = 30 has a sample mean = 41 with a sample standard deviation s = 10, find the margin of error at a 98% confidence level.
("Margin of error" is the same as "EBM - Error Bound for a population Mean" in your text and notesheet.) Round the answer to two decimal places.

Answers

The margin of error at a 98% confidence level is approximately 4.26.To find the margin of error (EBM - Error Bound for a Population Mean) at a 98% confidence level.

We need to use the formula:

Margin of Error = Z * (s / sqrt(n))

where Z is the z-score corresponding to the desired confidence level, s is the sample standard deviation, and n is the sample size.

For a 98% confidence level, the corresponding z-score is 2.33 (obtained from the standard normal distribution table).

Plugging in the values into the formula:

Margin of Error = 2.33 * (10 / sqrt(30))

Calculating the square root and performing the division:

Margin of Error ≈ 2.33 * (10 / 5.477)

Margin of Error ≈ 4.26

Therefore, the margin of error at a 98% confidence level is approximately 4.26.

Learn more about margin of error here:

https://brainly.com/question/29100795


#SPJ11

6. (i) Find the image of the triangle region in the z-plane bounded by the lines x=0, y=0 and x+y=1 under the transformation w=(1+2 i) z+(1+i) . (ii) Find the image of the region boun

Answers

i. We create a triangle in the w-plane by connecting these locations.

ii. We create a quadrilateral in the w-plane by connecting these locations.

(i) To find the image of the triangle region in the z-plane bounded by the lines x=0, y=0, and x+y=1 under the transformation w=(1+2i)z+(1+i), we can substitute the vertices of the triangle into the transformation equation and examine the resulting points in the w-plane.

Let's consider the vertices of the triangle:

Vertex 1: (0, 0)

Vertex 2: (1, 0)

Vertex 3: (0, 1)

For Vertex 1: z = 0

w = (1+2i)(0) + (1+i) = 1+i

For Vertex 2: z = 1

w = (1+2i)(1) + (1+i) = 2+3i

For Vertex 3: z = i

w = (1+2i)(i) + (1+i) = -1+3i

Now, let's plot these points in the w-plane:

Vertex 1: (1, 1)

Vertex 2: (2, 3)

Vertex 3: (-1, 3)

Connecting these points, we obtain a triangle in the w-plane.

(ii) To find the image of the region bounded by 1≤x≤2 and 1≤y≤2 under the transformation w=z², we can substitute the boundary points of the region into the transformation equation and examine the resulting points in the w-plane.

Let's consider the boundary points:

Point 1: (1, 1)

Point 2: (2, 1)

Point 3: (2, 2)

Point 4: (1, 2)

For Point 1: z = 1+1i

w = (1+1i)² = 1+2i-1 = 2i

For Point 2: z = 2+1i

w = (2+1i)² = 4+4i-1 = 3+4i

For Point 3: z = 2+2i

w = (2+2i)² = 4+8i-4 = 8i

For Point 4: z = 1+2i

w = (1+2i)² = 1+4i-4 = -3+4i

Now, let's plot these points in the w-plane:

Point 1: (0, 2)

Point 2: (3, 4)

Point 3: (0, 8)

Point 4: (-3, 4)

Connecting these points, we obtain a quadrilateral in the w-plane.

Learn more about triangle on:

https://brainly.com/question/11070154

#SPJ11

15. Considering the following square matrices P
Q
R

=[ 5
1

−2
4

]
=[ 0
−4

7
9

]
=[ 3
8

8
−6

]

85 (a) Show that matrix multiplication satisfies the associativity rule, i.e., (PQ)R= P(QR). (b) Show that matrix multiplication over addition satisfies the distributivity rule. i.e., (P+Q)R=PR+QR. (c) Show that matrix multiplication does not satisfy the commutativity rule in geteral, s.e., PQ

=QP (d) Generate a 2×2 identity matrix. I. Note that the 2×2 identity matrix is a square matrix in which the elements on the main dingonal are 1 and all otber elements are 0 . Show that for a square matrix, matris multiplioation satiefies the rules P1=IP=P. 16. Solve the following system of linear equations using matrix algebra and print the results for unknowna. x+y+z=6
2y+5z=−4
2x+5y−z=27

Answers

Matrix multiplication satisfies the associativity rule A. We have (PQ)R = P(QR).

B. We have (P+Q)R = PR + QR.

C. We have PQ ≠ QP in general.

D. We have P I = IP = P.

E. 1/51 [-29 12 17; 10 -3 -2; 25 -10 -7]

(a) We have:

(PQ)R = ([5 1; -2 4] [0 -4; 7 9]) [3 8; 8 -6]

= [(-14) 44; (28) (-20)] [3 8; 8 -6]

= [(-14)(3) + 44(8) (-14)(8) + 44(-6); (28)(3) + (-20)(8) (28)(8) + (-20)(-6)]

= [244 112; 44 256]

P(QR) = [5 1; -2 4] ([0 7; -4 9] [3 8; 8 -6])

= [5 1; -2 4] [56 -65; 20 -28]

= [5(56) + 1(20) 5(-65) + 1(-28); -2(56) + 4(20) -2(-65) + 4(-28)]

= [300 -355; 88 -134]

Thus, we have (PQ)R = P(QR).

(b) We have:

(P+Q)R = ([5 1; -2 4] + [0 -4; 7 9]) [3 8; 8 -6]

= [5 -3; 5 13] [3 8; 8 -6]

= [5(3) + (-3)(8) 5(8) + (-3)(-6); 5(3) + 13(8) 5(8) + 13(-6)]

= [-19 46; 109 22]

PR + QR = [5 1; -2 4] [3 8; 8 -6] + [0 -4; 7 9] [3 8; 8 -6]

= [5(3) + 1(8) (-2)(8) + 4(-6); (-4)(3) + 9(8) (7)(3) + 9(-6)]

= [7 -28; 68 15]

Thus, we have (P+Q)R = PR + QR.

(c) We have:

PQ = [5 1; -2 4] [0 -4; 7 9]

= [5(0) + 1(7) 5(-4) + 1(9); (-2)(0) + 4(7) (-2)(-4) + 4(9)]

= [7 -11; 28 34]

QP = [0 -4; 7 9] [5 1; -2 4]

= [0(5) + (-4)(-2) 0(1) + (-4)(4); 7(5) + 9(-2) 7(1) + 9(4)]

= [8 -16; 29 43]

Thus, we have PQ ≠ QP in general.

(d) The 2×2 identity matrix is given by:

I = [1 0; 0 1]

For any square matrix P, we have:

P I = [P11 P12; P21 P22] [1 0; 0 1]

= [P11(1) + P12(0) P11(0) + P12(1); P21(1) + P22(0) P21(0) + P22(1)]

= [P11 P12; P21 P22] = P

Similarly, we have:

IP = [1 0; 0 1] [P11 P12; P21 P22]

= [1(P11) + 0(P21) 1(P12) + 0(P22); 0(P11) + 1(P21) 0(P12) + 1(P22)]

= [P11 P12; P21 P22] = P

Thus, we have P I = IP = P.

(e) The system of linear equations can be written in matrix form as:

[1 1 1; 0 2 5; 2 5 -1] [x; y; z] = [6; -4; 27]

We can solve for [x; y; z] using matrix inversion:

[1 1 1; 0 2 5; 2 5 -1]⁻¹ = 1/51 [-29 12 17; 10 -3 -2; 25 -10 -7]

Learn more about matrix from

https://brainly.com/question/27929071

#SPJ11

Two friends, Hayley and Tori, are working together at the Castroville Cafe today. Hayley works every 8 days, and Tori works every 4 days. How many days do they have to wait until they next get to work

Answers

Hayley and Tori will have to wait 8 days until they next get to work together.

To determine the number of days they have to wait until they next get to work together, we need to find the least common multiple (LCM) of their work cycles, which are 8 days for Hayley and 4 days for Tori.

The LCM of 8 and 4 is the smallest number that is divisible by both 8 and 4. In this case, it is 8, as 8 is divisible by both 8 and 4.

Therefore, Hayley and Tori will have to wait 8 days until they next get to work together.

We can also calculate this by considering the cycles of their work schedules. Hayley works every 8 days, so her work days are 8, 16, 24, 32, and so on. Tori works every 4 days, so her work days are 4, 8, 12, 16, 20, 24, and so on. The common day in both schedules is 8, which means they will next get to work together on day 8.

Hence, the answer is that they have to wait 8 days until they next get to work together.

To know more about Number visit-

brainly.com/question/3589540

#SPJ11

A machine cell uses 196 pounds of a certain material each day. Material is transported in vats that hold 26 pounds each. Cycle time for the vats is about 2.50 hours. The manager has assigned an inefficiency factor of 25 to the cell. The plant operates on an eight-hour day. How many vats will be used? (Round up your answer to the next whole number.)

Answers

The number of vats to be used is 8

Given: Weight of material used per day = 196 pounds

Weight of each vat = 26 pounds

Cycle time for each vat = 2.5 hours

Inefficiency factor assigned by manager = 25%

Time available for each day = 8 hours

To calculate the number of vats to be used, we need to calculate the time required to transport the total material by the available vats.

So, the number of vats required = Total material weight / Weight of each vat

To calculate the total material weight transported in 8 hours, we need to calculate the time required to transport the weight of one vat.

Total time to transport one vat = Cycle time for each vat / Inefficiency factor

Time to transport one vat = 2.5 / 1.25

(25% inefficiency = 1 - 0.25 = 0.75 efficiency factor)

Time to transport one vat = 2 hours

Total number of vats required = Total material weight / Weight of each vat

Total number of vats required = 196 / 26 = 7.54 (approximately)

Therefore, the number of vats to be used is 8 (rounded up to the next whole number).

Answer: 8 vats will be used.

To know more about vats visit:

https://brainly.com/question/20628016

#SPJ11

The sum of the digits of a two-digit number is seventeen. The number with the digits reversed is thirty more than 5 times the tens' digit of the original number. What is the original number?

Answers

The original number is 10t + o = 10(10) + 7 = 107.

Let's call the tens digit of the original number "t" and the ones digit "o".

From the problem statement, we know that:

t + o = 17   (Equation 1)

And we also know that the number with the digits reversed is thirty more than 5 times the tens' digit of the original number. We can express this as an equation:

10o + t = 5t + 30   (Equation 2)

We can simplify Equation 2 by subtracting t from both sides:

10o = 4t + 30

Now we can substitute Equation 1 into this equation to eliminate o:

10(17-t) = 4t + 30

Simplifying this equation gives us:

170 - 10t = 4t + 30

Combining like terms gives us:

140 = 14t

Dividing both sides by 14 gives us:

t = 10

Now we can use Equation 1 to solve for o:

10 + o = 17

o = 7

So the original number is 10t + o = 10(10) + 7 = 107.

Learn more about number  from

https://brainly.com/question/27894163

#SPJ11

Find the lines that are (a) tangent and (b) normal to the curve y=2x^(3) at the point (1,2).

Answers

The equations of the lines that are (a) tangent and (b) normal to the curve y = 2x³ at the point (1, 2) are:

y = 6x - 4 (tangent)y

= -1/6 x + 13/6 (normal)

Given, the curve y = 2x³.

Let's find the slope of the curve y = 2x³.

Using the Power Rule of differentiation,

dy/dx = 6x²

Now, let's find the slope of the tangent at point (1, 2) on the curve y = 2x³.

Substitute x = 1 in dy/dx

= 6x²

Therefore,

dy/dx at (1, 2) = 6(1)²

= 6

Hence, the slope of the tangent at (1, 2) is 6.The equation of the tangent line in point-slope form is y - y₁ = m(x - x₁).

Substituting the given values,

m = 6x₁

= 1y₁

= 2

Thus, the equation of the tangent line to the curve y = 2x³ at the point

(1, 2) is: y - 2 = 6(x - 1).

Simplifying, we get, y = 6x - 4.

To find the normal line, we need the slope.

As we know the tangent's slope is 6, the normal's slope is the negative reciprocal of 6.

Normal's slope = -1/6

Now we can use point-slope form to find the equation of the normal at

(1, 2).

y - y₁ = m(x - x₁)

Substituting the values of the point (1, 2) and

the slope -1/6,y - 2 = -1/6(x - 1)

Simplifying, we get,

y = -1/6 x + 13/6

Therefore, the equations of the lines that are (a) tangent and (b) normal to the curve y = 2x³ at the point (1, 2) are:

y = 6x - 4 (tangent)y

= -1/6 x + 13/6 (normal)

To know more about Power Rule, visit:

https://brainly.com/question/30226066

#SPJ11

Apply the Empirical Rule to identify the values and percentages within one, two, and three standard deviations for cell phone bills with an average of $55.00 and a standard deviation of $11.00.

Answers

The values and percentages within one, two, and three standard deviations for cell phone bills with an average of $55.00 and a standard deviation of $11.00 are:$44.00 to $66.00 with 68% of values $33.00 to $77.00 with 95% of values $22.00 to $88.00 with 99.7% of values.


The Empirical Rule can be applied to find out the percentage of values within one, two, or three standard deviations from the mean for a given set of data.

For the given set of data of cell phone bills with an average of $55.00 and a standard deviation of $11.00,we can apply the Empirical Rule to identify the values and percentages within one, two, and three standard deviations.

The Empirical Rule is as follows:About 68% of the values lie within one standard deviation from the mean.About 95% of the values lie within two standard deviations from the mean.About 99.7% of the values lie within three standard deviations from the mean.

Using the above rule, we can identify the values and percentages within one, two, and three standard deviations for cell phone bills with an average of $55.00 and a standard deviation of $11.00 as follows:

One Standard Deviation:One standard deviation from the mean is given by $55.00 ± $11.00 = $44.00 to $66.00.

The percentage of values within one standard deviation from the mean is 68%.

Two Standard Deviations:Two standard deviations from the mean is given by $55.00 ± 2($11.00) = $33.00 to $77.00.

The percentage of values within two standard deviations from the mean is 95%.

Three Standard Deviations:Three standard deviations from the mean is given by $55.00 ± 3($11.00) = $22.00 to $88.00.

The percentage of values within three standard deviations from the mean is 99.7%.

Thus, the values and percentages within one, two, and three standard deviations for cell phone bills with an average of $55.00 and a standard deviation of $11.00 are:$44.00 to $66.00 with 68% of values$33.00 to $77.00 with 95% of values$22.00 to $88.00 with 99.7% of values.


To know more about standard deviations click here:

https://brainly.com/question/13498201

#SPJ11

Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval.
x^4+x-3=0 (1,2)
f_1(x)=x^4+x-3 is on the closed interval [1, 2], f(1) =,f(2)=,since=1
Intermediate Value Theorem. Thus, there is a of the equation x^4+x-3-0 in the interval (1, 2).

Answers

Since f(1) and f(2) have opposite signs, there must be a root of the equation x4 + x − 3 = 0 in the interval (1,2).

Intermediate Value Theorem:

The theorem claims that if a function is continuous over a certain closed interval [a,b], then the function takes any value that lies between f(a) and f(b), inclusive, at some point within the interval.

Here, we have to show that the equation x4 + x − 3 = 0 has a root on the interval (1,2).We have:

f1(x) = x4 + x − 3 on the closed interval [1,2].

Then, the values of f(1) and f(2) are:

f(1) = 1^4 + 1 − 3 = −1, and

f(2) = 2^4 + 2 − 3 = 15.

We know that since f(1) and f(2) have opposite signs, there must be a root of the equation x4 + x − 3 = 0 in the interval (1,2), according to the Intermediate Value Theorem.

Thus, there is a root of the equation x4 + x − 3 = 0 in the interval (1,2).Therefore, the answer is:

By using the Intermediate Value Theorem, we have shown that there is a root of the equation x4 + x − 3 = 0 in the interval (1,2).

The values of f(1) and f(2) are f(1) = −1 and f(2) = 15.

To know more about Intermediate Value Theorem visit:

https://brainly.com/question/29712240

#SPJ11

Solve the problem. Show your work. There are 95 students on a field trip and 19 students on each buls. How many buses of students are there on the field trip?

Answers

Sorry for bad handwriting

if i was helpful Brainliests my answer ^_^

Solve the equation.
2x+3-2x = -+²x+5
42
If necessary:
Combine Terms
Apply properties:
Add
Multiply
Subtract
Divide

Answers

The solution to the equation is -1.5 or -3/2.

How to solve equations?

We have the equation:

x² + 3-2x= 1+ x² +5

Combine Terms and subtract x² from both sides:

x² - x² + 3 -2x = 1 + 5 + x² - x²

3 -2x = 1 + 5

Add:

3 -2x = 6

Combine Terms and subtract 3 from both sides:

-2x + 3 -3 = 6 - 3

-2x = 3

Dividing by -2 we get:

x = 3/(-2)

x = -3/2

x = -1.5

Learn more about equations on:

brainly.com/question/19297665

#SPJ1

Other Questions
how is the chef's chicken sandwich packaged to go? the sandwich is wrapped in a turbochef paper then placed in a tear-away box. the box is sealed with a hot sandwich sticker with flavor marked, careful to not cover the tear-away strip. the sandwich is wrapped in a turbochef paper and sealed with a hot sandwich sticker with flavor marked. the sandwich is wrapped in a cold sandwich wrapper then placed in a clamshell. the box is sealed with a san 21 Dec The owner informed the accountant that he had taken sanitizer with a cost of R12 260.00 (excluding VAT) for his own use. 24 Dec Cash register till slips (16/12/2018 - 24/12/2018) for cash sales of: R44 464.00. Deposited 27 Dec 2018. 24 Dec The owner withdrew cash of R48 286.00 from the entitys bank account to pay employee salaries. 6 FRK 121/122 Assignment Information 2022 29 Dec The owner instructed the accountant to calculate interest at 8% per annum on the balance owing by C Hemsworth which had been in arrears for 7 months at this date. 30 Dec An EFT of R6 000.00 was issued to the owner, for his personal cell phone account. 31 Dec A proof of payment via EFT was received for R600.00 from Martin Goodman Attorneys. Refer to letter received from the attorneys. 31 Dec Received an invoice from T Hardy for R4 020.00 in respect of office equipment purchased. The current residual value is estimated to be R1 020.00. 31 Dec Cash register till slips (27/12/2018 - 31/12/2018) for cash sales of: R64 108.00. Deposited 2 Jan 20X8. 31 Dec A direct deposit was received from Ragnarock Attorneys for R4 000.00 in respect of an amount that they collected for the account of L Loki. According to the accounting records, this amount had been written off as irrecoverable in a prior period. 31 Dec A EFT for R4 560.00 was issued for advertisements which appeared in local magazines during December 2018. 31 Dec Issued a credit sales invoice to R Downey for purchases of sanitizer R2 996.00. Invoice AB52 was subsequently received from H Cavill for the delivery costs of 10% (including VAT) on the value of the sanitizer sold to R Downey. 31 Dec Cash of R1 016.00 was withdrawn by the accountant from the entitys bank account to re-instate the petty cash balance on hand to R1 600.00. 31 Dec Stan Lee, the owner has been discussing the sale of some office equipment with his close friend and they decided to finalise the deal before year-end. The equipment was initially purchased on 1 April 2015 for R16 000.00, and was sold to Tony Stark for R10 000.00 on 1 December 2018. No entry has been made for this transaction. Tony Stark is not registered as a VAT vendor, and agreed to pay the amount due before the end of June 2019. - All of the office equipment items on the asset register, except those purchased during the current year, were purchased and ready for use on 1 April 2015. - Office equipment is depreciated at 15% per annum in accordance with the reducing balance method. General Journal, Creditors ledger and Debtors Ledger ANSWER PLS. For C18 stationary phase, which mobile phase is expected to give the longest elution time ? * [ acetonitrile acetonitrile 20% - Water 80% acetonitrile 80% - Water 20% acetonitrile 50% - Water 50% 17. Which of the following methods can be used to overcome detector fluctuations? * [] spiking degassing standard addition method internal standard method 11. Which effort will cause a firm to lower its sustainable growth rate? A. Plowing back a high proportion of its earnings B. Achieving a high return on equity C. Increasing the current dividend per share by 50% D. Maintaining a high sales-to-total assets ratioPrevious question A patient is taking omeprazole (Prilosec) for the treatment of gastroesophageal reflux disease (GERD). The nurse will include which statement in the teaching plan about this medication?a."Take this medication once a day after breakfast."b."You will be on this medication for only 2 weeks for treatment of the reflux disease."c."The medication may be dissolved in a liquid for better absorption."d."The entire capsule must be taken whole, not crushed, chewed, or opened." vertex at (4,3), axis of symmetry with equation y=3, length of latus rectums 4, and 4p>0 Negative externalities commonly affect public resources where it is difficult to hold parties accountable, such as in a case of environmental pollution.(a) Explain with FIVE examples the negative production externalities (10 MARKS)b) Describe FIVE solutions in which the local municipal council might respond to this negative externality Which is a response by the skin that promotes the healing of a wound? minimize the flow of blood to the site produce salty sweat to cleanse the site initiate cell division protect against uv light. tanning parlor located in a major located in a major shopping center near a large new england city has the following history of customers over the last four years (data are in hundreds of customers) year feb may aug nov yearly totals 2012 3.5 2.9 2.0 3.2 11.6 2013 4.1 3.4 2.9 3.6 14 2014 5.2 4.5 3.1 4.5 17.3 2015 6.1 5.0 4.4 6.0 21.5 because genetic information is transmitted from one generation to the next which of the following is observed? True or False. A small business has a great deal of control over its environment Classification using Nearest Neighbour and Bayes theorem As output from an imaging system we get a measurement that depends on what we are seeing. For three different classes of objects we get the following measurements. Class 1 : 0.4003,0.3985,0.3998,0.3997,0.4015,0.3995,0.3991 Class 2: 0.2554,0.3139,0.2627,0.3802,0.3247,0.3360,0.2974 Class 3: 0.5632,0.7687,0.0524,0.7586,0.4443,0.5505,0.6469 3.1 Nearest Neighbours Use nearest neighbour classification. Assume that the first four measurements in each class are used for training and the last three for testing. How many measurements will be correctly classified? 2. (14 points) Find a function F(n) with the property that the graph of y- F(x) is theresult of applying the following transformations to the graph ofv=1+2r. First, stretch the graph horizontally by a factor of 4, then shift the resulting graph 7 units down and 3 units to the left. Leave your answer unsimplified. You don't have to sketch the graph, two ice skaters, karen and david, face each other while at rest, and then push against each other's hands. the mass of david is three times that of karen. how do their speeds compare after they push off? karen's speed is the same as david's speed. karen's speed is one-fourth of david's speed. karen's speed is one-third of david's speed. karen's speed is four times david's speed. karen's speed is three times david's speed. In developing the pro forma income statement we follow four important steps: 1) compute other expenses, 2) determine a production schedule. 3) establish a sales projection, 4) determine profit by completing the actual pro forma statement. What. is the correct order for these four steps? 1, 2,3,4 4,3,2,1 2,1,3,4 3,2,1,4 Question 4 (1 point) In the development of the pro forma financial statements, the second step in the process is the development of the: cash budget. pro forma balance sheet. pro forma income statement. capital budget. There are _______ amino acids that are uniquely combined to make up proteins important for human health and wellnessA. 10B. 20C. 50D. 100 Averie rows a boat downstream for 135 miles. The return trip upstream took 12 hours longer. If the current flows at 2 mph, how fast does Averie row in still water? "Your Memorialist . . . represents to your honorable body, that he has devoted much time and attention to the subject of a railroad from Lake Michigan through the Rocky Mountains to the Pacific Ocean, and that he finds such a route practicable, the results from which would be incalculablefar beyond the imagination of man to estimate. . . . "It would enable us, in the short space of eight days (and perhaps less) to concentrate all the forces of our vast country at any point from Maine to Oregon. . . . Such easy and rapid communication with such facilities for exchanging the different products of the different parts would bring all our immensely wide spread population together. . . . "[W]ith a railroad to the Pacific, and thence to China by steamers, can be performed in thirty days, being now a distance of nearly seventeen thousand miles. . . Then the drills and sheetings of Connecticut, Rhode Island, and Massachusetts, and other manufactures of the United States, may be transported to China in thirty days; and the teas and rich silks of China, in exchange, come back to New Orleans, to Charleston, to Washington, to Baltimore, to Philadelphia, New York, and to Boston, in thirty days more." Sentiments of business leaders and politicians like that expressed in the excerpt most likely contributed to which of the following? distinguish between the terms positive feedback and negative feedback. in developing climate models that might result from the enhanced greenhouse effect, what role doesnwater vapor play in the arguments that climate change might result in (a) global warming or (b) global cooling? Discuss: The procedure of a large-scale agile transformation in the digital transformation progress context Please explain and have some proof or your thoughts References should be from valid books, journals, and well-reputed articles. There is no need for a table of content, executive summary, and introduction. Word Limit: Between 500 700 word.Different answers from which is already posted.