True.
A 95% confidence interval for the population mean means that if we draw multiple samples from the same population and construct confidence intervals for the mean using each sample, then 95% of those intervals will contain the true population mean. This is because the confidence interval is computed based on the sample mean and the sample's standard deviation, which are random variables that are expected to vary from sample to sample. Therefore, we cannot be 100% certain that the true population mean is within any particular confidence interval, but we can be confident (95% confident, in this case) that most of the intervals we construct will contain the true mean. A 95% confidence interval for the population mean implies that if samples are drawn repeatedly and confidence intervals for μ are constructed, then 95% of the confidence intervals computed will contain the population mean. This means that you can be 95% confident that the true population mean lies within the calculated interval.
Learn more about standard deviation here: brainly.com/question/23907081
#SPJ11
Which answer choice best describes the domain and range of the function for this
situation?
A.
Domain: All real numbers greater than or equal to 0 and less than or equal
to 100
Range: All real numbers greater than or equal to 0 and less than or equal
to 50
B.
Domain: (-2)
Range: (100)
Domain: All real numbers greater than or equal to 0 and less than or equal
to 50
Range: All real numbers greater than or equal to 0 and less than or equal
to 100
D.
Domain: (100)
Range:{-2)
D for balls
Step-by-step explanation:
trust the process
Find the perimeter of ΔNOP. Round your answer to nearest tenth if necessary. Figures are not necessarily drawn to scale ML = 5 MK = 4 KL = 7
ON = x NP = 6.4 OP = 8
The perimeter of ΔNOP is equal to 25.6 units.
What is the basic proportionality theorem?In Mathematics, the basic proportionality theorem states that when any of the two (2) sides of a triangle is intersected by a straight line which is parallel to the third (3rd) side of the triangle, then, the two (2) sides that are intersected would be divided proportionally and in the same ratio.
By applying the basic proportionality theorem to the given triangles, we have the following:
ΔNOP ≅ ΔKLM
OP/ML = x/KL
x = (OP × KL)/ML
x = (8 × 7)/5
x = ON = 11.2 units.
For the perimeter of ΔNOP, we have;
Perimeter of ΔNOP = OP + NP + ON
Perimeter of ΔNOP = 8 + 6.4 + 11.2
Perimeter of ΔNOP = 25.6 units.
Read more on basic proportionality theorem here: brainly.com/question/3213812
#SPJ1
the minimum, or lowest value, of the data set is 2. move the leftmost blue dot back and forth. how does this relate to the position of the leftmost point of the box-and-whisker plot?
The minimum value, or lowest value, of the data set is the same value as the leftmost point of the box and whisker plot.
We know that a box-and-whisker plot is nothing but a graph summarising a set of data. This plot shows how the data is distributed. It also shows any outliers.
In box-and-whisker plot, the median is in the middle of the box. The minimum value in the dataset is displayed at the far left end of the plot. The first quartile (Q1 or the 25th percentile) is in between the minimum value and median. The third quartile (Q3 i..e, the 75th percentile) at the right side, between the median and the maximum value. Latsly the maximum value in the dataset is displayed at the far right end of the plot.
Therefore, the minimum value is the same value as the leftmost point of the plot.
Learn more about box-and-whisker plot here:
https://brainly.com/question/2742784
#SPJ4
The complete question is:
Holly and Brian’s social studies teacher gives them quizzes worth up to 20 points. Holly received the following scores: 5, 11, 17, 18, and 20. Brian’s scores were 16, 16, 17, 19, and 19
The box-and-whisker plot is shown below. The minimum, or lowest value, of the data set is 2. Move the leftmost blue dot back and forth. How does this relate to the position of the leftmost point of the box-and-whisker plot?
Please help!
Elizabeth brought a box of donuts to share. There are two-dozen (24) donuts in the box, all identical in size, shape, and color. Six are jelly-filled, 6 are lemon-filled, and 12 are custard-filled. You randomly select one donut, eat it, and select another donut. Find the probability of selecting two custard-filled donuts in a row. Type an integer or simplified fraction.
Thus, the probability that two custard-filled donuts are selected in a row) 11/46.
Explain about selection without replacement:sampling without replacement is the process of selecting a subset of observations at random; once an observation is chosen, it cannot be chosen again. sampling with replacement, whereby one observation may be chosen more than once and a subset of observations is chosen at random.
Given data:
two-dozen (24) donuts
jelly-filled = 6, 6 = lemon-filled, 12 = custard-filled.probability = favourable outcome / total outcome
probability (1st custard-filled donut) = total custard-filled donut / total donuts
probability (1st custard-filled donut) = 12/24
probability (1st custard-filled donut) = 1/2
Now,1 is already taken, now total donuts left are 23 with 11 custard-filled donut.
probability (2nd custard-filled donut) = total custard-filled donut / total donuts
probability (2nd custard-filled donut) = 11/23
Now,
probability (two custard-filled donuts in a row) = 1/2 * 11/23
probability (two custard-filled donuts in a row) = 11 / 46
Thus, the probability that two custard-filled donuts are selected in a row) 11/46.
know more about the selection without replacement:
https://brainly.com/question/13291926
#SPJ1
1) 4/10=
2) 2/3=
3) 5/10=
4) 3/8=
5) 2/11 =
6) 3/7 =
7) 1/6 =
8) 4/6 =
9) 11/12 =
10) 1/4 =
A small juice company spends $1200 per day on business expenses plus $1. 10 per bottle of juice them make. They charge $2. 50 for each bottle of juice they produce. How many bottles of juice must the company sell in a day for the company to break-even?
The company must produce and sell at least 857 bottles of juice in a day to break-even, given the given expenses and selling price per bottle.
Let's denote the number of bottles of juice sold in a day as "x".
The total cost of production and business expenses :
Total cost = Business expenses + (Cost per bottle of juice) x (Number of bottles produced and sold)
Total cost = $1200 + $1.10x
The revenue generated from selling "x" bottles :
Revenue = (Selling price per bottle of juice) x (Number of bottles produced and sold)
Revenue = $2.50x
The company will break-even when revenue equals total cost, so we can set two expressions equal to each:
[tex]\\$2.50x = $1200 + $1.10x\\$2.50x - $1.10x = $1200\\$1.40x = $1200\\x = $1200 / $1.40\\[/tex]
x ≈ 857
To know more about Revenue, here
brainly.com/question/8645356
#SPJ4
Not sure how to go about tackling this question?
Should I try to get [tex]y= \frac{x(k+1)}{k-1}[/tex] into the form of the ratio first then simplify?
The proof for the given proportion or two equivalent ratios given as (y+x):(y-x) = k:1 is shown below
What is a proportion?
On ratio and fractions, proportion is based. Two ratios are equal when they are represented as a fraction (a/b), a ratio (a:b), and then a proportion. A and B are two integers. Two sets of supplied numbers are said to be directly proportional if they increase or decrease in the same ratio for both sets. The symbols "::" or "=" are used to indicate proportions. If the ratio between the first and second is equal to the ratio between the second and third, then any three quantities are in continuing proportion.
Given that (y+x) : (y-x) = k : 1
We know that product of extremes = product of means
Extremes=(y+x) and 1
Means=(y-x) and k
(y+x) . 1 = (y-x) . k
y + x = ky - kx
y - ky = -kx - x
y - ky = - x(k + 1)
-(y - ky) = x(k + 1)
ky - y = x(k + 1)
y(k - 1) = x(k + 1)
y=[tex]\frac{x(k+1)}{(k-1)}[/tex]
Hence proved.
To know more about proportion, visit:
https://brainly.com/question/29774220
#SPJ1
what is the probability that at least one customer arrives at the shop during a one-minute interval? 0.736 0.368 0.632 0.264
Probability about at least one customer arrives at the shop while a one-minute interval is almost 0.632 or 63.2%.
How to calculate probability?The probability that at least one customer arrives at the shop during a one-minute interval can be calculated using the Poisson distribution, which is commonly used to model the arrival of events over a given time period.
Let's assume that the average number of customers arriving at the shop per minute is [tex]l[/tex]. Poisson probability mass function is;
[tex]P(X = k) = (e^{-l} * l^k) / k![/tex]
where X is the random variable representing the number of customers arriving in a one-minute interval, and k is the number of customers that arrive.
To find the probability of at least one customer arriving, we need to calculate the probability of X being greater than or equal to 1. That is,
[tex]P(X > = 1) = 1 - P(X = 0)[/tex]
When [tex]l[/tex] is relatively small, we can use approximation:
[tex]P(X = 0) = e^{-l[/tex]
Therefore,
[tex]P(X > = 1) = 1 - P(X = 0)[/tex]
[tex]≈ 1 - e^{-l[/tex]
We don't have the value of [tex]l[/tex], but assuming an average arrival rate of 1 customer per minute (i.e., [tex]l[/tex] = 1), we get:
[tex]P(X > = 1) = 1 - e^{-1[/tex]
≈ 0.632
Therefore, the probability about at least one customer arrives at the shop while a one-minute interval is almost 0.632 or 63.2%.
Learn more about Probability.
brainly.com/question/30034780
#SPJ11
Mrs. Hanson is filling containers in her bakery with flour. How much flour will fit into two of the containers?
The flour will fit into two of the container is 144 inches.
What is the volume of cuboids?
A cuboid is a six-sided solid known as a hexahedron. Quadrilaterals make up its faces. Cuboid is short for "like a cube". A cuboid is similar to a cube in that a cuboid can become a cube by varying the lengths of the edges or the angles between the faces.
Here, we have
Given: Mrs. Hanson is filling containers in her bakery with flour.
we have to find how much flour will fit into two of the containers.
Volume of cuboid = length × breadth × height
Length = 6 inches
Breadth = 3 inches
Height = 8 inches
The flour will fit into two of the containers = length × breadth × height
= 6 ×3 × 8
= 144 inches
Hence, The flour will fit into two of the container 144 inches.
To learn more about the volume of cuboids from the given link
https://brainly.com/question/30176305
#SPJ1
Show that if a, b, and m are integers such that m ≥ 2 and a ≡ b (mod m), then gcd(a, m) = gcd(b, m).
This means that gcd(a, m) is a subset of gcd(b, m) (since any common divisor of a and m is also a common divisor of b and m), and similarly, gcd(b, m) is a subset of gcd(a, m). Therefore, gcd(a, m) = gcd(b, m).
To show that gcd(a, m) = gcd(b, m) when a ≡ b (mod m) and m ≥ 2, we can use the fact that if d divides both a and m, then it also divides b (since a ≡ b (mod m) implies that m divides a-b).
So, let's start by letting d be a common divisor of a and m, and let's show that it is also a common divisor of b and m. Since d divides a and m, we can write a = kd and m = ld for some integers k and l. Then, we have:
b ≡ a (mod m) (by the definition of congruence)
b ≡ kd (mod ld) (substituting a = kd and m = ld)
b = jd (where j = k mod l, since ld divides kd and hence j is an integer)
Therefore, we have shown that if d divides both a and m, then it also divides b and m.
To learn more about integers visit;
https://brainly.com/question/15276410
#SPJ11
Which sum is equivalent to 9c-12-15c-8-3c
The equivalent sum to the given equation is -9c - 20.
An algebraic expression is consists of variables, numbers with various mathematical operations.
Equivalent sums refers to addition or subtraction from the other number to maintain the same total value.
= 9c-12-15c-8-3c
To find the equivalent sum, first we can simplify this expression by first combining like terms:
= 9c - 15c - 3c - 12 - 8
= (9c - 15c - 3c) - (12 + 8) (grouping the like terms)
Solving the expression for terms c and for constant terms,
= -9c - 20
Therefore, the equivalent sum is -9c - 20.
To know more about algebraic expression
https://brainly.com/question/19245500
#SPJ4
Calculate the surface area of each pyramid with the following values. (P = perimeter, b = one side of the base, s=side, h=height). Number of sides is given in each problem. The first two have hints to let you know what the shape of the base is…..
1. P = 12 ft, s = 4 ft, b = 4 ft, h=2 ft, 3 sides (base is a triangle)
2. b = 4 in, P = 16 in, s = 12, 4 sides (base is a square)
3. P = 48 m, b = 12 m, s=12, 4 sides
4. P = 45 yds, b = 15 yds, s=15, h=12, 3 sides
5. b = 6 ft, P = 24 ft, s=6, 4 sides
6. P = 15 ft, b = 5 ft, s=5 ft, h= 4, 3 sides
7. b = 4 in, P = 16 in, s=11, 4 sides
8. P = 40 m, b = 10 m, s=10, 4 sides
9. P = 45 yds, b = 15 yds, s=10, h=8, 3 sides
10. b = 16 ft, P = 64 ft, s=8, 4 sides
11. b = 5 ft, P = 20 ft, s=7, 4 sides
12. P = 45 ft, b = 15 ft, s=10, h=8, 3 sides
13. b = 13 in, P = 52 in, s=11, 4 sides
14. P = 28 m, b = 7 m, s=8, 4 sides
15. P = 27 yds, b = 9 yds, s=30, h=25, 3 sides
The surface area is given below:
18.9282ft^2112 inches ^2432m^2367.425 yards^2What is a Surface Area?Surface area refers to the total area that the surface of an object occupies. It is a measure of how much-exposed area there is on the outside of the object.
The surface area of an object can be calculated by adding up the areas of all of its faces or surfaces.
The formula for surface area varies depending on the shape of the object. For example, the surface area of a rectangular prism can be calculated by adding up the areas of all six of its faces, while the surface area of a sphere can be calculated using a different formula.
Read more about surface area here:
https://brainly.com/question/16519513
#SPJ1
an analysis of future events performed by the probability of those events and the potential outcomes is called
An analysis of future events performed by the probability of those events and the potential outcomes is called probabilistic analysis.
Probabilistic analysis involves using mathematical models and statistical techniques to estimate the likelihood of different outcomes, given a set of assumptions and inputs. It is commonly used in risk management, financial analysis, and project management to evaluate the potential impact of different scenarios and make informed decisions. By quantifying the probabilities of different outcomes, probabilistic analysis helps decision-makers identify the best course of action and manage uncertainty and risk.
Learn more about probability
https://brainly.com/question/24756209
#SPJ4
What is the solution to 9/x+81 > 45?
Answer:
I dont know the answer to be honest..
JUST KIDDING.. ill answer this step by step lol
To solve the inequality 9/x + 81 > 45, we can follow these steps:
Step 1: Subtract 81 from both sides of the inequality to isolate the fraction on the left-hand side:
9/x + 81 - 81 > 45 - 81
9/x > -36
Step 2: Take the reciprocal of both sides of the inequality to eliminate the fraction:
1 / (9/x) < 1 / (-36)
x/9 < -1/36
Step 3: Multiply both sides of the inequality by 9 to get rid of the fraction in the numerator:
9 * (x/9) < 9 * (-1/36)
x < -1/4
So, the solution to the inequality 9/x + 81 > 45 is x < -1/4. This means that x must be less than -1/4 for the inequality to be true.
The floor of a storage unit is 3 meters long and 4 meters wide. What is the distance between two opposite corners of the floor?
The distance between two opposite corners of the floor is 5 meters.
What is Pythagoras Theorem?
Pythagoras' theorem is a fundamental principle in geometry that states that in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides.
Using the Pythagorean theorem, the distance between two opposite corners of the floor can be found by calculating the length of the hypotenuse of a right triangle whose legs are the length and width of the floor. Therefore,
c² = a² + b²
where c is the length of the hypotenuse, a is the length of the floor (3 meters), and b is the width of the floor (4 meters).
Substituting the values, we get:
c² = 3² + 4²
c² = 9 + 16
c² = 25
Taking the square root of both sides, we get:
c = √(25)
c = 5
Therefore, the distance between two opposite corners of the floor is 5 meters.
To know more about Pythagoras theorem visit:
https://brainly.com/question/343682
#SPJ1
If you are driving 50 mph and you look down for 4 seconds, how far have you driven in that time?
The distance travelled in 4 seconds while driving at a constant speed of 50 mph is equal to 0.0556 miles (approximately).
Driving speed is equal to 50mph
And driving at a constant speed of 50 miles per hour ,
Then your speed in miles per second is ,
Since there are 60 minutes in an hour
⇒50 mph = 50/60 miles per minute
⇒50/60 miles per minute = 5/6 miles per minute
Since there are 60 seconds in a minute
⇒ 5/6 miles per minute = 5/360 miles per second
⇒ 5/360 miles per second = 0.0138888... miles per second
⇒ 5/360 miles per second ≈0.0139 miles per second
When look down for 4 seconds while driving at 50 mph,
Travel a distance of,
distance = speed x time
Substitute the value we get,
⇒ distance = 0.0139 miles per second x 4 seconds
⇒ distance ≈ 0.0556 miles
Therefore, travel a distance of 0.0556 miles approximately in 4 seconds while driving at a constant speed of 50 mph.
Learn more about distance here
brainly.com/question/10155280
#SPJ4
Quadrilateral ABCD is inscribed in a circle. Find the measure of x and the measure of each of the angles of the quadrilateral. You must use the fact that opposite angles in a quadrilateral are supplementary. (a) supplementary equation used to solve for x: (1 point)
(a) all math used to calculate for x:
(c) correct value for x:
(d) plugging x into expressions for angles A, C, D:
(e) show all math used to calculate the measures of angles A, C, D:
(f) all math used to calculate the measure of angle B:
For quadrilateral ABCD x=85 and angle B= 23°.
What is quadrilateral?A quadrilateral is a polygon with four sides and four angles. It is a closed figure and can have different shapes and sizes, depending on the length of its sides and the angles between them.
According to given information:(a) Supplementary equation used to solve for x:
∠A + ∠C = 180°
(b) All math used to calculate for x:
∠A + ∠C = 180°
(x - 5) + (x + 15) = 180 (substitute the given values for ∠A, ∠C)
2x - 10 = 180
2x = 170
x = 85
(c) Correct value for x:
x = 85
(d) Plugging x into expressions for angles A, C, D:
∠A = x - 5 = 2(85) - 5 = 165
∠C = x + 15 = 85 + 15 = 100
∠D = x - 13 = 85 - 13 = 72
(e) All math used to calculate the measures of angles A, C, D:
∠A + ∠B + ∠C + ∠D = 360° (sum of angles in a quadrilateral)
165 + ∠B + 100 + 72 = 360
∠B = 23
Therefore, the measures of the angles are:
∠A = 165°
∠B = 23°
∠C = 100°
∠D = 72°
(f) All math used to calculate the measure of angle B:
∠B = 360 - ∠A - ∠C - ∠D
∠B = 360 - 165 - 100 - 72
∠B = 23°
To know more about quadrilateral visit:
https://brainly.com/question/23935806
#SPJ1
If x = 9 inches, y = 21 inches, z = 29 inches, and w = 8 inches, what is the perimeter of the object?
Jack draws a rainbow which is a parabola that has the equation y =-0. 1(x-1) 2+6, where x and y are measured in centimeters. If the height of the rainbow is 6 cm, how far away are the endpoints of the rainbow from one another?
The endpoints of the rainbow are 2√60 cm apart.
The given equation for the rainbow is in vertex form, which is y = a(x - h)^2 + k, where (h, k) is the vertex of the parabola.
In this case, the vertex is (1, 6), which means that the parabola is shifted horizontally by 1 unit to the right and vertically by 6 units upwards from the standard parabola y = ax^2.
Since the height of the rainbow is 6 cm, this means that the highest point of the parabola is at y = 6, which occurs at the vertex (1, 6).
To find the distance between the endpoints of the rainbow, we need to find the x-intercepts of the parabola. These occur where y = 0. Therefore, we need to solve for x in the equation:
0 = -0.1(x - 1)^2 + 6
-6 = -0.1(x - 1)^2
-6/-0.1 = (x - 1)^2
60 = (x - 1)^2
±√60 = x - 1
x = 1 ± √60
Since we are looking for the distance between the endpoints, we need to subtract the smaller x-value from the larger one:
Distance between endpoints = (1 + √60) - (1 - √60)
Distance between endpoints = 2√60
Therefore, the endpoints of the rainbow are 2√60 cm apart.
The given equation in the question is wrong, the correct equation is:
y = -0.1(x - 1)^2 + 6.
To know more about parabola
https://brainly.com/question/31142122
#SPJ4
A rod of length L is placed along the X-axis between X=0 and x=L. The linear density (mass/length) rho of the rod varies with the distance x from the origin as rho=a+bx. (a) Find the SI units of a and b. (b) Find the mass of the rod in terms of a,b and L.
(a) The linear density (mass/length) rho has SI units of kg/m. Since rho = a + bx, the SI units of a must be kg/m and the SI units of b must be kg/m^2.
(b) To find the mass of the rod, we need to integrate the linear density function over the length of the rod:
m = ∫₀ᴸ ρ(x) dx
Substituting in ρ(x) = a + bx:
m = ∫₀ᴸ (a + bx) dx
m = [ax + (1/2)bx²] from 0 to L
m = aL + (1/2)bL²
Therefore, the mass of the rod in terms of a, b, and L is m = aL + (1/2)bL².
(a) In this problem, rho (ρ) represents linear density, which has units of mass per length. In SI units, mass is measured in kilograms (kg) and length in meters (m). Therefore, the units of linear density are kg/m. Since ρ = a + bx, the units of a and b must be consistent with this equation. The units of a are the same as those of ρ, so a has units of kg/m. For b, since it is multiplied by x (which has units of meters), b must have units of kg/m² to maintain consistency in the equation.
(b) To find the mass of the rod, we need to integrate the linear density function over the length of the rod (from x=0 to x=L). Let's set up the integral:
Mass (M) = ∫(a + bx) dx, with limits from 0 to L
Now, we can integrate:
M = [a * x + (b/2) * x²] evaluated from 0 to L
Substitute the limits:
M = a * L + (b/2) * L²
So, the mass of the rod in terms of a, b, and L is:
M = aL + (bL²)/2
To learn more about density visit;
https://brainly.com/question/29775886
#SPJ11
what is the effect of the interaction of the number of pages and cover type on cost? (round your answers to four decimal places.)
To determine the effect of the interaction of the number of pages and cover type on cost, a statistical analysis would need to be performed using data on the number of pages, cover type, and cost. The analysis would likely involve running a regression model that includes both the number of pages and cover type as predictor variables, as well as an interaction term between the two.
To answer your question, the effect of the interaction between the number of pages and cover type on the cost can be determined through a step-by-step process:
1. Identify the base cost of each cover type (e.g., hardcover, paperback, etc.).
2. Determine the cost per additional page for each cover type.
3. Calculate the cost for a specific number of pages and cover type by adding the base cost and the cost of additional pages.
For example:
- Base cost for hardcover: $5.00
- Base cost for paperback: $3.00
- Cost per additional page for hardcover: $0.10
- Cost per additional page for paperback: $0.05
Now, let's say you want to find the cost of a 100-page hardcover book:
1. Start with the base cost of a hardcover: $5.00
2. Multiply the number of pages (100) by the cost per additional page for hardcover ($0.10): 100 * $0.10 = $10.00
3. Add the base cost and the cost of additional pages: $5.00 + $10.00 = $15.00
So, the cost of a 100-page hardcover book is $15.00.
To learn more about regression model : brainly.com/question/14983410
#SPJ11
A square has a area of 63 square inches. What is the length of a side of the square, in inches?
Answer:
9ft
Step-by-step explanation:
I'm not sure, sorry if this didn't help you have a good day
19
Points Scored
74 82 84
122 193
21
53
103
108 116
a. Find the range and interquartile range of the data.
The range is [172 points.
The interquartile range is 42 points.
93
b. Use the interquartile range to identity the outlier(s) in the data set. Find the range and the interquartile range of the data set without
the outier(s).
The outier is 21 points.
The range without the outlier is 140 points
The interquartile range without the outlier is points.
DELL
calculator
check answer
Therefore, the range is 172 points and the interquartile range is 42 points. Therefore, the range without the outlier is 140 points and the interquartile range without the outlier is 40 points.
What is range?In statistics, the range is the difference between the largest and smallest values in a dataset. It is a measure of dispersion that indicates the spread of the data. The range provides a quick and simple way to get an idea of the variability of the data, but it can be affected by outliers and is therefore not always a reliable measure of dispersion. To calculate the range, you simply subtract the smallest value from the largest value in the dataset.
Here,
a. To find the range, we subtract the smallest value from the largest value:
Range = 193 - 21 = 172
To find the interquartile range, we first need to find the first and third quartiles.
Arrange the data in order from smallest to largest:
21, 53, 74, 82, 84, 103, 108, 116, 122, 193
Find the median (middle value) of the lower half of the data (Q1):
Q1 = median(21, 53, 74, 82, 84) = 74
Find the median (middle value) of the upper half of the data (Q3):
Q3 = median(103, 108, 116, 122, 193) = 116
Subtract Q1 from Q3 to get the interquartile range:
IQR = Q3 - Q1 = 116 - 74 = 42
b. To identify the outlier(s), we can use the rule that any value less than Q1 - 1.5 x IQR or greater than Q3 + 1.5 x IQR is considered an outlier.
Q1 - 1.5 x IQR = 74 - 1.5 x 42 = 11
Q3 + 1.5 x IQR = 116 + 1.5 x 42 = 181
The value 21 is less than the lower bound of 11, so it is an outlier.
To find the range and interquartile range without the outlier, we need to remove it from the data set:
74 82 84 122 193 53 103 108 116
The range without the outlier is:
193 - 53 = 140
To find the interquartile range without the outlier, we need to find the first and third quartiles of the new data set:
Q1 = median(53, 74, 82, 84, 108) = 82
Q3 = median(116, 122, 193) = 122
IQR = Q3 - Q1 = 122 - 82 = 40
To know more about range,
https://brainly.com/question/9736136
#SPJ1
He ate 7/12 of his candy bar on Monday and 1/3 of his candy bar on Tuesday. How much of Andy's candy bar was still there after Tuesday?
After Tuesday, Andy still had 5/18 of his candy bar left.
What is the fraction?
A fraction is a mathematical representation of a part of a whole, where the whole is divided into equal parts. A fraction consists of two numbers, one written above the other and separated by a horizontal line, which is called the fraction bar or the vinculum.
If Andy ate 7/12 of his candy bar on Monday, then the fraction of the candy bar that was left after Monday is:
1 - 7/12 = 5/12
So, on Tuesday, he ate 1/3 of the remaining candy bar, which is:
(1/3) * (5/12) = 5/36
Therefore, the fraction of the candy bar that was still there after Tuesday is:
5/12 - 5/36 = (15/36) - (5/36) = 10/36 = 5/18
Hence, after Tuesday, Andy still had 5/18 of his candy bar left.
To learn more about the fraction visit:
https://brainly.com/question/30154928
#SPJ1
9. A parenteral medication is to arrive through the mail. The label on the box states that the medication cannot be exposed to temperatures higher than 47. 8° C. The current outdoor temperature is 100. 2° F
The current outdoor temperature is 37.89°C, which is less than the highest temperature limit, i.e., 47.8°.
Both Celsius and Fahrenheit have different zero points and the temperature increments also vary quite differently. 100 degrees separate freezing and boiling on the Celsius scale, but for Fahrenheit the difference is 180 degrees. This means Celsius is 1.8 times larger than Fahrenheit.
To determine whether the medication has been exposed to temperatures higher than 47.8°C, we need to convert the outdoor temperature from Fahrenheit to Celsius. The conversion formula is:
°C = (°F - 32) x 5/9
Using this formula, we can get the temperature in Celsius form,
°C = (100.2 - 32) x 5/9
= 37.89°C
Since the outdoor temperature is lower than the maximum temperature the medication can be exposed to, it is safe to assume that the medication has not been exposed to temperatures higher than 47.8°C.
To know more about temperature
https://brainly.com/question/11464844
#SPJ4
9) all of the following are required of a binomial distribution except: a) each trial has exactly two outcomes. b) the number of trials is fixed. c) all trials have the same probability of success. d) there must be at least 30 trials.
d) there must be at least 30 trials.
Add parentheses to make expression true
5×6-3+4 = 19
Correct expression would be, 5*(6-3)+14=19
What is expression?
An expression consists of one or more numbers or variables along with one more operation.
Given Expression:
5×6-3+4 = 19
To make expression true we will add parentheses between 6 and 3
The correct expression would be, 5*(6-3)+14=19
To know more about expression visit,
https://brainly.com/question/1859113
#SPJ1
1. In a survey, it was found that the ratio of the people who liked modern songs and folk songs is 8:9, out of which 50 people like both songs, 40 liked folk songs only and 80 liked none of the songs.i) Represent the above information in a Venn - diagram. ii) How many people like folk song? iii) How many people like Modern song? iv) Find the number of people in the survey.
According to the information, the number of people who likes folk song is 90, and the number of people who likes modern song 80. So, the total number of people in the survey is 250.
How to calculate how many people like folk song?Let the number of people who like modern songs be 8x, and the number of people who like folk songs be 9x.
From the given information, we know that:
50 people like both modern and folk songs
40 people like only folk songs
The total number of people who like at least one type of song is (8 + 9)x - 50 = 17x - 50
80 people like none of the songs
Therefore, we can write the following equation:
(8x + 9x) - 50 - 40 + 80 = 17x
Simplifying this equation, we get:
17x - 10 = 17x
Thus, x = 10.
So, the number of people who like folk songs is 9x = 9(10) = 90.
How to calculate how many people like modern song?Similarly, the number of people who like modern songs is 8x = 8(10) = 80.
How to calculate the number of people in the survey?The total number of people in the survey is the sum of the number of people who like modern songs, the number of people who like folk songs, and the number of people who like none of the songs.
So, the total number of people in the survey is:
80 + 90 + 80 = 250.
Learn more about survey in: https://brainly.com/question/17373064
#SPJ1
Can someone help me asap? It’s due tomorrow.
Answer:
it A or B
Step-by-step explanation:
the other two C and D dont make sense to what the question is asking
in table 9.1, the marginal cost of producing the seventh unit of output is equal to _____.
In table 9.1, the marginal cost of producing the seventh unit of output is equal to $8.
Marginal cost refers to the additional cost incurred when producing one more unit of output. To find the marginal cost of producing the seventh unit of output, follow these steps:
1. Locate the total cost column in table 9.1.
2. Identify the total cost of producing 6 units of output.
3. Identify the total cost of producing 7 units of output.
4. Subtract the total cost of producing 6 units from the total cost of producing 7 units.
The difference you get from step 4 is the marginal cost of producing the seventh unit of output.
Learn more about marginal cost here: brainly.com/question/7781429
#SPJ11