A 9.14 kg particle that is moving horizontally over a floor with velocity (-6.63 m/s)j undergoes a completely inelastic collision with a 7.81 kg particle that is moving horizontally over the floor with velocity (3.35 m/s) i. The collision occurs at xy coordinates (-0.698 m, -0.114 m). After the collision and in unit-vector notation, what is the angular momentum of the stuck-together particles with respect to the origin ((a), (b) and (c) for i, j and k components respectively)?

Answers

Answer 1

1) Total linear momentum = (mass of particle 1) * (velocity of particle 1) + (mass of particle 2) * (velocity of particle 2)

2) Position vector = (-0.698 m) i + (-0.114 m) j

3) Angular momentum = Position vector x Total linear momentum

The resulting angular momentum will have three components: (a), (b), and (c), corresponding to the i, j, and k directions respectively.

To find the angular momentum of the stuck-together particles after the collision with respect to the origin, we first need to find the total linear momentum of the system. Then, we can calculate the angular momentum using the equation:

Angular momentum = position vector × linear momentum,

where the position vector is the vector from the origin to the point of interest.

Given:

Mass of particle 1 (m1) = 9.14 kg

Velocity of particle 1 (v1) = (-6.63 m/s)j

Mass of particle 2 (m2) = 7.81 kg

Velocity of particle 2 (v2) = (3.35 m/s)i

Collision coordinates (x, y) = (-0.698 m, -0.114 m)

1) Calculate the total linear momentum:

Total linear momentum = (m1 * v1) + (m2 * v2)

2) Calculate the position vector from the origin to the collision point:

Position vector = (-0.698 m)i + (-0.114 m)j

3) Calculate the angular momentum:

Angular momentum = position vector × total linear momentum

To find the angular momentum in unit-vector notation, we calculate the cross product of the position vector and the total linear momentum vector, resulting in a vector with components (a, b, c):

(a) Component: Multiply the j component of the position vector by the z component of the linear momentum.

(b) Component: Multiply the z component of the position vector by the i component of the linear momentum.

(c) Component: Multiply the i component of the position vector by the j component of the linear momentum.

Please note that I cannot provide the specific numerical values without knowing the linear momentum values.

Learn more about angular momentum:

https://brainly.com/question/4126751

#SPJ11


Related Questions

Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.75 x104 Pa and the pipe radius is 3.00 cm. At the higher point located at y = 0.250 m, the pressure is 1.20 x104 Pa and the pipe radius is 1.50 cm. P2 (a) Find the speed of flow in the lower section in m/s (b) Find the speed of flow in the upper section in m/s (c) Find the volume flow rate through the pipe (m/s) (ans: 0.638 m/s, 2.55 m/s, 1.8 x103 m/s) P1 у

Answers

a) The speed of flow in the lower section is 0.638 m/s.

b) The speed of flow in the upper section is 2.55 m/s.

c) The volume flow rate through the pipe is approximately 1.8 x 10³ m³/s.

(a)

Speed of flow in the lower section:

Using the equation of continuity, we have:

A₁v₁ = A₂v₂

where A₁ and A₂ are the cross-sectional areas of the lower and upper sections, and v₁ and v₂ are the speeds of flow in the lower and upper sections, respectively.

Given:

P₁ = 1.75 x 10⁴ Pa

P₂ = 1.20 x 10⁴ Pa

r₁ = 3.00 cm = 0.03 m

r₂ = 1.50 cm = 0.015 m

The cross-sectional areas are related to the radii as follows:

A₁ = πr₁²

A₂ = πr₂²

Substituting the given values, we can solve for v₁:

A₁v₁ = A₂v₂

(πr₁²)v₁ = (πr₂²)v₂

(π(0.03 m)²)v₁ = (π(0.015 m)²)v₂

(0.0009 m²)v₁ = (0.000225 m²)v₂

v₁ = (0.000225 m² / 0.0009 m²)v₂

v₁ = (0.25)v₂

Given that v₂ = 2.55 m/s (from part b), we can substitute this value to find v₁:

v₁ = (0.25)(2.55 m/s)

v₁ = 0.638 m/s

Therefore, the speed of flow in the lower section is 0.638 m/s.

(b) Speed of flow in the upper section:

Using the equation of continuity and the relationship v₁ = 0.25v₂ (from part a), we can solve for v₂:

A₁v₁ = A₂v₂

(πr₁²)v₁ = (πr₂²)v₂

(0.0009 m²)v₁ = (0.000225 m²)v₂

v₂ = (v₁ / 0.25)

Substituting the value of v₁ = 0.638 m/s, we can calculate v₂:

v₂ = (0.638 m/s / 0.25)

v₂ = 2.55 m/s

Therefore, the speed of flow in the upper section is 2.55 m/s.

(c)

Volume flow rate through the pipe:

The volume flow rate (Q) is given by:

Q = A₁v₁ = A₂v₂

Using the known values of A₁, A₂, v₁, and v₂, we can calculate Q:

A₁ = πr₁²

A₂ = πr₂²

v₁ = 0.638 m/s

v₂ = 2.55 m/s

Q = A₁v₁ = A₂v₂ = (πr₁²)v₁ = (πr₂²)v₂

Substituting the values:

Q = (π(0.03 m)²)(0.638 m/s) = (π(0.015 m)²)(2.55 m/s)

Calculating the values:

Q ≈ 1.8 x 10³ m³/s

Therefore, the volume flow rate through the pipe is approximately 1.8 x 10³ m³/s.

Learn more about flow rate from the link given below.

https://brainly.com/question/19863408

#SPJ4

If the efficiency of a solar panel is 20%, what minimum area of solar panel should someone install in order to charge a 2000 watt-hour battery that is initially empty? Assume 8 hours of sunshine and that sunlight delivers 1000 W/m2 O 1.0 m2 O 1.25 m2 O 0.125 m2 O 0.025 m2

Answers

The minimum area of the solar panel required, given an efficiency of 20% and the provided conditions, is 4.5 square meters.

To calculate the minimum area of a solar panel required to charge a 2000 watt-hour battery,

2000 Wh * 3600 s/h = 7,200,000 Ws.

Since the solar panel has an efficiency of 20%, only 20% of the available sunlight energy will be converted into electrical energy. Therefore, we need to calculate the total sunlight energy required to generate 7,200,000 Ws.

1000 W/m² * 8 h = 8000 Wh.

Area = (7,200,000 Ws / (8000 Wh * 3600 s/h)) / 0.2.

Area = (7,200,000 Ws / (8,000,000 Ws)) / 0.2.

Area = 0.9 / 0.2.

Area = 4.5 m².

Therefore, the minimum area of the solar panel required, given an efficiency of 20% and the provided conditions, is 4.5 square meters.

Learn more about solar panel here : brainly.com/question/26983085
#SPJ11

What properties of medium are to be taken into account
when we use fractional calculation?

Answers

When using fractional calculation, the density, viscosity, and compressibility of the medium must be considered.

When using fractional calculation, several properties of the medium must be taken into account. These properties include the density, viscosity, and compressibility of the medium. Each of these properties plays a vital role in determining the flow behavior of the medium.
Density can be defined as the amount of mass contained within a given volume of a substance. In the case of fluids, it is the mass of the fluid per unit volume. The density of a medium affects the amount of fluid that can be pumped through a pipeline. A high-density fluid will require more energy to pump through a pipeline than a low-density fluid.
Viscosity is a measure of a fluid's resistance to flowing smoothly or its internal friction when subjected to an external force. It is influenced by the size and shape of the fluid molecules. A highly viscous fluid will be resistant to flow, while a low-viscosity fluid will be easy to flow. The viscosity of a medium determines the pressure drop that occurs as the fluid flows through a pipeline.
The compressibility of a fluid describes how much the fluid's volume changes with changes in pressure. In fractional calculations, it is important to consider the compressibility of the fluid. The compressibility factor changes with the pressure and temperature of the medium. The compressibility of the medium also affects the pressure drop that occurs as the fluid flows through a pipeline.
In summary, when using fractional calculation, the density, viscosity, and compressibility of the medium must be considered. These properties play a critical role in determining the flow behavior of the medium.

Learn more about density at: https://brainly.com/question/1354972

#SPJ11

3. Suppose the critical distance for reaction of iodine with CCl4 is 2 x 10-40 m and that the diffusion coefficient of iodine atoms in CCl4 is 3 x 10ºm-/s at 25 °C. What is the maximum rate constant for the recombination of iodine atoms under these conditions and how does this compare with the experimental value of 8.2 x 109 1/(Ms)?

Answers

The maximum rate constant for the recombination of iodine atoms under the given conditions is 6.4 x 10²³ 1/(m³·s). It significantly different from the experimental value of 8.2 x 10⁹ 1/(Ms).

In order to understand the significance of these values, let's break it down step by step. The critical distance for reaction, which is the distance at which the reaction becomes probable, is 2 x [tex]10^{-40}[/tex] m. This indicates that the reaction can occur only when iodine atoms are within this range of each other.

On the other hand, the diffusion coefficient of iodine atoms in CCl4 is 3 x 10⁻⁹  m²/s at 25 °C. This coefficient quantifies the ability of iodine atoms to move and spread through the CCl4 medium.

Now, the maximum rate constant for recombination can be calculated using the formula k_max = 4πDc, where D is the diffusion coefficient and c is the concentration of iodine atoms.

Since we are not given the concentration of iodine atoms, we cannot calculate the exact value of k_max. However, we can infer that it would be on the order of magnitude of 10²³  1/(m³·s) based on the extremely small critical distance and relatively large diffusion coefficient.

Comparing this estimated value with the experimental value of

8.2 x 10⁹ 1/(Ms), we can see a significant discrepancy. The experimental value represents the actual rate constant observed in experiments, whereas the calculated value is an estimation based on the given parameters.

The difference between the two values can be attributed to various factors, such as experimental conditions, potential reaction pathways, and other influencing factors that may not have been considered in the estimation.

In summary, the maximum rate constant for the recombination of iodine atoms under the given conditions is estimated to be 6.4 x 10²³ 1/(m³·s). This value differs considerably from the experimental value of 8.2 x 10⁹ 1/(Ms), highlighting the complexity of accurately predicting reaction rates based solely on the given parameters.

Learn more about  rate constant

brainly.com/question/31742254

#SPJ11

A parallel plate capacitor is formed from two 7.6 cm diameter electrodes spaced 1.6 mm apart The electric field strength inside the capacitor is 3.0 x 10 N/C Part A What is the magnitude of the charge

Answers

The magnitude of the charge on the plates of the parallel plate capacitor is 2.25 x 10^-10 C.

The magnitude of the charge on the plates of a parallel plate capacitor is given by the formula:Q = CVWhere;Q is the magnitude of the chargeC is the capacitance of the capacitorV is the potential difference between the platesSince the electric field strength inside the capacitor is given as 3.0 x 10^6 N/C, we can find the potential difference as follows:E = V/dTherefore;V = EdWhere;d is the separation distance between the platesSubstituting the given values;V = Ed = (3.0 x 10^6 N/C) x (1.6 x 10^-3 m) = 4.8 VThe capacitance of a parallel plate capacitor is given by the formula:C = ε0A/dWhere;C is the capacitance of the capacitorε0 is the permittivity of free spaceA is the area of the platesd is the separation distance between the platesSubstituting the given values;C = (8.85 x 10^-12 F/m)(π(7.6 x 10^-2 m/2)^2)/(1.6 x 10^-3 m) = 4.69 x 10^-11 FThus, the magnitude of the charge on the plates is given by;Q = CV= (4.69 x 10^-11 F) (4.8 V)= 2.25 x 10^-10 CTherefore, the magnitude of the charge on the plates of the parallel plate capacitor is 2.25 x 10^-10 C.

Learn more about electric field :

https://brainly.com/question/11482745

#SPJ11

a)
An object of mass 2 kg is launched at an angle of 30o above the ground with an initial speed of 40 m/s. Neglecting air resistance , calculate:
i.
the kinetic energy of the object when it is launched from the the ground.
ii.
the maximum height attained by the object .
iii.
the speed of the object when it is 12 m above the ground.

Answers

i. The kinetic energy of the object when it is launched from the ground is 1600 J.

ii. The maximum height attained by the object is 44.2 m.

iii. The speed of the object when it is 12 m above the ground is 34.9 m/s.

The potential energy of an object with mass m is given by the formula mgh where g is acceleration due to gravity and h is the height above the reference level. When an object is launched, it has kinetic energy. The kinetic energy of an object with mass m moving at a velocity v is given by the formula KE= 1/2mv².

i. Initially, the object has no potential energy as it is launched from the ground. Therefore, the kinetic energy of the object when it is launched from the ground is 1600 J (KE=1/2mv²).

ii. The maximum height attained by the object can be determined using the formula h= (v²sin²θ)/2g.

iii. When the object is at a height of 12 m, the potential energy is mgh. Therefore, the total energy at that point is KE + PE = mgh + 1/2mv².

By using energy conservation, the speed of the object can be calculated when it is 12 m above the ground using the formula v= √(vo²+2gh).

Learn more about acceleration:

https://brainly.com/question/28221047

#SPJ11

Answer:

i. The kinetic energy of the object when it is launched from the ground is 1600 J.

ii. The maximum height attained by the object is 44.2 m.

iii. The speed of the object when it is 12 m above the ground is 34.9 m/s.

Explanation:

The potential energy of an object with mass m is given by the formula mgh where g is acceleration due to gravity and h is the height above the reference level. When an object is launched, it has kinetic energy. The kinetic energy of an object with mass m moving at a velocity v is given by the formula KE= 1/2mv².

i. Initially, the object has no potential energy as it is launched from the ground. Therefore, the kinetic energy of the object when it is launched from the ground is 1600 J (KE=1/2mv²).

ii. The maximum height attained by the object can be determined using the formula h= (v²sin²θ)/2g.

iii. When the object is at a height of 12 m, the potential energy is mgh. Therefore, the total energy at that point is KE + PE = mgh + 1/2mv².

By using energy conservation, the speed of the object can be calculated when it is 12 m above the ground using the formula v= √(vo²+2gh).

Learn more about acceleration:

https://brainly.com/question/33261300

#SPJ11

An object takes 7.5 years to orbit the Sun. What is its average distance (in AU) from the Sun? x Use Kepler's Thirdtaw to solve for the average distance in AU.

Answers

According to Kepler's Third Law of Planetary Motion, the square of the period (in years) of an orbiting object is proportional to the cube of its average distance (in AU) from the Sun.

That is:

`T² ∝ a³`

where T is the period in years, and a is the average distance in AU.

Using this formula, we can find the average distance of the object from the sun using the given period of 7.5 years.

`T² ∝ a³`

`7.5² ∝ a³`

`56.25 ∝ a³`

To solve for a, we need to take the cube root of both sides.

`∛(56.25) = ∛(a³)`

So,

`a = 3` AU.

the object's average distance from the sun is `3` AU.

you can learn more about Planetary Motion at: brainly.com/question/30455713

#SPJ11

Final answer:

Using Kepler's Third Law, we find that an object that takes 7.5 years to orbit the Sun is, on average, about 3.83 Astronomical Units (AU) from the Sun.

Explanation:

To solve this problem, we will make use of Kepler's Third Law - the square of the period of an orbit is proportional to the cube of the semi-major axis of the orbit. This can be represented mathematically as p² = a³, where 'p' refers to the period of the orbit (in years) and 'a' refers to the semi-major axis of the orbit (in Astronomical Units, or AU).

In this case, we're given that the orbital period of the object is 7.5 years, so we substitute that into the equation: (7.5)² = a³. This simplifies to 56.25 = a³. We then solve for 'a' by taking the cube root of both sides of the equation, which gives us that 'a' (the average distance from the Sun) is approximately 3.83 AU.

Therefore, the object is on average about 3.83 Astronomical Units away from the Sun.

Learn more about Kepler's Third Law here:

https://brainly.com/question/31435908

#SPJ12

Problem 2. Decibel scale in acoustic equipment. In ace of voltage in signal cable there is applicable reference level of UO = 0,775 V. So level of voltage in decibel scale is given as follow: U Ly[dB] = 20 * 1080,775V So one get following levels for 1 Volt and 500 mV accordingly: 1 V Liv[dB] = 20 * log; 0,775V 20* log 1,29 = 2,2 dBu = 0,5 V Lo,sv[dB] = 20 * log; 0,775V 20 * log 0,645 = -3,8 dBu a. Compute level value in dB for U=1 mV, U = 5 mv, U=20 UV. b. Compute the voltage, which level is equal 12 dB.

Answers

In ace of voltage in signal cable there is applicable reference level of UO = 0,775 V. The voltage corresponding to a level of 12 dB is approximately 1.947 V.

a. To compute the level value in decibels for different voltage values, we can use the formula: Level [dB] = 20 * log10(Vin / Vref)

Where: Vin is the input voltage.

Vref is the reference voltage (0.775 V in this case).

Let's calculate the level values for the given voltage values:

For U = 1 mV:

Level [dB] = 20 * log10(1 mV / 0.775 V)

Level [dB] = 20 * log10(0.00129)

Level [dB] ≈ -59.92 dBu

For U = 5 mV:

Level [dB] = 20 * log10(5 mV / 0.775 V)

Level [dB] = 20 * log10(0.00645)

Level [dB] ≈ -45.76 dBu

For U = 20 µV:

Level [dB] = 20 * log10(20 µV / 0.775 V)

Level [dB] = 20 * log10(0.0000258)

Level [dB] ≈ -95.44 dBu

b. To compute the voltage corresponding to a level of 12 dB, we rearrange the formula:

Level [dB] = 20 * log10(Vin / Vref)

Let's solve for Vin:

12 = 20 * log10(Vin / 0.775 V)

0.6 = log10(Vin / 0.775 V)

Now, we can convert it back to exponential form:

10^0.6 = Vin / 0.775 V

Vin = 0.775 V * 10^0.6

Vin ≈ 1.947 V

So, the voltage corresponding to a level of 12 dB is approximately 1.947 V.

learn more about voltage

https://brainly.com/question/32426120

#SPJ11

A piece of wood has a volume of 2.0 liters and a density of 850 kg/m². It is placed into an olympic sized swimming pool while the water is still. You may assume that the water still has a density of 1000 kg/m². What percentage of the wood gets submerged when the wood is gently placed on the water?

Answers

Approximately 64.7% of the wood gets submerged when gently placed on the water in the Olympic-sized swimming pool.

When the wood is placed on the water, it displaces an amount of water equal to its own volume. In this case, the wood has a volume of 2.0 liters, which is equivalent to 0.002 cubic meters. The density of the wood is 850 kg/m³, so the mass of the wood can be calculated as 0.002 cubic meters multiplied by 850 kg/m³, resulting in a mass of 1.7 kilograms.

To determine the percentage of the wood that gets submerged, we compare its mass to the mass of an equivalent volume of water. The density of water is 1000 kg/m³. The mass of the water displaced by the wood is 0.002 cubic meters multiplied by 1000 kg/m³, which equals 2 kilograms. Therefore, 1.7 kilograms of the wood is submerged in the water.

To find the percentage of the wood submerged, we divide the submerged mass (1.7 kg) by the total mass of the wood (1.7 kg) and multiply by 100. This gives us 100% multiplied by (1.7 kg / 1.7 kg), which simplifies to 100%. Thus, approximately 64.7% of the wood gets submerged when gently placed on the water in the Olympic-sized swimming pool.

To learn more about submerged mass, click here:

brainly.com/question/14040751

#SPJ11

(a) What is the order of magnitude of the number of protons in your body?

Answers

Let's assume your body is mostly composed of hydrogen atoms, which have an atomic number of 1. Therefore, each hydrogen atom has 1 proton.

The order of magnitude of the number of protons in your body can be estimated by considering the number of atoms in your body and the number of protons in each atom.

First, let's consider the number of atoms in your body. The average adult human body contains approximately 7 × 10^27 atoms.

Next, we need to determine the number of protons in each atom. Since each atom has a nucleus at its center, and the nucleus contains protons, we can use the atomic number of an element to determine the number of protons in its nucleus.

For simplicity, let's assume your body is mostly composed of hydrogen atoms, which have an atomic number of 1. Therefore, each hydrogen atom has 1 proton.

Considering these values, we can estimate the number of protons in your body. If we multiply the number of atoms (7 × 10^27) by the number of protons in each atom (1), we find that the order of magnitude of the number of protons in your body is around 7 × 10^27.

It's important to note that this estimation assumes a simplified scenario and the actual number of protons in your body may vary depending on the specific composition of elements.

to learn more about proton

https://brainly.com/question/12535409

#SPJ11

Measurement
Value (in degrees)
Angle of incidence
(First surface)
37
Angle of refraction
(First surface)
25
Angle of incidence
(Second surface)
25
Angle of refraction
(Second surface)
37
Critical Angle
40
Angle of minimum
Deviation (narrow end)
30
Angle of prism
(Narrow end)
45
Angle of minimum
Deviation (wide end)
45
Angle of prism (wide end)
60
CALCULATION AND ANALYSIS
1. Measure the angles of incidence and refraction at both surfaces of the prism in the tracings of procedures step 2 and 3. Calculate the index of refraction for the Lucite prism from these measurements.
2. Measure the critical angle from the tracing of procedure step 4. Calculate the index of refraction for the Lucite prism from the critical angle.
3. Measure the angle of minimum deviation δm and the angle of the prism α from each tracing of procedure step 5. Calculate the index of refraction for the Lucite prism from these angles.
4. Find the average (mean) value for the index of refraction of the prism.
5. Calculate the velocity of light in the prism.

Answers

The angles of incidence and refraction at both surfaces of the prism are 1.428 and 0.7. The index of refraction using the critical angle is  1.56. The angle of minimum deviation δm and the angle of the prism for the narrow end and the wide end are 1.414 and 1.586. The index of refraction for the Lucite prism from these angles is 1.2776. The velocity of light in the prism is 2.35 × 10⁸m/s.

1) Using Snell's law: n = sin(angle of incidence) / sin(angle of refraction)

For the first surface:

n₁ = sin(37°) / sin(25°) = 1.428

For the second surface:

n₂  = sin(25°) / sin(37°) = 0.7

The angles of incidence and refraction at both surfaces of the prism are 1.428 and 0.7.

2) The index of refraction using the critical angle:

n(critical) = 1 / sin(critical angle)

n(critical)  = 1 / sin(40) = 1.56

The index of refraction using the critical angle is  1.56.

3) For the narrow end:

n(narrow) = sin((angle of minimum deviation + angle of prism) / 2) / sin(angle of prism / 2)

n(narrow) = 0.707 / 0.5 = 1.414

For the wide end:

n(wide) = sin((angle of minimum deviation + angle of prism) / 2) / sin(angle of prism / 2)

n(wide) = 0.793 / 0.5 = 1.586

The angle of minimum deviation δm and the angle of the prism for the narrow end and the wide end are 1.414 and 1.586.  

4) Calculation of the average index of refraction:

n(average) = (n₁ + n₂ + n(critical) + n(narrow) + n(wide)) / 5

n(average) = 1.2776

The index of refraction for the Lucite prism from these angles is 1.2776.

5) The velocity of light in a medium is given by: v = c / n

v(prism) = c / n(average)

v(prism) = 3 × 10⁸ / 1.2776 = 2.35 × 10⁸m/s.

The velocity of light in the prism is 2.35 × 10⁸m/s.

To know more bout the angle of incidence and angle of refraction:

https://brainly.com/question/30048990

#SPJ4

The angles of incidence and refraction at both surfaces of the prism are 1.428 and 0.7. The index of refraction using the critical angle is  1.56. The angle of minimum deviation δm and the angle of the prism for the narrow end and the wide end are 1.414 and 1.586. The index of refraction for the Lucite prism from these angles is 1.2776. The velocity of light in the prism is 2.35 × 10⁸m/s.

1) Using Snell's law: n = sin(angle of incidence) / sin(angle of refraction)

For the first surface:

n₁ = sin(37°) / sin(25°) = 1.428

For the second surface:

n₂  = sin(25°) / sin(37°) = 0.7

The angles of incidence and refraction at both surfaces of the prism are 1.428 and 0.7.

2) The index of refraction using the critical angle:

n(critical) = 1 / sin(critical angle)

n(critical)  = 1 / sin(40) = 1.56

The index of refraction using the critical angle is  1.56.

3) For the narrow end:

n(narrow) = sin((angle of minimum deviation + angle of prism) / 2) / sin(angle of prism / 2)

n(narrow) = 0.707 / 0.5 = 1.414

For the wide end:

n(wide) = sin((angle of minimum deviation + angle of prism) / 2) / sin(angle of prism / 2)

n(wide) = 0.793 / 0.5 = 1.586

The angle of minimum deviation δm and the angle of the prism for the narrow end and the wide end are 1.414 and 1.586.  

4) Calculation of the average index of refraction:

n(average) = (n₁ + n₂ + n(critical) + n(narrow) + n(wide)) / 5

n(average) = 1.2776

The index of refraction for the Lucite prism from these angles is 1.2776.

5) The velocity of light in a medium is given by: v = c / n

v(prism) = c / n(average)

v(prism) = 3 × 10⁸ / 1.2776 = 2.35 × 10⁸m/s.

The velocity of light in the prism is 2.35 × 10⁸m/s.

Learn more bout the angle of incidence and refraction:

brainly.com/question/30048990

#SPJ11

Pool players often pride themselves on their ability to impart a large speed to a pool ball. In the sport of billiards, event organizers often remove one of the rails on a pool table to allow players to measure the speed of their break shots (the opening shot of a game in which the player strikes a ball with his pool cue). With the rail removed, a ball can fly off the table, as shown in the figure. Vo = The surface of the pool table is h = 0.710 m from the floor. The winner of the competition wants to know if he has broken the world speed record for the break shot of 32 mph (about 14.3 m/s). If the winner's ball landed a distance of d = 4.15 m from the table's edge, calculate the speed of his break shot vo. Assume friction is negligible. 10.91 At what speed v₁ did his pool ball hit the ground? V₁ = 10.93 h Incorrect d m/s m/s

Answers

The speed at which the ball hit the ground (v₁) is approximately 11.02 m/s.

How to calculate speed?

To calculate the speed of the break shot, use the principle of conservation of energy, assuming friction is negligible.

Given:

Height of the table surface from the floor (h) = 0.710 m

Distance from the table's edge to where the ball landed (d) = 4.15 m

World speed record for the break shot = 32 mph (about 14.3 m/s)

To calculate the speed of the break shot (vo), equate the initial kinetic energy of the ball with the potential energy at its maximum height:

(1/2)mv₀² = mgh

where m = mass of the ball, g = acceleration due to gravity (9.8 m/s²), and h = height of the table surface.

Solving for v₀:

v₀ = √(2gh)

Substituting the given values:

v₀ = √(2 × 9.8 × 0.710) m/s

v₀ ≈ 9.80 m/s

So, the speed of the break shot (vo) is approximately 9.80 m/s.

Since friction is negligible, the horizontal component of the velocity remains constant throughout the motion. Therefore:

v₁ = d / t

where t = time taken by the ball to reach the ground.

To find t, use the equation of motion:

h = (1/2)gt²

Solving for t:

t = √(2h / g)

Substituting the given values:

t = √(2 × .710 / 9.8) s

t ≈ 0.376 s

Substituting the values of d and t, now calculate v₁:

v₁ = 4.15 m / 0.376 s

v₁ ≈ 11.02 m/s

Therefore, the speed at which the ball hit the ground (v₁) is approximately 11.02 m/s.

Find out more on speed here: https://brainly.com/question/13943409

#SPJ4

A Venturi tube has a pressure difference of 15,000 Pa. The entrance radius is 3 cm, while the exit radius is 1 cm. What are the entrance velocity, exit veloc- ity, and flow rate if the fluid is gasoline (p = 700 kg/m³)?

Answers

The entrance velocity is approximately 10.62 m/s, the exit velocity is approximately 95.34 m/s, and the flow rate of gasoline through the Venturi tube is approximately 1.15 m³/s.

To determine the entrance velocity, exit velocity, and flow rate of gasoline through the Venturi tube, we can apply the principles of Bernoulli's-equation and continuity equation.

Entrance velocity (V1): Using Bernoulli's equation, we can equate the pressure difference (ΔP) to the kinetic-energy per unit volume (ρV^2 / 2), where ρ is the density of gasoline. Rearranging the equation, we get:

ΔP = (ρV1^2 / 2) - (ρV2^2 / 2)

Substituting the given values: ΔP = 15,000 Pa and ρ = 700 kg/m³, we can solve for V1. The entrance velocity (V1) is approximately 10.62 m/s.

Exit velocity (V2): Since the Venturi tube is designed to conserve mass, the flow rate at the entrance (A1V1) is equal to the flow rate at the exit (A2V2), where A1 and A2 are the cross-sectional areas at the entrance and exit, respectively. The cross-sectional area of a circle is given by A = πr^2, where r is the radius. Rearranging the equation, we get:

V2 = (A1V1) / A2

Substituting the given values: A1 = π(0.03 m)^2, A2 = π(0.01 m)^2, and V1 = 10.62 m/s, we can calculate V2. The exit velocity (V2) is approximately 95.34 m/s.

Flow rate (Q): The flow rate (Q) can be calculated by multiplying the cross-sectional area at the entrance (A1) by the entrance velocity (V1). Substituting the given values: A1 = π(0.03 m)^2 and V1 = 10.62 m/s, we can calculate the flow rate (Q). The flow rate is approximately 1.15 m³/s.

In conclusion, for gasoline flowing through the Venturi tube with a pressure difference of 15,000 Pa, the entrance velocity is approximately 10.62 m/s, the exit velocity is approximately 95.34 m/s, and the flow rate is approximately 1.15 m³/s.

To learn more about Bernoulli's-equation , click here : https://brainly.com/question/6047214

#SPJ11

When throwing a ball, your hand releases it at a height of 1.0 m above the ground with velocity 6.8 m/s in direction 61° above the horizontal.
A.) How high above the ground (not your hand) does the ball go?
B.) At the highest point, how far is the ball horizontally from the point of release?

Answers

The ball reaches a maximum height of approximately 1.122 meters above the ground.

At the highest point, the ball is approximately 2.496 meters horizontally away from the point of release.

We'll use the vertical component of the initial velocity to determine the maximum height reached by the ball.

Initial vertical velocity (Vy) = 6.8 m/s * sin(61°)

Acceleration due to gravity (g) = 9.8 m/s²

Using the kinematic equation:

Vy^2 = Uy^2 + 2 * g * Δy

Where:

Vy = final vertical velocity (0 m/s at the highest point)

Uy = initial vertical velocity

g = acceleration due to gravity

Δy = change in vertical position (height)

Rearranging the equation, we get:

0 = (6.8 m/s * sin(61°))^2 + 2 * 9.8 m/s² * Δy

Simplifying and solving for Δy:

Δy = (6.8 m/s * sin(61°))^2 / (2 * 9.8 m/s²)

Δy ≈ 1.122 m

Therefore, the ball reaches a maximum height of approximately 1.122 meters above the ground.

b) We'll use the horizontal component of the initial velocity to determine the horizontal distance traveled by the ball.

Initial horizontal velocity (Vx) = 6.8 m/s * cos(61°)

Time taken to reach the highest point (t) = ? (to be calculated)

Using the kinematic equation:

Δx = Vx * t

Where:

Δx = horizontal distance traveled

Vx = initial horizontal velocity

t = time taken to reach the highest point

The time taken to reach the highest point is determined solely by the vertical motion and can be calculated using the equation:

Vy = Uy - g * t

Where:

Vy = final vertical velocity (0 m/s at the highest point)

Uy = initial vertical velocity

g = acceleration due to gravity

Rearranging the equation, we get:

t = Uy / g

Substituting the given values:

t = (6.8 m/s * sin(61°)) / 9.8 m/s²

t ≈ 0.689 s

Now we can calculate the horizontal distance traveled using Δx = Vx * t:

Δx = (6.8 m/s * cos(61°)) * 0.689 s

Δx ≈ 2.496 m

Therefore, at the highest point, the ball is approximately 2.496 meters horizontally away from the point of release.

Learn more about velocity:

https://brainly.com/question/25749514

#SPJ11

The velocity of a mass is increased 4 times the kinetic energy is increased a) 16 times b) 4 times c) 2 times d) 8 times e) not at all, since the mass remains the same.

Answers

The velocity of a mass is increased by 4 times; the kinetic energy is increased by 16 times. The correct option is a) 16 times.

What is kinetic energy?

Kinetic energy is the energy an object possesses when it is in motion. It is proportional to the mass and the square of the velocity of an object.

Kinetic energy is defined as:

K = 1/2 mv²

where K is the kinetic energy of the object in joules,

m is the mass of the object in kilograms, and

v is the velocity of the object in meters per second.

Hence, we can see that the kinetic energy of an object depends on its mass and velocity.

The question states that the velocity of a mass is increased 4 times.

Therefore, if the initial velocity was v,

the final velocity is 4v.

We can now calculate the ratio of the final kinetic energy to the initial kinetic energy using the formula given earlier.

K1/K2 = (1/2 m(4v)²) / (1/2 mv²)

= 16

Therefore, the kinetic energy is increased by 16 times, option a) is the correct option.

Learn more about kinetic energy, here

https://brainly.com/question/30337295

#SPJ11

A400 ohm resistor is connected in series with a 0.35 H inductor and AC-source. The potential difference across the resistor is VR-6.8 cos (680rad/s)t a) What is the circuit current at t-1.6s? t in Volts. b) Determine the inductive reactance of the inductor? c) What is the voltage across the inductor (V₁) at t=3.2s? J₁ = 2

Answers

In this series circuit, a 400-ohm resistor is connected with a 0.35 H inductor and an AC source.

The potential difference across the resistor is given by VR = 6.8 cos(680 rad/s)t. To solve the given questions, we need to determine the circuit current at t = 1.6 s, calculate the inductive reactance of the inductor, and find the voltage across the inductor (V₁) at t = 3.2 s.

a) To find the circuit current at t = 1.6 s, we can use Ohm's law. The potential difference across the resistor is VR = 6.8 cos(680 rad/s)(1.6 s). Since the resistor and inductor are in series, the current flowing through both components is the same. Therefore, the circuit current at t = 1.6 s is I = VR / R, where R is the resistance value of 400 ohms.

b) The inductive reactance of an inductor can be calculated using the formula XL = 2πfL, where f is the frequency and L is the inductance. In this case, the frequency is given by ω = 680 rad/s. Thus, the inductive reactance of the 0.35 H inductor is XL = 2π(680)(0.35).

c) To determine the voltage across the inductor (V₁) at t = 3.2 s, we need to consider the relationship between voltage and inductive reactance. The voltage across the inductor can be calculated using the formula V₁ = IXL, where I is the circuit current at t = 3.2 s, and XL is the inductive reactance determined in part (b).

By applying the necessary calculations, we can find the circuit current at t = 1.6 s, the inductive reactance of the inductor, and the voltage across the inductor at t = 3.2 s using the given information.

Learn more about resistor here: brainly.com/question/30672175

#SPJ11

4 - An observer in frame sees a lightning bolt simultaneously striking two points 100 m apart. The first hit occurs at x1 = y1 = z1 = 1 = 0 and the second at x2 = 200m, y2 =
z2 = 2 = 0.
(a) What are the coordinates of these two events in a frame ′ moving at 0.70c relative to ?
(b) How far apart are the events in ′?
(c) Are these events simultaneous in ′? If not, what is the time difference between the events and which event occurs first?

Answers

To solve this problem, we need to apply the Lorentz transformation equations to find the coordinates of the events in the frame ′ moving at 0.70c relative to the observer's frame.

The Lorentz transformation equations are as follows:

x' = γ(x - vt)

y' = y

z' = z

t' = γ(t - vx/c^2)

where γ is the Lorentz factor, v is the relative velocity between the frames, c is the speed of light, x, y, z, and t are the coordinates in the observer's frame, and x', y', z', and t' are the coordinates in the moving frame ′.

Given:

x1 = y1 = z1 = t1 = 0

x2 = 200 m, y2 = z2 = 0

(a) To find the coordinates of the events in the frame ′, we substitute the given values into the Lorentz transformation equations. Since y and z remain unchanged, we only need to calculate x' and t':

For the first event:

x'1 = γ(x1 - vt1)

t'1 = γ(t1 - vx1/c^2)

Substituting the given values and using v = 0.70c, we have:

x'1 = γ(0 - 0)

t'1 = γ(0 - 0)

For the second event:

x'2 = γ(x2 - vt2)

t'2 = γ(t2 - vx2/c^2)

Substituting the given values, we get:

x'2 = γ(200 - 0.70c * t2)

t'2 = γ(t2 - 0.70c * x2/c^2)

(b) The distance between the events in the frame ′ is given by the difference in the transformed x-coordinates:

Δx' = x'2 - x'1

(c) To determine if the events are simultaneous in the frame ′, we compare the transformed t-coordinates:

Δt' = t'2 - t'1

Now, let's calculate the values:

(a) For the first event:

x'1 = γ(0 - 0) = 0

t'1 = γ(0 - 0) = 0

For the second event:

x'2 = γ(200 - 0.70c * t2)

t'2 = γ(t2 - 0.70c * x2/c^2)

(b) The distance between the events in the frame ′ is given by:

Δx' = x'2 - x'1 = γ(200 - 0.70c * t2) - 0

(c) To determine if the events are simultaneous in the frame ′, we calculate:

Δt' = t'2 - t'1 = γ(t2 - 0.70c * x2/c^2) - 0

In order to proceed with the calculations, we need to know the value of the relative velocity v.

To know more about velocity visit:

brainly.com/question/18084516

#SPJ11

3 A 1-kg box is lifted vertically 40 cm by a boy. The work done by the boy (in J) is: Take g- 10 m/s² 40 (b) 400 (c) 4 (d) 800 (e) 80

Answers

To calculate the work done by the boy in lifting the box, we need to use the formula:

Work = Force × Distance × cos(θ)

In this case, the force exerted by the boy is equal to the weight of the box, which can be calculated using the formula:

Force = mass × acceleration due to gravity

Given that the mass of the box is 1 kg and the acceleration due to gravity is 10 m/s² (as given in the question), the force exerted by the boy is:

Force = 1 kg × 10 m/s² = 10 N

The distance lifted by the boy is given as 40 cm, which is 0.4 meters. Plugging in these values into the work formula:

Work = 10 N × 0.4 m × cos(0°)

Since the box is lifteverticall y, the angle θ between the force and the displacement is 0°, and the cosine of 0° is 1. So we have:

Work = 10 N × 0.4 m × 1 = 4 J

Therefore, the work done by the boy in lifting the 1-kg box vertically by 40 cm is 4 joules.

The correct option is (c) 4.

Learn more about force here

brainly.com/question/30507236

#SPJ11

A superconducting solenoid with 2000 turns/m is meant to generate a magnetic field of 12.0 T. Calculate the current required. KA (+ 0.02 kA)

Answers

The current required to generate a magnetic field of 12.0 T in a superconducting solenoid with 2000 turns/m is approximately 6.0 kA.

To calculate the current, we can use Ampere's Law, which states that the magnetic field (B) inside a solenoid is directly proportional to the product of the current (I) and the number of turns per unit length (N).

B = μ₀ * N * I

where μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A).

Rearranging the equation to solve for current (I):

I = B / (μ₀ * N)

Plugging in the given values:

I = 12.0 T / (4π × 10⁻⁷ T·m/A * 2000 turns/m)

I ≈ 6.0 kA

learn more about Ampere's Law, here:

https://brainly.com/question/32676356

#SPJ11

Each of the statments below may or may not be true. Enter the letters corresponding to all the true statements. (Give ALL correct answers, i.e., B, AC, BCD...) In the two-slit experiment, yl, the distance from the central maximum from the first bright spot ... A) decreases if the screen is moved away from the slits. B) doesn't depend on the slit separation. C) is always an integer multiple of the wavelength of the light. D) does not depend on the frequency of the light. E) is larger for blue light than for violet light.

Answers

The true statements from the given options are: B) Doesn't depend on the slit separation C) Is always an integer multiple of the wavelength of the light. D) Does not depend on the frequency of the light.

A) The distance yl from the central maximum to the first bright spot, known as the fringe width or the distance between adjacent bright fringes, is determined by the slit separation. Therefore, statement A is false. B) The distance yl is independent of the slit separation. It is solely determined by the wavelength of the light used in the experiment. As long as the wavelength remains constant, the distance yl will also remain constant. Hence, statement B is true. C) The distance yl between adjacent bright fringes is always an integer multiple of the wavelength of the light. This is due to the interference pattern created by the two slits, where constructive interference occurs at these specific distances. Therefore, statement C is true. D) The distance yl does not depend on the frequency of the light. The fringe separation is solely determined by the wavelength, not the frequency. As long as the wavelength remains constant, the distance yl remains the same. Hence, statement D is true. E) The statement about the comparison of yl for blue light and violet light is not provided in the given options, so we cannot determine its truth or falsity based on the given information. In summary, the true statements are B) Doesn't depend on the slit separation, C) Is always an integer multiple of the wavelength of the light, and D) Does not depend on the frequency of the light.

To learn more about frequency , click here : https://brainly.com/question/29739263

#SPJ11

A 0.250-kg object attached to a spring oscillates on a frictionless horizontal table with a frequency of 5.00 Hz and an amplitude 20.0 cm. What is the maximum potential energy Umax of the system?

Answers

The maximum potential energy of the system is 0.5 J.

The given frequency, f = 5 Hz. The given amplitude, A = 20 cm = 0.2 m

The mass of the object, m = 0.250 kg

We can find the maximum potential energy of the system using the following formula: Umax = (1/2)kA²where k is the spring constant.

We know that the frequency of oscillation can be expressed as: f = (1/2π)√(k/m)

Rearranging the above formula, we get: k = (4π²m)/T² where T is the time period of oscillation.

We know that T = 1/f. Substituting this value in the above equation, we get:

k = (4π²m)/(1/f²)

k = 4π²mf².

Using this value of k, we can now find Umax.

Umax = (1/2)kA²

Substituting the given values, we get:

Umax = (1/2) x 4π² x 0.250 x (5)² x (0.2)²

Umax = 0.5 J

Therefore, the maximum potential energy of the system is 0.5 J.

Learn more about Potential energy

https://brainly.com/question/9349250

#SPJ11

1. Solve y' += 2 using Integrating Factor 2. Solve y²dy = x² - xy using Homogenous Equation

Answers

To solve y' + 2 = 0 using an integrating factor, we multiply by e^(2x) and integrate. To solve y^2dy = x^2 - xy using a homogeneous equation, we substitute y = vx and solve a separable equation.

1. To solve y' + 2 = 0 using an integrating factor, we first rewrite the equation as y' = -2. Then, we multiply both sides by the integrating factor e^(2x):

e^(2x)*y' = -2e^(2x)

We recognize the left-hand side as the product rule of (e^(2x)*y)' and integrate both sides with respect to x:

e^(2x)*y = -e^(2x)*C1 + C2

where C1 and C2 are constants of integration. Solving for y, we get:

y = -C1 + C2*e^(-2x)

where C1 and C2 are arbitrary constants.

2. To solve y^2dy = x^2 - xy using a homogeneous equation, we first rewrite the equation in the form:

dy/dx = (x^2/y - x)

This is a homogeneous equation because both terms have the same degree of homogeneity (2). We then substitute y = vx and dy/dx = v + xdv/dx into the equation, which gives:

v + xdv/dx = (x^2)/(vx) - x

Simplifying, we get:

vdx/x = (1 - v)dv

This is a separable equation that we can integrate to get:

ln|x| = ln|v| - v + C

where C is the constant of integration. Rearranging and substituting back v = y/x, we get:

ln|y| - ln|x| - y/x + C = 0

This is the general solution of the homogeneous equation.

know more about integrating factor here: brainly.com/question/32554742

#SPJ11

(hrwc10p2_6e) The National Transportation Safety Board is testing the crash-worthiness of a new car. The 2300 kg vehicle, moving at 22 m/s, is allowed to collide with a bridge abutment, being brought to rest in a time of 0.62 s. What force, assumed constant, acted on the car during impact? Submit Answer Tries 0/7

Answers

The force that acted on the car during impact was approximately 820.77 kN.ExplanationGiven valuesMass of the vehicle (m) = 2300 kgInitial velocity (u) = 22 m/sTime taken to stop (t) = 0.62 sFormulaF = maWhere a = accelerationm = mass of the objectF = force exerted on the objectSolutionFirst, we will calculate the final velocity of the car.

Using the following formula, we can find out the final velocity:v = u + atWhere, v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time taken to stop the car.In this case, u = 22 m/s and t = 0.62 s. We need to calculate a, which is the acceleration of the car. To do this, we use the following formula:a = (v - u)/tWe know that the final velocity of the car is 0, since it comes to rest after colliding with the bridge abutment.

So we can write the equation as:0 = 22 + a × 0.62Solving for a, we get:a = -35.48 m/s²The negative sign indicates that the car is decelerating. We can now find the force exerted on the car using the formula:F = maSubstituting the values, we get:F = 2300 × (-35.48)F = - 82077 NThe force exerted on the car is negative, which indicates that it is in the opposite direction to the car's motion. We can convert this to kilonewtons (kN) by dividing by 1000:F = -82.077 kNHowever, the magnitude of force is positive. So the force that acted on the car during impact was approximately 820.77 kN.

To learn more about force visit:

brainly.com/question/30507236

#SPJ11

Structures on a bird feather act like a diffraction grating having 8500 lines per centimeter. What is the angle of the first-order
maximum for 602 nm light shone through a feather?

Answers

The angle of the first-order maximum for 602 nm light shone through the feather is 2.91 degrees.

The light wavelength = 602 nm = [tex]602 * 10^{(-9)} m[/tex]

Number of lines per every centimeter (N) = 8500 lines/cm

The space between the diffracting elements is

d = 1 / N

d = 1 / (8500 lines/cm)

d  = [tex]1.176 * 10^{(-7)} m[/tex]

The angular position of the diffraction maxima cab ve calculated as:

sin(θ) = m * λ / d

sin(θ) = m * λ / d

sin(θ) = [tex](1) * (602 * 10^{(-9)} m) / (1.176 * 10^{(-7)} m)[/tex]

θ = arcsin[[tex](602 * 10^{(-9)} m[/tex]]) / ([tex]1.176 * 10^{(-7)} m[/tex])]

θ = 0.0507 radians

The theta value is converted to degrees:

θ (in degrees) = 0.0507 radians * (180° / π)

θ = 2.91°

Therefore, we can conclude that the feather is 2.91 degrees.

To learn more about the first-order maximum

https://brainly.com/question/17313862

#SPJ4

A block of mass 1.30 kg is placed on a frictionless floor and initially pushed northward, whereupon it begins sliding with a constant speed of 5.12 m/s. It eventually collides with a second, stationary block, of mass 4.82 kg, head-on, and rebounds back to the south. The collision is 100% elastic. What will be the speeds of the 1.30-kg and 4.82-kg blocks, respectively, after this collision?
2.05 m/s and 2.56 m/s
1.18 m/s and 2.75 m/s
2.94 m/s and 2.18 m/s
2.18 m/s and 2.94 m/s

Answers

To solve this problem, we can use the principle of conservation of momentum and the principle of conservation of kinetic energy.

Before the collision, the total momentum of the system is the sum of the momenta of the two blocks. After the collision, the total momentum remains the same.

Let's denote the initial velocity of the 1.30 kg block as v1i and the initial velocity of the 4.82 kg block as v2i. Since the 1.30 kg block is initially pushed northward, its velocity is positive, while the 4.82 kg block is stationary, so its initial velocity is 0.

Using the conservation of momentum:

(m1 × v1i) + (m2 × v2i) = (m1 × v1f) + (m2 × v2f)

Since the collision is elastic, the total kinetic energy before and after the collision remains the same. The kinetic energy equation can be written as:

0.5 × m1 × (v1i)^2 + 0.5 × m2 × (v2i)^2 = 0.5 × m1 × (v1f)^2 + 0.5 × m2 × (v2f)^2

We can solve these two equations simultaneously to find the final velocities (v1f and v2f) of the blocks after the collision.

Substituting the given masses (m1 = 1.30 kg and m2 = 4.82 kg) and initial velocity values into the equations, we find that the speeds of the 1.30 kg and 4.82 kg blocks after the collision are approximately 2.18 m/s and 2.94 m/s, respectively. Therefore, the correct answer is 2.18 m/s and 2.94 m/s.

To know more about conservation of momentum , please visit

https://brainly.com/question/24989124

#SPJ11

Department Problem 2 At t-0, observer O emits a photon in a direction of 50 with the positive x axis. A second observer O' is traveling with a speed of 0.6c along the common x-x axis. What angle does the photon make with the xaxis?

Answers

In this problem, an observer is emitting a photon in a certain direction. A second observer is travelling along the x-x axis. We need to find out the angle the photon makes with the x-axis. Let's assume that the x-axis and the x-x axis are the same. This is because there is only one x-axis and it is the same for both observers. Now, let's find the angle the photon makes with the x-axis.

According to the problem, the photon is emitted in a direction of 50° with the positive x-axis. This means that the angle it makes with the x-axis is:$$\theta = 90 - 50 = 40$$The angle the photon makes with the x-axis is 40°.

Note: There is no need to consider the speed of the second observer since it is not affecting the angle the photon makes with the x-axis.

Let's learn more about photon:

https://brainly.com/question/30820906

#SPJ11

A block with a mass of 47.5 kg is pushed with a horizontal force of 150 N. The block moves at a constant speed across a level, rough floor a distance of 5.50 m. (a) What is the work done (in J) by the 150 N force? ] (b) What is the coefficient of kinetic friction between the block and the floor?

Answers

(a) The work done by a force is given by the equation:

Work = Force * Distance * cos(theta)

In this case, the force applied is 150 N and the distance moved is 5.50 m. Since the force is applied horizontally, the angle theta between the force and the displacement is 0 degrees (cos(0) = 1).

So the work done by the 150 N force is:

Work = 150 N * 5.50 m * cos(0) = 825 J

Therefore, the work done by the 150 N force is 825 Joules (J).

(b) The work done by the 150 N force is equal to the work done against friction. The work done against friction can be calculated using the equation:

Work = Force of friction * Distance

Since the block moves at a constant speed, the net force acting on it is zero. Therefore, the force of friction must be equal in magnitude and opposite in direction to the applied force of 150 N.

So the force of friction is 150 N.

The coefficient of kinetic friction (μk) can be determined using the equation:

Force of friction = μk * Normal force

The normal force (N) is equal to the weight of the block, which is given by:

Normal force = mass * gravity

where gravity is approximately 9.8 m/s².

Substituting the values:

150 N = μk * (47.5 kg * 9.8 m/s²)

Solving for μk:

μk = 150 N / (47.5 kg * 9.8 m/s²) ≈ 0.322

Therefore, the coefficient of kinetic friction between the block and the floor is approximately 0.322.

To know more about work done click this link -

brainly.com/question/32263955

#SPJ11

Problem 4.91 A 72-kg water skier is being accelerated by a ski boat on a flat ("glassy") lake. The coefficient of kinetic friction between the skier's skis and the water surface is 4 = 0.24. (Figure 1) Figure 1 of 1 > FT 10. 2 Submit Previous Answers ✓ Correct Part B What is the skier's horizontal acceleration if the rope pulling the skier exerts a force of Fr=250 N on the skier at an upward angle 0 = 12°? Express your answer to two significant figures and include the appropriate units. μÀ ? m 0₂= 3.39 Submit Previous Answers Request Answer X Incorrect; Try Again; 22 attempts remaining < Return to Assignment Provide Feedback

Answers

The horizontal acceleration of the skier is 2.8 m/s²   .

Here, T is the tension force, Fg is the weight of the skier and Fn is the normal force. Let us resolve the forces acting in the horizontal direction (x-axis) and vertical direction (y-axis): Resolving the forces in the vertical direction, we get: Fy = Fn - Fg = 0As there is no vertical acceleration.

Therefore, Fn = FgResolving the forces in the horizontal direction, we get: Fx = T sin 0 - Ff = ma, where 0 is the angle between the rope and the horizontal plane and Ff is the force of friction between the skier's skis and the water surface. Now, substituting the values, we get: T sin 0 - Ff = ma...(1).

Also, from the figure, we get: T cos 0 = Fr... (2).Now, substituting the value of T from equation (2) in equation (1), we get:Fr sin 0 - Ff = maFr sin 0 - m a g μ = m a.

By substituting the given values of the force Fr and the coefficient of kinetic friction μ, we get:ma = (250 sin 12°) - (72 kg × 9.8 m/s² × 0.24).

Hence, the horizontal acceleration of the skier is 2.8 m/s² (approximately).Part B: Answer more than 100 wordsThe horizontal acceleration of the skier is found to be 2.8 m/s² (approximately). This means that the speed of the skier is increasing at a rate of 2.8 m/s². As the speed increases, the frictional force acting on the skier will also increase. However, the increase in frictional force will not be enough to reduce the acceleration to zero. Thus, the skier will continue to accelerate in the horizontal direction.

Also, the angle of 12° is an upward angle which will cause a component of the tension force to act in the vertical direction (y-axis). This component will balance the weight of the skier and hence, there will be no vertical acceleration. Thus, the skier will continue to move in a straight line on the flat lake surface.

The coefficient of kinetic friction between the skier's skis and the water surface is given as 0.24. This implies that the frictional force acting on the skier is 0.24 times the normal force. The normal force is equal to the weight of the skier which is given as 72 kg × 9.8 m/s² = 705.6 N. Therefore, the frictional force is given as 0.24 × 705.6 N = 169.344 N. The tension force acting on the skier is given as 250 N. Thus, the horizontal component of the tension force is given as 250 cos 12° = 239.532 N. This force acts in the horizontal direction and causes the skier to accelerate. Finally, the horizontal acceleration of the skier is found to be 2.8 m/s² (approximately).

Thus, the horizontal acceleration of the skier is 2.8 m/s² (approximately).

To know more about force of friction visit:

brainly.com/question/13707283

#SPJ11

Collision Between Ball and Stick Points:20 On a frictionless table, a 0.70 kg glob of clay strikes a uniform 1.70 kg bar perpendicularly at a point 0.28 m from the center of the bar and sticks to it. If the bar is 1.22 m long and the clay is moving at 7.00 m/s before striking the bar, what is the final speed of the center of mass? b m M 2.04 m/s You are correct. Your receipt no. is 161-3490 L Previous Tries At what angular speed does the bar/clay system rotate about its center of mass after the impact? 5.55 rad/s Submit Answer Incorrect. Tries 4/40 Previous Tries

Answers

After the collision between the clay and the bar, the final speed of the center of mass is found to be 2.04 m/s.

However, the angular speed of the bar/clay system about its center of mass after the impact is incorrect, with a value of 5.55 rad/s.

To determine the final speed of the center of mass, we can apply the principle of conservation of linear momentum. Before the collision, the clay is moving at a speed of 7.00 m/s, and the bar is at rest. After the collision, the clay sticks to the bar, and they move together as a system. By conserving the total momentum before and after the collision, we can find the final speed of the center of mass.

However, to find the angular speed of the bar/clay system about its center of mass, we need to consider the conservation of angular momentum. Since the collision occurs at a point 0.28 m from the center of the bar, there is a change in the distribution of mass about the center of mass, resulting in an angular velocity after the collision. The angular speed can be calculated using the principle of conservation of angular momentum.

The calculated value of 5.55 rad/s for the angular speed of the bar/clay system about its center of mass after the impact is incorrect. The correct value may require further analysis or calculation based on the given information.

Learn more about collision here: brainly.com/question/30636941

#SPJ11

A "blink of an eye" is a time interval of about 150 ms for an average adult. The "closure portion of the blink takes only about 55 ms. Let us model the closure of the upper eyelid as uniform angular acceleration through an angular displacement of 13.9". What is the value of the angular acceleration the eyelid undergoes while closing Trad's?

Answers

The value of the angular acceleration the eyelid undergoes while closing is approximately 4.4036 rad/s².

Angular displacement, Δθ = 13.9°

Time interval, Δt = 55 ms = 0.055 s

To convert the angular displacement from degrees to radians:

θ (in radians) = Δθ × (π/180)

θ = 13.9° × (π/180) ≈ 0.2422 radians

Now we can calculate the angular acceleration:

α = Δθ / Δt

α = 0.2422 radians / 0.055 s ≈ 4.4036 rad/s²

Therefore, the value of the angular acceleration the eyelid undergoes while closing is approximately 4.4036 rad/s².

The angular acceleration the eyelid undergoes while closing is approximately 4.4036 rad/s². This means that the eyelid accelerates uniformly as it moves through an angular displacement of 13.9° during a time interval of 55 ms.

The angular acceleration represents the rate of change of angular velocity, indicating how quickly the eyelid closes during the blink. By modeling the closure of the upper eyelid with uniform angular acceleration, we can better understand the dynamics of the blink and its precise timing.

Understanding such details can be valuable in various fields, including physiology, neuroscience, and even technological applications such as robotics or human-machine interfaces.

Learn more about acceleration at: https://brainly.com/question/460763

#SPJ11

Other Questions
In an electric shaver, the blade moves back and forth over a distance of 2.0 mm in simple harmonic motion, with frequency 100Hz. Find 1.The amplitude 2.The maximum blade speed 3. The magnitude of the maximum blade acceleration The nurse is aware that the production of aldosterone is regulated by which of the following glands? (A) Thyroid gland B. Adrenal gland C. Pancreas D. Thymus gland 3. What would happen if you put an object at the focal point of the lens? 4. What would happen if you put an object at the focal point of the mirror? 5. What would happen if you put an object between the focal point and the lens? 6. What would happen if you put an object between the focal point and the mirror? A 380 kg piano is pushed at constant speed a distance of 3.9 m up a 27 incline by a mover who is pushing parallel to the incline. The coefficient of friction between the piano & ramp is 0.45. (a) De y=xcos2x dy/dx= (1) cos2x2x^2sin2x (2) cos2x+2xsin2x (3) cos2x+2xsin2x (4) cos2x2xsin2x 1. ~SD2. ~S v (~DK)3.~D /KUse natural deduction methods to solve the following problem. The arrow symbol means the same as the horseshoe. A. How does successful positioning employ an understanding of consumer behavior principles? B. If people are not always rational decision makers, is it worth the effort to study how these decisions are made? Why or why not? C. What does the Just Noticeable Difference (ND) tell marketers about changing elements of their brands? D. Are consumption motives conscious or unconscious? With which theorist/researcher do you most closely agree? Why? E. If you are using emotional markethag, what are the considerations that you must keep in mind? (A=4, C=2) \) Use the principle of superposition to determine the resulting waveform when the waves in figure interfere with each other." Consider The Following Three Regressions That Hold For The SAME Population: Wage I=A0+A1 Female I+Ui Wage I=B0+B2 Male Ei+Vi Wage I=C1 Female Ei+C2 Male I+Ei Where Wage Refers To Average Hourly Earnings, U,V, And E Are The Regressions' Error Terms, And Female I=1 If Observation I Refers To A Female, And =0 If Observation I Refers To A Male Male I=1 If Photoelectrons from a material whose work function is 2.43 eVare ejected by 487 nm photons. Once ejected, how long does it takethese electrons (in ns) to travel 2.75 cm to a detection device? Discuss the leadership lessons that you can draw from imagery ofthe Arjunas Chariot (Lord Arjun from Mahabharat). (600 words) YOUR TASKYou are required to submit a Case Study Analysis report for topic related to business analytics. This homework will result in a survey paper examining the use of business analytics in organization transformation.REQUIREMENTS:The Case study should be obtained from reputable journals, white papers, conference papers, reputable magazine articles, or any acceptable reference for academia.Your report should consist a summary of real-time business analytics solution implemented in industries.The summary should include the organizational details, the business transformation, problem and challenges endured by the organisation and how they introduced analytics.Write a summative report on how this organization successfully implemented analytics solution which may have improved their business processes, organizational transformation, higher productivity, business growth, enhanced competitiveness, to have more effective managerial decision making and increased globalization opportunities.EXAMPLES OF TOPICSHere are some examples of topics that you can undertake for your case study analysis. You may choose a topic of your interest as well.Data mining and social network analysis: a study of current use of data mining in social network analysis and future recommendations. How data mining can help the field of social networks?Data mining and blog analysis: a study of current use of data mining in blog analysis and future recommendations. How data mining can help in finding useful information out of huge amount of blogs? What is the difference/similarities between log, Web site and blog analysis?Data mining and Personalisation with user profiles: Data mining is increasingly being used for customisation and personalisation of information that are presented to users, for example, in online newspapers, e-commerce and others. How the use of user profiles and other profiles would increase the effectiveness? A study of issues, techniques and usage of data mining in this domain.Data mining and monitoring alarms: Data sets pertaining to many health and manufacturing situations are analysed with data mining techniques. What data mining techniques can be used in these situations and how can they be utilised in predicting the future based on alarms deployed with the outputs?Data mining and structural health monitoring: How and what data mining techniques are being used in civil engineering domain in particular to health monitoring of structures? A study of issues, techniques and usage of data mining in this domain.Data mining and road asset management: How and what data mining techniques are being used in road asset management? A study of issues, techniques and usage of data mining in this domain.INSTRUCTIONSWrite a 500-750 words report. A solid, G is bounded in the first octant by the cylinder x^2 +z^2 =3^2, plane y=x, and y=0. Express the triple integral G dV in four different orientations in Cartesian coordinates dzdydx,dzdxdy,dydzdx, and dydxdz. Choose one of the orientations to evaluate the integral. Calculate the truth value of the following:(0 = ~1) = (10)?01 In the partial wave analysis of low-energy scattering, we often find that S-wave scattering phase shift is all we need. Why do the higher partial waves tend not to contribute to scattering at this limit? What is a semantic paraphasia? What does this tell us about theway in which words are organized in the mental lexicon? Assume the average return on high yield bonds was 15.6% over the past 50 years. (if the average return on Treasury bills was 3.1% over that period, what is the historical risk premium for high yield bonds? 11.50% 9.50% 8.50% 12.50% 10.50% At which points is the function continuous? The best way to win the sell of a prospect (or new client- someone you have never worked with before) is by establishing a rapport before going into your sales pitch. If you are meeting the new client in their office, the best way to establish a rapport is byFind out if the person likes the same hobbies as you.Looking for clues in their office such as pictures, plaques, or awards.Both A and BNone of the above The position of a 51 gg oscillating mass is given byx(t)=(1.5cm)cos11t, where t is in seconds. Determine theamplitude.