A 95 N force exerted at the end of a 0.35 m long torque wrench gives rise to a torque of 15 N · m. What is the angle (assumed to be less than 90°) between the wrench handle and the direction of the applied force?

Answers

Answer 1

Answer:

The angle between the wrench handle and the direction of the applied force is 26.8°

Explanation:

Given;

applied force, F = 95 N

length of the wrench, r = 0.35 m

torque on the wrench due to the applied force, τ = 15 N.m

Torque is calculated as;

τ = rFsinθ

where;

r is the length of the wrench

F is the applied force

θ is the angle between the applied force and the wrench handle

Make Sin θ the subject of the formula;

Sinθ = τ / rF

Sinθ = 15 / (0.35 x 95)

Sinθ = 0.4511

θ = Sin⁻¹(0.4511)

θ = 26.8°

Therefore, the angle between the wrench handle and the direction of the applied force is 26.8°


Related Questions

An asteroid that has an orbit with a semi-major axis of 4 AU will have an orbital period of about ______ years.

Answers

Answer:

16 years.

Explanation:

Using Kepler's third Law.

P2=D^3

P=√d^3

Where P is the orbital period and d is the distance from the sun.

From the question the semi major axis of the asteroid is 4 AU= distance. The distance is always express in astronomical units.

P=?

P= √4^3

P= √256

P= 16 years.

Orbital period is 16 years.

What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3

Answers

Answer:

3) Transmitted intensity of light if unpolarized light passes through a single polarizing filter = 40 W/m²

- Transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described = 7.5 W/m²

Explanation:

Complete Question

3) What is the transmitted intensity of light if unpolarized light passes through a single polarizing filter and the initial intensity is 80 W/m²?

- What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3 (the setup)? Show all work in your answer.

The image of this setup attached to this question as obtained from online is attached to this solution.

Solution

3) When unpolarized light passes through a single polarizer, the intensity of the light is cut in half.

Hence, if the initial intensity of unpolarized light is I₀ = 80 W/m²

The intensity of the light rays thay pass through the first single polarizer = I₁ = (I₀/2) = (80/2) = 40 W/m²

- According to Malus' law, the intensity of transmitted light through a polarizer is related to the intensity of the incident light and the angle at which the polarizer is placed with respect to the major axis of the polarizer before the current polarizer of concern.

I₂ = I₁ cos² θ

where

I₂ = intensity of light that passes through the second polarizer = ?

I₁ = Intensity of light from the first polarizer that is incident upon the second polarizer = 40 W/m²

θ = angle between the major axis of the first and second polarizer = 30°

I₂ = 40 (cos² 30°) = 40 (0.8660)² = 30 W/m²

In the same vein, the intensity of light that passes through the third/additional polarizer is related to the intensity of light that passes through the second polarizer and is incident upon this third/additional polarizer through

I₃ = I₂ cos² θ

I₃ = intensity of light that passes through the third/additional polarizer = ?

I₂ = Intensity of light from the second polarizer that is incident upon the third/additional polarizer = 30 W/m²

θ = angle between the major axis of the second and third/additional polarizer = 60° (although, it is 90° with respect to the first polarizer, it is the angle it makes with the major axis of the second polarizer, 60°, that matters)

I₃ = 30 (cos² 60°) = 30 (0.5)² = 7.5 W/m²

Hope this Helps!!!

A gun has a muzzle speed of 90 meters per second. What angle of elevation should be used to hit an object 150 meters away? Neglect air resistance and use g=9.8m/sec2 as the acceleration of gravity.

Answers

Answer:

θ₀ = 84.78° (OR) 5.22°

Explanation:

This situation can be treated as projectile motion. The parameters of this projectile motion are:

R = Range of Projectile = 150 m

V₀ = Launch Speed of Projectile = 90 m/s

g = 9.8 m/s²

θ₀ = Launch angle (OR) Angle of Elevation = ?

The formula for range of a projectile is given as:

R = V₀² Sin 2θ₀/g

Sin 2θ₀ = Rg/V₀²

Sin 2θ₀ = (150 m)(9.8 m/s²)/(90 m/s)²

2θ₀ = Sin⁻¹ (0.18)

θ₀ = 10.45°/2

θ₀ = 5.22°

Also, we know that for the same launch velocity the range will be same for complementary angles. Therefore, another possible value of angle is:

θ₀ = 90° - 5.22°

θ₀ = 84.78°

When a particular wire is vibrating with a frequency of 6.3 Hz, a transverse wave of wavelength 53.3 cm is produced. Determine the speed of wave pulses along the wire.

Answers

Answer:

335.79cm/s

Explanation:

When a transverse wave of wavelength λ is produced during the vibration of a wire, the frequency(f), and the speed(v) of the wave pulses are related to the wavelength as follows;

v = fλ        ------------------(ii)

From the question;

f = 6.3Hz

λ = 53.3cm

Substitute these values into equation (i) as follows;

v = 6.3 x 53.3

v = 335.79cm/s

Therefore, the speed of the wave pulses along the wire is 335.79cm/s

A very long, solid cylinder with radius R has positive charge uniformly distributed throughout it, with charge per unit volume \rhorho.
(a) Derive the expression for the electric field inside the volume at a distance r from the axis of the cylinder in terms of the charge density \rhorho.
(b) What is the electric field at a point outside the volume in terms of the charge per unit length \lambdaλ in the cylinder?
(c) Compare the answers to parts (a) and (b) for r = R.
(d) Graph the electric-field magnitude as a function of r from r = 0 to r = 3R.

Answers

Answer:

the answers are provided in the attachments below

Explanation:

Gauss law state that the net electric field coming out of a closed surface is directly proportional to the charge enclosed inside the closed surface

Applying Gauss law to the long solid cylinder

A) E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]

B) E = 2K λ / r

C) Answers from parts a and b are the same

D) attached below

Applying Gauss's law which states that the net electric field in an enclosed surface is directly ∝ to the charge found in the enclosed surface.

A ) The expression for the electric field inside the volume at a distance r

Gauss law :  E. A = [tex]\frac{q}{e_{0} }[/tex]  ----- ( 1 )

where : A = surface area = 2πrL ,  q = p(πr²L)

back to equation ( 1 )

E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]

B) Electric field at point Outside the volume in terms of charge per unit length  λ

Given that:  linear charge density = area * volume charge density

                                            λ    =  πR²P

from Gauss's law : E ( 2πrL) = [tex]\frac{q}{e_{0} }[/tex]

∴ E = [tex]\frac{\pi R^{2}P }{2e_{0}r\pi }[/tex]    ----- ( 2 )

where : πR²P = λ

Back to equation ( 2 )

E = λ  / 2e₀π*r              where : k = 1 / 4πe₀

∴ The electric field ( E ) at point outside the volume in terms of charge per unit Length λ

E = 2K λ / r

C) Comparing answers A and B

Answers to part A and B are similar

Hence we can conclude that Applying Gauss law to the long solid cylinder

E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex], E = 2K λ / r also Answers from parts a and b are the same.

Learn more about Gauss's Law : https://brainly.com/question/15175106

A 150m race is run on a 300m circular track of circumference. Runners start running from the north and turn west until reaching the south. What is the magnitude of the displacement made by the runners?

Answers

Answer:

95.5 m

Explanation:

The displacement is the position of the ending point relative to the starting point.

In this case, the magnitude of the displacement is the diameter of the circular track.

d = 300 m / π

d ≈ 95.5 m

Pulling out of a dive, the pilot of an airplane guides his plane into a vertical circle with a radius of 600 m. At the bottom of the dive, the speed of the airplane is 150 m/s. What is the apparent weight of the 70.0-kg pilot at that point?

Answers

Answer:

The apparent weight of the pilot is 3311 N

Explanation:

Given;

radius of the vertical circle, r = 600 m

speed of the plane, v = 150 m/s

mass of the pilot, m = 70 kg

Weight of the pilot due to his circular motion;

[tex]W= F_v\\\\F_v = \frac{mv^2}{r} \\\\F_v = \frac{70*150^2}{600} \\\\F_v = 2625 \ N[/tex]

Real weight of the pilot;

[tex]W_R = mg\\\\W_R = 70 *9.8\\\\W_R = 686 \ N[/tex]

Apparent weight - Real weight of pilot = weight due to centripetal force

[tex]F_N - mg = \frac{mv^2}{r} \\\\F_N = \frac{mv^2}{r} + mg\\\\F_N = 2625 \ N + 686 \ N\\\\F_N = 3311\ N[/tex]

Therefore, the apparent weight of the pilot is 3311 N

The center of gravity of an ax is on the centerline of the handle, close to the head. Assume you saw across the handle through the center of gravity and weigh the two parts. What will you discover?

Answers

Answer:

I believe it is they will weigh the same

Explanation:

Center of gravity is the axis on which the mass rotates evenly if I remember correctly from AP Physics

The head side is heavier than the handle side. - this will be discovered.

What is center of gravity of a object?

Theoretically, the body's center of gravity is where all of the weight is believed to be concentrated. Knowing the centre of gravity is crucial because it may be used to forecast how a moving object will behave when subjected to the effects of gravity. In designing immobile constructions like buildings and bridges, it is also helpful.

We know that center of gravity is  close to some particular point refers the mass of the point is greater then others. It is given that: The center of gravity of an ax is on the centerline of the handle, close to the head.

So, we can conclude that the head side of the ax is heavier than the handle side of it.

Learn more about center of gravity here:

https://brainly.com/question/17409320

#SPJ5

Two beams of coherent light start out at the same point in phase and travel different paths to arrive at point P. If the maximum destructive interference is to occur at point P, the two beams must travel paths that differ by

Answers

Answer:

the two beams must travel paths that differ by one-half of a wavelength.


When looking at the chemical symbol, the charge of the ion is displayed as the
-superscript
-subscript
-coefficient
-product

Answers

Answer:

superscript

Explanation:

When looking at the chemical symbol, the charge of the ion is displayed as the Superscript. This is because the charge of ions is usually written up on the chemical symbol while the atom/molecule is usually written down the chemical symbol. The superscript refers to what is written up on the formula while the subscript is written down on the formula.

An example is H2O . The 2 present represents two molecule of oxygen and its written as the subscript while Fe2+ in which the 2+ is written up is known as the superscript.

Answer:

superscript

Explanation:

Two space ships collide in deep space. Spaceship P, the projectile, has a mass of 4M,
while the target spaceship T has a mass of M. Spaceship T is initially at rest and the
collision is elastic. If the final velocity of Tis 8.1 m/s, what was the initial velocity of
P?

Answers

Answer:

The initial velocity of spaceship P was u₁ = 5.06 m/s

Explanation:

In an elastic collision between two bodies the expression for the final velocity of the second body is given as follows:

[tex]V_{2} = \frac{(m_{2}-m_{1}) }{(m_{1}+m_{2})}u_{2} + \frac{2m_{1} }{(m_{1}+m_{2})}u_{1}[/tex]

Here, subscript 1 is used for spaceship P and subscript 2 is used for spaceship T. In this equation:

V₂ = Final Speed of Spaceship T = 8.1 m/s

m₁ = mass of spaceship P = 4 M

m₂ = mass of spaceship T = M

u₁ = Initial Speed of Spaceship P = ?

u₂ = Initial Speed of Spaceship T = 0 m/s

Using these values in the given equation, we get:

[tex]8.1 m/s = \frac{M-4M }{4M+M}(0 m/s) + \frac{2(4M) }{4M+M}u_{1}[/tex]

8.1 m/s = (8 M/5 M)u₁

u₁ = (5/8)(8.1 m/s)

u₁ = 5.06 m/s

A wave with a frequency of 1200 Hz propagates along a wire that is under a tension of 800 N. Its wavelength is 39.1 cm. What will be the wavelength if the tension is decreased to 600 N and the frequency is kept constant

Answers

Answer:

The wavelength will be 33.9 cm

Explanation:

Given;

frequency of the wave, F = 1200 Hz

Tension on the wire, T = 800 N

wavelength, λ = 39.1 cm

[tex]F = \frac{ \sqrt{\frac{T}{\mu} }}{\lambda}[/tex]

Where;

F is the frequency of the wave

T is tension on the string

μ is mass per unit length of the string

λ is wavelength

[tex]\sqrt{\frac{T}{\mu} } = F \lambda\\\\\frac{T}{\mu} = F^2\lambda^2\\\\\mu = \frac{T}{F^2\lambda^2} \\\\\frac{T_1}{F^2\lambda _1^2} = \frac{T_2}{F^2\lambda _2^2} \\\\\frac{T_1}{\lambda _1^2} = \frac{T_2}{\lambda _2^2}\\\\T_1 \lambda _2^2 = T_2\lambda _1^2\\\\[/tex]

when the tension is decreased to 600 N, that is T₂ = 600 N

[tex]T_1 \lambda _2^2 = T_2\lambda _1^2\\\\\lambda _2^2 = \frac{T_2\lambda _1^2}{T_1} \\\\\lambda _2 = \sqrt{\frac{T_2\lambda _1^2}{T_1}} \\\\\lambda _2 = \sqrt{\frac{600* 0.391^2}{800}}\\\\\lambda _2 = \sqrt{0.11466} \\\\\lambda _2 =0.339 \ m\\\\\lambda _2 =33.9 \ cm[/tex]

Therefore, the wavelength will be 33.9 cm

An ice skater spinning with outstretched arms has an angular speed of 5.0 rad/s . She tucks in her arms, decreasing her moment of inertia by 11 % . By what factor does the skater's kinetic energy change? (Neglect any frictional effects.)

Answers

Answer:

  K_{f} / K₀ =1.12

Explanation:

This problem must work using the conservation of angular momentum (L), so that the moment is conserved in the system all the forces must be internal and therefore the torque is internal and the moment is conserved.

Initial moment. With arms outstretched

         L₀ = I₀ w₀

the wo value is 5.0 rad / s

final moment. After he shrugs his arms

         [tex]L_{f}[/tex] = I_{f}  w_{f}

indicate that the moment of inertia decreases by 11%

        I_{f} = I₀ - 0.11 I₀ = 0.89 I₀

        L_{f} = L₀

        I_{f} w_{f}  = I₀ w₀

        w_{f} = I₀ /I_{f}    w₀

let's calculate

        w_{f} = I₀ / 0.89 I₀   5.0

        w_{f} = 5.62 rad / s

Having these values ​​we can calculate the change in kinetic energy

         [tex]K_{f}[/tex] / K₀ = ½ I_{f} w_{f}² (½ I₀ w₀²)

         K_{f} / K₀ = 0.89 I₀ / I₀ (5.62 / 5)²

         K_{f} / K₀ =1.12

You’re driving down the highway late one night at 20 m/s when a deer steps onto the road 35 m in front of you. Your reaction time before stepping on the brakes is 0.50 s, and the maximum deceleration of your car is 10 m/s2.

a. How much distance is between you and the deer when you come to a stop?

b. What is the maximum speed you could have and still not hit the deer?

Answers

Answer:

(a) Distance between deer and car = 5 m

(b) Vmax = 21.92 m/s

Explanation:

a.

First we calculate distance covered during response time:

s₁ = vt   --------- equation 1

where,

s₁ = distance covered during response time = ?

v = speed of car = 20 m/s

t = response time = 0.5 s

Therefore,

s₁ = (20 m/s)(0.5 s)

s₁ = 10 m

Now, we calculate the distance covered by the car during deceleration. Using 3rd equation of motion:

2as₂ = Vf² - Vi²

s₂ = (Vf² - Vi²)/2a ------ eqation 2

where,

a = deceleration = - 10 m/s²

s₂ = Distance covered during deceleration = ?

Vf = Final Velocity = 0 m/s (since car finally stops)

Vi = Initial Velocity = 20 m/s

Therefore,

s₂ = [(0 m/s)² - (20 m/s)²]/2(-10 m/s²)

s₂ = (400 m²/s²)/(20 m/s²)

s₂ = 20 m

thus, the total distance covered by the car before coming to rest is given as:

s = s₁ + s₂

s = 10 m + 20 m

s = 30 m

Now, the distance between deer and car, when it comes to rest, can be calculated as:

Distance between deer and car = 35 m - s = 35 m - 30 m

Distance between deer and car = 5 m

b.

Since, the distance covered by the car in total must be equal to 35 m at maximum. Therefore,

s₁ + s₂ = 35 m

using equation 1 and equation 2 from previous part:

Vi t + (Vf² - Vi²)/2a = 35 m

Vi(0.5 s) + [(0 m/s)² - Vi²]/2(-10 m/s²) = 35 m

0.5 Vi + 0.05 Vi² = 35

0.05 Vi² + 0.5 Vi - 35 = 0

solving this quadratic equation, we get:

Vi = - 31.92 m/s  (OR)  Vi = 21.92 m/s

For maximum velocity:

Vmax = 21.92 m/s

Two objects attract each other with a gravitational force of magnitude 1.02 10-8 N when separated by 19.7 cm. If the total mass of the two objects is 5.14 kg, what is the mass of each

Answers

Answer:

The two masses are 3.39 Kg and 1.75 Kg

Explanation:

The gravitational force of attraction between two bodies is given by the formula;

F = Gm₁m₂/d²

where G is the gravitational force constant = 6.67 * 10⁻¹¹ Nm²Kg⁻²

m₁ = mass of first object; m₂ = mass of second object; d = distance of separation between the objects

Further calculations are provided in the attachment below

How far apart (in mm) must two point charges of 90.0 nC (typical of static electricity) be to have a force of 3.80 N between them

Answers

Answer:

The distance between the two charges is =4.4mm

Monochromatic coherent light shines through a pair of slits. If the wavelength of the light is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.)
a. The distance between the maxima decreases.
b. The distance between the minima decreases.
c. The distance between the maxima stays the same.
d. The distance between the minima increases.
e. The distance between the minima stays the same.

Answers

Answer:

he correct answers are a, b

Explanation:

In the two-slit interference phenomenon, the expression for interference is

          d sin θ= m λ                       constructive interference

          d sin θ = (m + ½) λ             destructive interference

in general this phenomenon occurs for small angles, for which we can write

           tanθ = y / L

           tan te = sin tea / cos tea = sin tea

           sin θ = y / La

un

derestimate the first two equations.

Let's do the calculation for constructive interference

         d y / L = m λ

the distance between maximum clos is and

         y = (me / d) λ

this is the position of each maximum, the distance between two consecutive maximums

         y₂-y₁ = (L   2/d) λ - (L 1 / d) λ₁          y₂ -y₁ = L / d λ

examining this equation if the wavelength decreases the value of y also decreases

the same calculation for destructive interference

         d y / L = (m + ½) κ

         y = [(m + ½) L / d] λ

again when it decreases the decrease the distance

the correct answers are a, b

A 30 L electrical radiator containing heating oil is placed in a 50 m3room. Both the roomand the oil in the radiator are initially at 10◦C. The radiator with a rating of 1.8 kW is nowturned on. At the same time, heat is lost from the room at an average rate of 0.35 kJ/s.After some time, the average temperature is measured to be 20◦C for the air in the room,and 50◦C for the oil in the radiator. Taking the density and the specific heat of the oil to be950 kg/m3and 2.2 kJ/kg◦C, respectively, determine how long the heater is kept on. Assumethe room is well sealed so that there are no air leaks.

Answers

Answer:

Explanation:

Heat absorbed by oil

= mass x specific heat x rise in temperature

= 30 x 10⁻³ x 950 x 2.2 x 10³ x ( 50-10 )

= 25.08 x 10⁵ J  

Heat absorbed by air

= 50 x 1.2 x 1.0054 x 10³ x ( 20-10 )

= 6.03 x 10⁵ J

Total heat absorbed = 31.11 x 10⁵ J

If time required = t

heat lost from room

= .35 x 10³ t

Total heat generated in time t

= 1.8 x 10³ t

Heat generated = heat used

1.8 x 10³ t =  .35 x 10³ t  + 31.11 x 10⁵

1.45 x 10³ t = 31.11 x 10⁵

t = 31.11 x 10⁵ / 1.45 x 10³

t = 2145.5 s

A force of 44 N will stretch a rubber band 88 cm ​(0.080.08 ​m). Assuming that​ Hooke's law​ applies, how far will aa 11​-N force stretch the rubber​ band? How much work does it take to stretch the rubber band this​ far?

Answers

Answer:

The rubber band will be stretched 0.02 m.

The work done in stretching is 0.11 J.

Explanation:

Force 1 = 44 N

extension of rubber band = 0.080 m

Force 2 = 11 N

extension = ?

According to Hooke's Law, force applied is proportional to the extension provided elastic limit is not extended.

F = ke

where k = constant of elasticity

e = extension of the material

F = force applied.

For the first case,

44 = 0.080K

K = 44/0.080 = 550 N/m

For the second situation involving the same rubber band

Force = 11 N

e = 550 N/m

11 = 550e

extension e = 11/550 = 0.02 m

The work done to stretch the rubber band this far is equal to the potential energy stored within the rubber due to the stretch. This is in line with energy conservation.

potential energy stored = [tex]\frac{1}{2}ke^{2}[/tex]

==> [tex]\frac{1}{2}* 550* 0.02^{2}[/tex] = 0.11 J

A hard drive disk rotates at 7200 rpm. The disk has a diameter of 5.1 in (13 cm). What is the speed of a point 6.0 cm from the center axle

Answers

Answer:

The speed will be "3.4×10⁴ m/s²".

Explanation:

The given values are:

Angular speed,

w = 7200 rpm

i.e.,

  = [tex]7200 \times \frac{2 \pi}{60}[/tex]

  = [tex]753.6 \ rad/s[/tex]

Speed from the center,

r = 6.0 cm

As we know,

⇒  Linear speed, [tex]v=wr[/tex]

On putting the estimated values, we get

                               [tex]=753.6\times 0.06[/tex]

                               [tex]=45.216 \ m[/tex]

Now,

Acceleration on disk will be:

⇒  [tex]a=\frac{v^2}{r}[/tex]

       [tex]=34074 \ m/s^2[/tex]

       [tex]=3.4\times 10^4 \ m/s^2[/tex]

A charge of 87.6 pC is uniformly distributed on the surface of a thin sheet of insulating material that has a total area of 65.2 cm^2. A Gaussian surface encloses a portion of the sheet of charge. If the flux through the Gaussian surface is 9.20 N⋅m^2/C, what area of the sheet is enclosed by the Gaussian surface?

Answers

Answer:

60.8 cm²

Explanation:

The charge density, σ on the surface is σ = Q/A where q = charge = 87.6 pC = 87.6 × 10⁻¹² C and A = area = 65.2 cm² = 65.2 × 10⁻⁴ m².

σ = Q/A = 87.6 × 10⁻¹² C/65.2 × 10⁻⁴ m² = 1.34 × 10⁻⁸ C/m²

Now, the charge through the Gaussian surface is q = σA' where A' is the charge in the Gaussian surface.

Since the flux, Ф = 9.20 Nm²/C and Ф = q/ε₀ for a closed Gaussian surface

So, q = ε₀Ф = σA'

ε₀Ф = σA'

making A' the area of the Gaussian surface the subject of the formula, we have

A' = ε₀Ф/σ

A' = 8.854 × 10⁻¹² F/m × 9.20 Nm²/C ÷ 1.34 × 10⁻⁸ C/m²

A' = 81.4568/1.34 × 10⁻⁴ m²

A' = 60.79 × 10⁻⁴ m²

A' ≅ 60.8 cm²

The flux through the Gaussian surface is 9.20 N⋅m^2/C then the surface area of the Gaussian Sheet is 60.76 square cm.

Charge and Charge Density

A certain amount of electrons in excess or defect is called a charge. Charge density is the amount of charge distributed over per unit of volume.

Given that, for a thin sheet of insulating material, the charge Q is 87.6 pC and surface area A is 65.2 square cm. Then the charge density for a thin sheet is given below.

[tex]\sigma = \dfrac {Q}{A}[/tex]

[tex]\sigma = \dfrac {87.6\times 10^{-12}}{65;.2\times 10^{-4}}[/tex]

[tex]\sigma = 1.34\times 10^{-8} \;\rm C/m^2[/tex]

Thus the charge density for a thin sheet of insulating material is [tex]1.34\times 10^{-8} \;\rm C/m^2[/tex].

Now, the flux through the Gaussian surface is 9.20 N⋅m^2/C. The charge over the Gaussian Surface is given as below.

[tex]Q' = \sigma A'[/tex]

Where Q' is the charge at the Gaussian Surface, A' is the surface area of the Gaussian surface and [tex]\sigma[/tex] is the charge density.

For the closed Gaussian Surface, Flux is given below.

[tex]\phi = \dfrac {Q'}{\epsilon_\circ}[/tex]

Hence the charge can be written as,

[tex]Q' = \phi\epsilon_\circ[/tex]

So the charge can be given as below.

[tex]Q' = \phi\epsilon_\circ = \sigma A'[/tex]

Then the surface area of the Gaussian surface is given below.

[tex]A' = \dfrac {\phi\epsilon_\circ}{\sigma}[/tex]

Substituting the values in the above equation,

[tex]A' = \dfrac {9.20 \times 8.85\times 10^{-12}}{1.38\times 10^{-8}}[/tex]

[tex]A' =0.006076\;\rm m^2[/tex]

[tex]A' = 60.76 \;\rm cm^2[/tex]

Hence we can conclude that the area of the Gaussian Surface is 60.76 square cm.

To know more about the charge and charge density, follow the link given below.

https://brainly.com/question/8532098.

The interference of two sound waves of similar amplitude but slightly different frequencies produces a loud-soft-loud oscillation we call __________.
a. the Doppler effect
b. vibrato
c. constructive and destructive interference
d. beats

Answers

Answer:

the correct answer is d Beats

Explanation:

when two sound waves interfere time has different frequencies, the result is the sum of the waves is

       y = 2A cos 2π (f₁-f₂)/2    cos 2π (f₁ + f₂)/2

where in this expression the first part represents the envelope and the second part represents the pulse or beatings of the wave.

When examining the correct answer is d Beats

An ice skater is in a fast spin with her arms held tightly to her body. When she extends her arms, which of the following statements in NOT true?
A. Het total angular momentum has decreased
B. She increases her moment of inertia
C. She decreases her angular speed
D. Her moment of inertia changes

Answers

Answer:

A. Her total angular momentum has decreased

Explanation:

Total angular momentum is the product of her moment of inertia and angular velocity. In this scenario it doesn’t decrease but rather remains constant as the movement of the arms doesn’t have any effect on the total angular momentum.

The movement of the arm under certain conditions however has varying effects and changes on parameters such as the moment of inertia and the angular speed.

An 88.0 kg spacewalking astronaut pushes off a 645 kg satellite, exerting a 110 N force for the 0.450 s it takes him to straighten his arms. How far apart are the astronaut and the satellite after 1.40 min?

Answers

Answer:

The astronaut and the satellite are 53.718 m apart.

Explanation:

Given;

mass of spacewalking astronaut, = 88 kg

mass of satellite, = 645 kg

force exerts by the satellite, F = 110N

time for this action, t = 0.45 s

Determine the acceleration of the satellite after the push

F = ma

a = F / m

a = 110 / 645

a = 0.171 m/s²

Determine the final velocity of the satellite;

v = u + at

where;

u is the initial velocity of the satellite = 0

v = 0 + 0.171 x 0.45

v = 0.077 m/s

Determine the displacement of the satellite after 1.4 m

d₁ = vt

d₁ = 0.077 x (1.4 x 60)

d₁ = 6.468 m

According to Newton's third law of motion, action and reaction are equal and opposite;

Determine the backward acceleration of the astronaut after the push;

F = ma

a = F / m

a = 110 / 88

a = 1.25 m/s²

Determine the final velocity of the astronaut

v = u + at

The initial velocity of the astronaut = 0

v = 1.25 x 0.45

v = 0.5625 m/s

Determine the displacement of the astronaut after 1.4 min

d₂ = vt

d₂ = 0.5625 x (1.4 x 60)

d₂ = 47.25 m

Finally, determine the total separation between the astronaut and the satellite;

total separation = d₁ + d₂

total separation = 6.468 m + 47.25 m

total separation = 53.718 m

Therefore, the astronaut and the satellite are 53.718 m apart.

the density of gold is 19 300kg/m^3. what is the mass of gold cube with the length 0.2015m?

Answers

Answer:

The mass is [tex]157.87m^3[/tex]

Explanation:

Given data

length of cube= 0.2015 m

density = 19300 kg/m^3.

But the volume of cube is given as [tex]l*l*l= l^3[/tex]

[tex]volume -of- cube= 0.2015*0.2015*0.2015= 0.00818 m^3[/tex]

The density is expressed as = mass/volume

[tex]mass=19300*0.00818= 157.87m^3[/tex]

The objective lens of a microscope has a focal length of 5.5mm. Part A What eyepiece focal length will give the microscope an overall angular magnification of 300

Answers

Complete Question

The distance between the objective and eyepiece lenses in a microscope is 19 cm . The objective lens has a focal length of 5.5 mm .

What eyepiece focal length will give the microscope an overall angular magnification of 300?

Answer:

The  eyepiece focal length is  [tex]f_e = 0.027 \ m[/tex]

Explanation:

From the question we are told that

    The focal length is  [tex]f_o = 5.5 \ mm = -0.0055 \ m[/tex]

This negative sign shows the the microscope is diverging light

     The  angular magnification is [tex]m = 300[/tex]

     The  distance between the objective and the eyepieces lenses is  [tex]Z = 19 \ cm = 0.19 \ m[/tex]

Generally the magnification is mathematically represented as

        [tex]m = [\frac{Z - f_e }{f_e}] [\frac{0.25}{f_0} ][/tex]

Where [tex]f_e[/tex] is the eyepiece focal length of the microscope

  Now  making [tex]f_e[/tex] the subject  of the formula

         [tex]f_e = \frac{Z}{1 - [\frac{M * f_o }{0.25}] }[/tex]

substituting values

        [tex]f_e = \frac{ 0.19 }{1 - [\frac{300 * -0.0055 }{0.25}] }[/tex]

         [tex]f_e = 0.027 \ m[/tex]

     

how do a proton and neutron compare?

Answers

Answer:

c.they have opposite charges.

Explanation:

because the protons have a positive charge and the neutrons have no charge.

A 3-liter container has a pressure of 4 atmospheres. The container is sent underground, with resulting compression into 2 L. Applying Boyle's Law, what will the new pressure be? choices: 2.3 atm 8 atm 6 atm 1.5 atm

Answers

Answer:

6 atm

Explanation:

PV = PV

(4 atm) (3 L) = P (2 L)

P = 6 atm

A simple pendulum of length 1.62 m has a mass of 117 g attached. It is drawn back 38.0 degrees and then released. What is the maximum speed of the mass

Answers

Answer:

The maximum speed of the mass is 4.437 m/s.

Explanation:

Given;

length of pendulum, L = 1.62 m

attached mass, m = 117 g

angle of inclination, θ = 38°

This mass was raised to a height of

h = 1.62 - cos38° = 1.0043 m

Apply the principle of conservation of mechanical energy

PE = KE

mgh = ¹/₂mv²

v  = √(2gh)

v = √(2 * 9.8 * 1.0043)

v = 4.437 m/s.

Therefore, the maximum speed of the mass is 4.437 m/s.

g At some point the road makes a right turn with a radius of 117 m. If the posted speed limit along this part of the highway is 25.1 m/s, how much should Raquel bank the turn so that a vehicle traveling at the posted speed limit can make the turn without relying on the frictional force between the tires and the road

Answers

Answer:

Ф = 28.9°

Explanation:

given:

radius (r) = 117m

velocity (v) = 25.1 m/s

required: angle Ф

Ф = inv tan (v² / (r * g))      we know that g = 9.8

Ф = inv tan (25.1² / (117 * 9.8))

Ф = 28.9°

Other Questions
which are examples of negative feedback? Select three options. Escoge la mejor opcin para completar la frase con la forma correcta del verbo pedir. Choose the best option to complete the sentence withthe correct form of the verb pedir.Anoche ella_paella en el restaurante espaol. (1 point)O pidiO pedaO pediO ped f(x)=1/3x g(x)= 1/3x f(g(x))= Are they inverses? Please explain. Wendy described four triangles as shown below: Triangle A: All sides have length 9 cm. Triangle B: Two sides have length 10 cm, and the included angle measures 60. Triangle C: Two angles measure 50. Triangle D: Base has length 8 cm, and base angles measure 45. Which triangle is not a unique triangle? Triangle A Triangle B Triangle C Triangle D Which of the following is represented by MN? "Salina is working to create greater brand awareness for her company's new line of personal digital assistants. To create greater brand awareness Salina will make sure that promotion features the brand: Group of answer choices" Consider circle T with radius 24 in. and = StartFraction 5 pi Over 6 EndFraction radians. Circle T is shown. Line segments S T and V T are radii with lengths of 24 inches. Angle S T V is theta. What is the length of minor arc SV? how are the presidents cabinet and the executive office of the president (EOP) similar I2 + KOH = KIO3 + KI + H2O Marque la(s) respuesta(s) falsas: La suma de coeficientes mnimos del agua y el agente reductor es 6 El KI es la forma reducida El KOH es el agente reductor La suma de electrones transferidos ms el coeficiente mnimo del agua suman 16 La relacin entre el agente oxidante y el agente reductor es 1 Radovilsky Manufacturing Company, in Hayward, California, makes flashing lights for toys. The company operates its production facility 300 days per year. It has orders for about 11,800 flashing lights per year and has the capability of producing 95 per day. Setting up the light production costs $48. The cost of each light is $0.95. The holding cost is $0.10 per light per year.A) What is the optimal sizeof the production run?B) What is the average holding cost per year?C) What is the average setup cot per year?D) What is the total cost per year, including the cost of the lights? intro to geometric sequences (help pls) Q2. 90% of flights depart on time. 80% of flights arrive on time. 75% of flights depart on time and arrive on time. Are the events, departing on time and arriving on time, independent? Compute the missing data in the table for the following exponential function f (x) = (one-fourth) Superscript x. x 1 2 3 4 5 6 7 f(x) One-fourth StartFraction 1 Over 16 EndFraction StartFraction 1 Over 64 EndFraction ? StartFraction 1 Over 1024 EndFraction StartFraction 1 Over 4096 EndFraction StartFraction 1 Over 16,384 EndFraction a. StartFraction 1 Over 256 EndFraction c. StartFraction 1 Over 84 EndFraction b. 256 d. StartFraction 1 Over 512 EndFraction Please select the best answer from the choices provided A B C D How many moles of RNA are found in 250mL of a 0.0125 M solution? Group of answer choices 3.1 moles 0.031 moles 0.0031 moles 1.0 moles Factor completely 2x3y + 18xy - 10x2y - 90y. I need this done today in a few minutes. PLEASE HURRY Quadrilateral ABCD is inscribed in OZ such that AB | DC and Find m The most effective method for finding shopping center tenants is:__________.a. personal contactb. brochuresc. direct maild. use of public relations firms can someone help me solve this problem y-9=-2(x-8) what is the slope? 2 Kendal bought x boxes of cookies to bring to a party. Each box contains 12 cookies. Shedecides to keep two boxes for herself. She brings 60 cookies to the party. Which equationcan be used to find the number of boxes, x, Kendal bought?1) 2x - 12 - 603) 12x - 24 - 602) 12x-2-604) 24 - 12x - 60